Light-driven synthetic microbial consortia: playing with an oxygen dilemma

Huawei Zhu , Yin Li

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 143 -154.

PDF (1328KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (2) : 143 -154. DOI: 10.15302/J-QB-022-0314
REVIEW
REVIEW

Light-driven synthetic microbial consortia: playing with an oxygen dilemma

Author information +
History +
PDF (1328KB)

Abstract

Background: Light-driven synthetic microbial consortia are composed of photoautotrophs and heterotrophs. They exhibited better performance in stability, robustness and capacity for handling complex tasks when comparing with axenic cultures. Different from general microbial consortia, the intrinsic property of photosynthetic oxygen evolution in light-driven synthetic microbial consortia is an important factor affecting the functions of the consortia.

Results: In light-driven microbial consortia, the oxygen liberated by photoautotrophs will result in an aerobic environment, which exerts dual effects on different species and processes. On one hand, oxygen is favorable to the synthetic microbial consortia when they are used for wastewater treatment and aerobic chemical production, in which biomass accumulation and oxidized product formation will benefit from the high energy yield of aerobic respiration. On the other hand, the oxygen is harmful to the synthetic microbial consortia when they were used for anaerobic processes including biohydrogen production and bioelectricity generation, in which the presence of oxygen will deactivate some biological components and compete for electrons.

Conclusions: Developing anaerobic processes in using light-driven synthetic microbial consortia represents a cost-effective alternative for production of chemicals from carbon dioxide and light. Thus, exploring a versatile approach addressing the oxygen dilemma is essential to enable light-driven synthetic microbial consortia to get closer to practical applications.

Graphical abstract

Keywords

synthetic microbial consortia / oxygen dilemma / photosynthesis

Cite this article

Download citation ▾
Huawei Zhu, Yin Li. Light-driven synthetic microbial consortia: playing with an oxygen dilemma. Quant. Biol., 2023, 11(2): 143-154 DOI:10.15302/J-QB-022-0314

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rapp, K. M., Jenkins, J. P. Betenbaugh, M. (2020). Partners for life: building microbial consortia for the future. Curr. Opin. Biotechnol., 66: 292–300

[2]

McCarty, N. S. (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol., 37: 181–197

[3]

Xu, C. M. Yu, H. (2021). Insights into constructing a stable and efficient microbial consortium. Chin. J. Chem. Eng., 30: 112–120

[4]

Ben Said, S., Tecon, R., Borer, B. (2020). The engineering of spatially linked microbial consortia-potential and perspectives. Curr. Opin. Biotechnol., 62: 137–145

[5]

Qian, X., Chen, L., Sui, Y., Chen, C., Zhang, W., Zhou, J., Dong, W., Jiang, M., Xin, F. (2020). Biotechnological potential and applications of microbial consortia. Biotechnol. Adv., 40: 107500

[6]

Jones, J. A. (2018). Use of bacterial co-cultures for the efficient production of chemicals. Curr. Opin. Biotechnol., 53: 33–38

[7]

Wang, S., Zhang, T., Bao, M., Su, H. (2020). Microbial production of hydrogen by mixed culture technologies: a review. Biotechnol. J., 15: e1900297

[8]

Gao, H., Manishimwe, C., Yang, L., Wang, H., Jiang, Y., Jiang, W., Zhang, W., Xin, F. (2022). Applications of synthetic light-driven microbial consortia for biochemicals production. Bioresour. Technol., 351: 126954

[9]

Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. (2011). Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv., 29: 896–907

[10]

Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K. (2018). Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Crit. Rev. Biotechnol., 38: 1244–1260

[11]

nchez Zurano, A., mez Serrano, C., ndez, F. G., ndez-Sevilla, J. M. (2021). Modeling of photosynthesis and respiration rate for microalgae-bacteria consortia. Biotechnol. Bioeng., 118: 952–962

[12]

Fallahi, A., Rezvani, F., Asgharnejad, H., Khorshidi Nazloo, E., Hajinajaf, N. (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 272: 129878

[13]

Mouget, J. L., Dakhama, A., Lavoie, M. C. (1995). Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18: 35–43

[14]

