Prediction of chromatin looping using deep hybrid learning (DHL)

Mateusz Chiliński , Anup Kumar Halder , Dariusz Plewczynski

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 155 -162.

PDF (5191KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 155 -162. DOI: 10.15302/J-QB-022-0315
RESEARCH ARTICLE
RESEARCH ARTICLE

Prediction of chromatin looping using deep hybrid learning (DHL)

Author information +
History +
PDF (5191KB)

Abstract

Background: With the development of rapid and cheap sequencing techniques, the cost of whole-genome sequencing (WGS) has dropped significantly. However, the complexity of the human genome is not limited to the pure sequence—and additional experiments are required to learn the human genome’s influence on complex traits. One of the most exciting aspects for scientists nowadays is the spatial organisation of the genome, which can be discovered using spatial experiments (e.g., Hi-C, ChIA-PET). The information about the spatial contacts helps in the analysis and brings new insights into our understanding of the disease developments.

Methods: We have used an ensemble of deep learning with classical machine learning algorithms. The deep learning network we used was DNABERT, which utilises the BERT language model (based on transformers) for the genomic function. The classical machine learning models included support vector machines (SVMs), random forests (RFs), and K-nearest neighbor (KNN). The whole approach was wrapped together as deep hybrid learning (DHL).

Results: We found that the DNABERT can be used to predict the ChIA-PET experiments with high precision. Additionally, the DHL approach has increased the metrics on CTCF and RNAPII sets.

Conclusions: DHL approach should be taken into consideration for the models utilising the power of deep learning. While straightforward in the concept, it can improve the results significantly.

Graphical abstract

Keywords

deep learning / 3D genomics / transformers / spatial organisation of nucleus / ChIA-PET / DNA-Seq

Cite this article

Download citation ▾
Mateusz Chiliński, Anup Kumar Halder, Dariusz Plewczynski. Prediction of chromatin looping using deep hybrid learning (DHL). Quant. Biol., 2023, 11(2): 155-162 DOI:10.15302/J-QB-022-0315

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W. . (2001). Initial sequencing and analysis of the human genome. Nature, 409: 860–921

[2]

Consortium, I. H. G. S. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431: 931–945

[3]

Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E. McVean, G. A. (2010). A map of human genome variation from population-scale sequencing. Nature, 467: 1061–1073

[4]

Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Marchini, J. L., McCarthy, S., McVean, G. A., Abecasis, G. R. . (2015). A global reference for human genetic variation. Nature, 526: 68–74

[5]

Chaisson, M. J. P., Sanders, A. D., Zhao, X., Malhotra, A., Porubsky, D., Rausch, T., Gardner, E. J., Rodriguez, O. L., Guo, L., Collins, R. L. . (2019). Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun., 10: 1784

[6]

Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H., Hori, M., Nakamura, Y. . (2002). Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet., 32: 650–654

[7]

Pombo, A. (2015). Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol., 16: 245–257

[8]

Dekker, J., Rippe, K., Dekker, M. (2002). Capturing chromosome conformation. Science, 295: 1306–1311

[9]

Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B. (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet., 38: 1348–1354

[10]

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O. . (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326: 289–293

[11]

Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H. . (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462: 58–64

[12]

Fudenberg, G., Kelley, D. R. Pollard, K. (2020). Predicting 3D genome folding from DNA sequence with Akita. Nat. Methods, 17: 1111–1117

[13]

TanJ.,Shenker-TaurisN.,Rodriguez-HernaezJ.,WangE.,SakellaropoulosT.,BoccalatteF.,ThandapaniP.,SkokJ.,AifantisI.,. (2022) Cell type-specific prediction of 3D chromatin architecture. Nat. Biotechnol.,

[14]

Devlin, J., Chang, M. Lee, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv, 181004805

[15]

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A. (2019). A primer on deep learning in genomics. Nat. Genet., 51: 12–18

[16]

SherstinskyA.. (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 404: 132306

[17]

Ji, Y., Zhou, Z., Liu, H. Davuluri, R. (2021). DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome. Bioinformatics, 37: 2112–2120

[18]

Cortes, C. (1995). Support-vector networks. Mach. Learn., 20: 273–297

[19]

Breiman, L. (2001). Random forests. Mach. Learn., 45: 5–32

[20]

Fix, E. Hodges, J. (1989). Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Stat. Rev., 57: 238–247

[21]

Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S. . (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159: 1665–1680

[22]

McArthur, E. Capra, J. (2021). Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am. J. Hum. Genet., 108: 269–283

[23]

Halder, A. Chatterjee, P., Nasipuri, M., Plewczynski, D. (2019). 3gClust: human protein cluster analysis. IEEE/ACM Trans. Comput. Biol. Bioinforma., 16: 1773–1784

RIGHTS & PERMISSIONS

The Author(s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (5191KB)

Supplementary files

QB-22315-OF-PD_suppl_1

1988

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/