Light-driven synthetic microbial consortia: playing with an oxygen dilemma
Huawei Zhu, Yin Li
Light-driven synthetic microbial consortia: playing with an oxygen dilemma
Background: Light-driven synthetic microbial consortia are composed of photoautotrophs and heterotrophs. They exhibited better performance in stability, robustness and capacity for handling complex tasks when comparing with axenic cultures. Different from general microbial consortia, the intrinsic property of photosynthetic oxygen evolution in light-driven synthetic microbial consortia is an important factor affecting the functions of the consortia.
Results: In light-driven microbial consortia, the oxygen liberated by photoautotrophs will result in an aerobic environment, which exerts dual effects on different species and processes. On one hand, oxygen is favorable to the synthetic microbial consortia when they are used for wastewater treatment and aerobic chemical production, in which biomass accumulation and oxidized product formation will benefit from the high energy yield of aerobic respiration. On the other hand, the oxygen is harmful to the synthetic microbial consortia when they were used for anaerobic processes including biohydrogen production and bioelectricity generation, in which the presence of oxygen will deactivate some biological components and compete for electrons.
Conclusions: Developing anaerobic processes in using light-driven synthetic microbial consortia represents a cost-effective alternative for production of chemicals from carbon dioxide and light. Thus, exploring a versatile approach addressing the oxygen dilemma is essential to enable light-driven synthetic microbial consortia to get closer to practical applications.
Oxygen plays a significant role affecting the functions of synthetic microbial consortia. In a light-driven synthetic microbial consortium, the compacted space makes heterotrophs easily access to the oxygen produced by photoautotrophs. Thus, the sensitivity and requirement of oxygen for heterotrophs involved in a light-driven microbial consortium determines the overall performance of the process. Once an obligate anaerobe or an anaerobic metabolic process was introduced, the oxygen must be isolated from heterotrophs to avoid oxygen inactivation and oxygen respiration. This article discussed how to play with the oxygen dilemma in light-driven synthetic microbial consortia to maximize the performance of the systems.
synthetic microbial consortia / oxygen dilemma / photosynthesis
[1] |
Rapp, K. M., Jenkins, J. P. Betenbaugh, M. (2020). Partners for life: building microbial consortia for the future. Curr. Opin. Biotechnol., 66: 292–300
CrossRef
Google scholar
|
[2] |
McCarty, N. S. (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol., 37: 181–197
CrossRef
Google scholar
|
[3] |
Xu, C. M. Yu, H. (2021). Insights into constructing a stable and efficient microbial consortium. Chin. J. Chem. Eng., 30: 112–120
CrossRef
Google scholar
|
[4] |
Ben Said, S., Tecon, R., Borer, B. (2020). The engineering of spatially linked microbial consortia-potential and perspectives. Curr. Opin. Biotechnol., 62: 137–145
CrossRef
Google scholar
|
[5] |
Qian, X., Chen, L., Sui, Y., Chen, C., Zhang, W., Zhou, J., Dong, W., Jiang, M., Xin, F. (2020). Biotechnological potential and applications of microbial consortia. Biotechnol. Adv., 40: 107500
CrossRef
Google scholar
|
[6] |
Jones, J. A. (2018). Use of bacterial co-cultures for the efficient production of chemicals. Curr. Opin. Biotechnol., 53: 33–38
CrossRef
Google scholar
|
[7] |
Wang, S., Zhang, T., Bao, M., Su, H. (2020). Microbial production of hydrogen by mixed culture technologies: a review. Biotechnol. J., 15: e1900297
CrossRef
Google scholar
|
[8] |
Gao, H., Manishimwe, C., Yang, L., Wang, H., Jiang, Y., Jiang, W., Zhang, W., Xin, F. (2022). Applications of synthetic light-driven microbial consortia for biochemicals production. Bioresour. Technol., 351: 126954
CrossRef
Google scholar
|
[9] |
Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. (2011). Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv., 29: 896–907
CrossRef
Google scholar
|
[10] |
Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K. (2018). Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Crit. Rev. Biotechnol., 38: 1244–1260
CrossRef
Google scholar
|
[11] |
nchez Zurano, A., mez Serrano, C., ndez, F. G., ndez-Sevilla, J. M. (2021). Modeling of photosynthesis and respiration rate for microalgae-bacteria consortia. Biotechnol. Bioeng., 118: 952–962
CrossRef
Google scholar
|
[12] |
Fallahi, A., Rezvani, F., Asgharnejad, H., Khorshidi Nazloo, E., Hajinajaf, N. (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 272: 129878
CrossRef
Google scholar
|
[13] |
Mouget, J. L., Dakhama, A., Lavoie, M. C. (1995). Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18: 35–43
CrossRef
Google scholar
|
[14] |
Humbird, D., Davis, R. McMillan, J. (2017). Aeration costs in stirred-tank and bubble column bioreactors. Biochem. Eng. J., 127: 161–166
CrossRef
Google scholar
|
[15] |
Praveen, P. Loh, K. (2015). Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl. Microbiol. Biotechnol., 99: 10345–10354
CrossRef
Google scholar
|
[16] |
Ferro, L., Colombo, M., Posadas, E., Funk, C. (2019). Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-occurring bacterium Rhizobium sp. in synthetic municipal wastewater. J. Appl. Phycol., 31: 2299–2310
CrossRef
Google scholar
|
[17] |
Mujtaba, G., Rizwan, M. (2015). Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnol. Bioprocess Eng. BBE, 20: 1114–1122
CrossRef
Google scholar
|
[18] |
Liang, Z., Liu, Y., Ge, F., Xu, Y., Tao, N., Peng, F. (2013). Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere, 92: 1383–1389
CrossRef
Google scholar
|
[19] |
Mujtaba, G., Rizwan, M. (2017). Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem., 49: 145–151
CrossRef
Google scholar
|
[20] |
Choi, K. J., Han, T. H., Yoo, G., Cho, M. H. Hwang, S. (2018). Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J. Civ. Eng., 22: 3215–3221
CrossRef
Google scholar
|
[21] |
Du, W., Liang, F., Duan, Y., Tan, X. (2013). Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng., 19: 17–25
CrossRef
Google scholar
|
[22] |
Angermayr, S. A., Gorchs Rovira, A. Hellingwerf, K. (2015). Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol., 33: 352–361
CrossRef
Google scholar
|
[23] |
Roell, G. W., Zha, J., Carr, R. R., Koffas, M. A., Fong, S. S. Tang, Y. J. (2019). Engineering microbial consortia by division of labor. Microb. Cell Fact., 18: 35
CrossRef
Google scholar
|
[24] |
Weiss, T. L., Young, E. J. Ducat, D. (2017). A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab. Eng., 44: 236–245
CrossRef
Google scholar
|
[25] |
SmithM. J.FrancisM.. (2016) A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals. ACS Synth. Biol., 5, 955–961.
|
[26] |
we, H., Hobmeier, K., Moos, M., Kremling, A. (2017). Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels, 10: 190
CrossRef
Google scholar
|
[27] |
Fedeson, D. T., Saake, P., Calero, P., Nikel, P. I. Ducat, D. (2020). Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb. Biotechnol., 13: 997–1011
CrossRef
Google scholar
|
[28] |
Kratzl, F., Kremling, A. (2022). Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO2. Eng. Life Sci., 23: e2100156
CrossRef
Google scholar
|
[29] |
Zhang, L., Chen, L., Diao, J., Song, X., Shi, M. (2020). Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol. Biofuels, 13: 82
CrossRef
Google scholar
|
[30] |
Li, T., Li, C. T., Butler, K., Hays, S. G., Guarnieri, M. T., Oyler, G. A. Betenbaugh, M. (2017). Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol. Biofuels, 10: 55
CrossRef
Google scholar
|
[31] |
Li, T. T., Jiang, L. Q., Hu, Y. F., Paul, J. T., Zuniga, C., Zengler, K. Betenbaugh, M. (2020). Creating a synthetic lichen: mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Res., 45: 101755
CrossRef
Google scholar
|
[32] |
Ducat, D. C., Avelar-Rivas, J. A., Way, J. C. Silver, P. (2012). Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol., 78: 2660–2668
CrossRef
Google scholar
|
[33] |
Hays, S. G., Yan, L. L. W., Silver, P. A. Ducat, D. (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J. Biol. Eng., 11: 4
CrossRef
Google scholar
|
[34] |
a-Torreiro, M., Lu-Chau, T. A. Lema, J. (2016). Effect of nitrogen and/or oxygen concentration on poly(3-hydroxybutyrate) accumulation by Halomonas boliviensis. Bioprocess Biosyst. Eng., 39: 1365–1374
CrossRef
Google scholar
|
[35] |
Agnew, D. E. Pfleger, B. (2013). Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem. Eng. Sci., 103: 58–67
CrossRef
Google scholar
|
[36] |
Lin, P. C., Zhang, F. Pakrasi, H. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci. Rep., 10: 390
CrossRef
Google scholar
|
[37] |
Qiao, C., Duan, Y., Zhang, M., Hagemann, M., Luo, Q. (2018). Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Appl. Environ. Microbiol., 84: e02023–17
CrossRef
Google scholar
|
[38] |
Wang, Y., Sun, T., Gao, X., Shi, M., Wu, L., Chen, L. (2016). Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng., 34: 60–70
CrossRef
Google scholar
|
[39] |
Ma, J., Guo, T., Ren, M., Chen, L., Song, X. (2022). Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic-heterotrophic coculture system revealed by integrated omics analysis. Biotechnol. Biofuels Bioprod., 15: 69
CrossRef
Google scholar
|
[40] |
Lin, T. Y., Wen, R. C., Shen, C. R. Tsai, S. (2020). Biotransformation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a syntrophic consortium of engineered Synechococcus elongatus and Pseudomonas putida. Biotechnol. J., 15: e1900357
CrossRef
Google scholar
|
[41] |
Liu, H., Cao, Y., Guo, J., Xu, X., Long, Q., Song, L. (2021). Study on the isoprene-producing co-culture system of Synechococcus elongates-Escherichia coli through omics analysis. Microb. Cell Fact., 20: 6
CrossRef
Google scholar
|
[42] |
Bohutskyi, P., Kucek, L. A., Hill, E., Pinchuk, G. E., Mundree, S. G. Beliaev, A. (2018). Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system. Bioresour. Technol., 260: 68–75
CrossRef
Google scholar
|
[43] |
Weusthuis, R. A., Lamot, I., van der Oost, J. Sanders, J. P. (2011). Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol., 29: 153–158
CrossRef
Google scholar
|
[44] |
Fakhimi, N., Dubini, A., Tavakoli, O. (2019). Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures. Bioresour. Technol., 289: 121648
CrossRef
Google scholar
|
[45] |
Esper, B., Badura, A. (2006). Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci., 11: 543–549
CrossRef
Google scholar
|
[46] |
Ban, S., Lin, W., Wu, F. (2018). Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour. Technol., 251: 350–357
CrossRef
Google scholar
|
[47] |
Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol., 122: 127–136
CrossRef
Google scholar
|
[48] |
Touloupakis, E., Faraloni, C., Benavides, A. M. S. (2021). Recent achievements in microalgal photobiological hydrogen production. Energies, 14: 7170
CrossRef
Google scholar
|
[49] |
Fakhimi, N., Gonzalez-Ballester, D., ndez, E., (2020). Algae-bacteria consortia as a strategy to enhance H2 production. Cells, 9: 1353
CrossRef
Google scholar
|
[50] |
Xu, L. L., Li, D. Z., Wang, Q. X. Wu, S. (2016). Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Int. J. Hydrogen Energy, 41: 9276–9283
CrossRef
Google scholar
|
[51] |
Fakhimi, N., Tavakoli, O., Marashi, S. A., Moghimi, H., Mehrnia, M. R., Dubini, A. (2019). Acetic acid uptake rate controls H2 production in Chlamydomonas-bacteria co-cultures. Algal Res., 42: 101605
CrossRef
Google scholar
|
[52] |
Javed, M. A., Zafar, A. M. Hassan, A. (2022). Regulate oxygen concentration using a co-culture of activated sludge bacteria and Chlorella vulgaris to maximize biophotolytic hydrogen production. Algal Res., 63: 102649
CrossRef
Google scholar
|
[53] |
Laurinavichene, T., Tolstygina, I. (2004). The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol., 114: 143–151
CrossRef
Google scholar
|
[54] |
Xu, L., Xu, X., Wu, S., Wang, Q. (2015). Optimization of co-cultivation conditions of Chlamydomonas reinhardtii and Bradyrhizobium japonicum for hydrogen production. Taiyang Neng Xuebao (in Chinese), 36: 2565–2570
|
[55] |
Rabaey, K. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23: 291–298
CrossRef
Google scholar
|
[56] |
rtner, J., Lai, B. mer, J. (2019). Biophotovoltaics: green power generation from sunlight and water. Front. Microbiol., 10: 866
CrossRef
Google scholar
|
[57] |
McCormick, A. J., Bombelli, P., Bradley, R. W., Thorne, R., Wenzel, T. Howe, C. (2015). Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci., 8: 1092–1109
CrossRef
Google scholar
|
[58] |
Mateo, S., Gonzalez del Campo, A., izares, P., Lobato, J., Rodrigo, M. A. Fernandez, F. (2014). Bioelectricity generation in a self-sustainable microbial solar cell. Bioresour. Technol., 159: 451–454
CrossRef
Google scholar
|
[59] |
Zhang, Y. F., Noori, J. S. (2011). Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ. Sci., 4: 4340–4346
CrossRef
Google scholar
|
[60] |
Nishio, K., Hashimoto, K. (2013). Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J. Biosci. Bioeng., 115: 412–417
CrossRef
Google scholar
|
[61] |
Liu, L. (2017). Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria. J. Power Sources, 348: 138–144
CrossRef
Google scholar
|
[62] |
Liu, L., Mohammadifar, M., Elhadad, A., Tahernia, M., Zhang, Y. X., Zhao, W. F. (2021). Spatial engineering of microbial consortium for long-lasting, self-sustaining, and high-power generation in a bacteria-powered biobattery. Adv. Energy Mater., 11: 2100713
CrossRef
Google scholar
|
[63] |
Zhu, H., Meng, H., Zhang, W., Gao, H., Zhou, J., Zhang, Y. (2019). Development of a longevous two-species biophotovoltaics with constrained electron flow. Nat. Commun., 10: 4282
CrossRef
Google scholar
|
[64] |
Zhu, H., Xu, L., Luan, G., Zhan, T., Kang, Z., Li, C., Lu, X., Zhang, X., Zhu, Z., Zhang, Y.
CrossRef
Google scholar
|
[65] |
Strik, D. P., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M. Buisman, C. J. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol., 29: 41–49
CrossRef
Google scholar
|
[66] |
Nishio, K., Hashimoto, K. (2010). Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Appl. Microbiol. Biotechnol., 86: 957–964
CrossRef
Google scholar
|
[67] |
Zou, Y., Pisciotta, J., Billmyre, R. B. Baskakov, I. (2009). Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng., 104: 939–946
CrossRef
Google scholar
|
[68] |
Malik, S., Drott, E., Grisdela, P., Lee, J., Lee, C., Lowy, D. A., Gray, S. Tender, L. (2009). A self-assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ. Sci., 2: 292–298
CrossRef
Google scholar
|
[69] |
He, Z., Kan, J., Mansfeld, F., Angenent, L. T. Nealson, K. (2009). Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ. Sci. Technol., 43: 1648–1654
CrossRef
Google scholar
|
[70] |
Logan, B. E., Rossi, R., Ragab, A. Saikaly, P. (2019). Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol., 17: 307–319
CrossRef
Google scholar
|
[71] |
Lindemann, S. R., Bernstein, H. C., Song, H. S., Fredrickson, J. K., Fields, M. W., Shou, W., Johnson, D. R. Beliaev, A. (2016). Engineering microbial consortia for controllable outputs. ISME J., 10: 2077–2084
CrossRef
Google scholar
|
[72] |
Goers, L., Freemont, P. Polizzi, K. (2014). Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface, 11: 20140065
CrossRef
Google scholar
|
[73] |
Shahab, R. L., Brethauer, S., Davey, M. P., Smith, A. G., Vignolini, S., Luterbacher, J. S. Studer, M. (2020). A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science, 369: eabb1214
CrossRef
Google scholar
|
[74] |
Jeong, Y. (2022). Multi-layered alginate hydrogel structures and bacteria encapsulation. Chem. Commun. (Camb.), 58: 8584–8587
CrossRef
Google scholar
|
[75] |
Burmeister, A. (2020). Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures. Curr. Opin. Biotechnol., 62: 106–115
CrossRef
Google scholar
|
[76] |
Bennett, G. N. San, K. (2017). Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J. Ind. Microbiol. Biotechnol., 44: 647–658
CrossRef
Google scholar
|
[77] |
Cui, Y., Yang, K. (2021). Using co-culture to functionalize Clostridium fermentation. Trends Biotechnol., 39: 914–926
CrossRef
Google scholar
|
/
〈 | 〉 |