Humbird, D., Davis, R. McMillan, J. (2017). Aeration costs in stirred-tank and bubble column bioreactors. Biochem. Eng. J., 127: 161–166

[15]

Praveen, P. Loh, K. (2015). Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis. Appl. Microbiol. Biotechnol., 99: 10345–10354

[16]

Ferro, L., Colombo, M., Posadas, E., Funk, C. (2019). Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-occurring bacterium Rhizobium sp. in synthetic municipal wastewater. J. Appl. Phycol., 31: 2299–2310

[17]

Mujtaba, G., Rizwan, M. (2015). Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnol. Bioprocess Eng. BBE, 20: 1114–1122

[18]

Liang, Z., Liu, Y., Ge, F., Xu, Y., Tao, N., Peng, F. (2013). Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere, 92: 1383–1389

[19]

Mujtaba, G., Rizwan, M. (2017). Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. J. Ind. Eng. Chem., 49: 145–151

[20]

Choi, K. J., Han, T. H., Yoo, G., Cho, M. H. Hwang, S. (2018). Co-culture consortium of Scenedesmus dimorphus and nitrifiers enhances the removal of nitrogen and phosphorus from artificial wastewater. KSCE J. Civ. Eng., 22: 3215–3221

[21]

Du, W., Liang, F., Duan, Y., Tan, X. (2013). Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng., 19: 17–25

[22]

Angermayr, S. A., Gorchs Rovira, A. Hellingwerf, K. (2015). Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol., 33: 352–361

[23]

Roell, G. W., Zha, J., Carr, R. R., Koffas, M. A., Fong, S. S. Tang, Y. J. (2019). Engineering microbial consortia by division of labor. Microb. Cell Fact., 18: 35

[24]

Weiss, T. L., Young, E. J. Ducat, D. (2017). A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab. Eng., 44: 236–245

[25]

SmithM. J.FrancisM.. (2016) A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals. ACS Synth. Biol., 5, 955–961.

[26]

we, H., Hobmeier, K., Moos, M., Kremling, A. (2017). Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol. Biofuels, 10: 190

[27]

Fedeson, D. T., Saake, P., Calero, P., Nikel, P. I. Ducat, D. (2020). Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb. Biotechnol., 13: 997–1011

[28]

Kratzl, F., Kremling, A. (2022). Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO2. Eng. Life Sci., 23: e2100156

[29]

Zhang, L., Chen, L., Diao, J., Song, X., Shi, M. (2020). Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol. Biofuels, 13: 82

[30]

Li, T., Li, C. T., Butler, K., Hays, S. G., Guarnieri, M. T., Oyler, G. A. Betenbaugh, M. (2017). Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol. Biofuels, 10: 55

[31]

Li, T. T., Jiang, L. Q., Hu, Y. F., Paul, J. T., Zuniga, C., Zengler, K. Betenbaugh, M. (2020). Creating a synthetic lichen: mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413. Algal Res., 45: 101755

[32]

Ducat, D. C., Avelar-Rivas, J. A., Way, J. C. Silver, P. (2012). Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol., 78: 2660–2668

[33]

Hays, S. G., Yan, L. L. W., Silver, P. A. Ducat, D. (2017). Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J. Biol. Eng., 11: 4

[34]

a-Torreiro, M., Lu-Chau, T. A. Lema, J. (2016). Effect of nitrogen and/or oxygen concentration on poly(3-hydroxybutyrate) accumulation by Halomonas boliviensis. Bioprocess Biosyst. Eng., 39: 1365–1374

[35]

Agnew, D. E. Pfleger, B. (2013). Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem. Eng. Sci., 103: 58–67

[36]

Lin, P. C., Zhang, F. Pakrasi, H. (2020). Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci. Rep., 10: 390

[37]

Qiao, C., Duan, Y., Zhang, M., Hagemann, M., Luo, Q. (2018). Effects of reduced and enhanced glycogen pools on salt-induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Appl. Environ. Microbiol., 84: e02023–17

[38]

Wang, Y., Sun, T., Gao, X., Shi, M., Wu, L., Chen, L. (2016). Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng., 34: 60–70

[39]

Ma, J., Guo, T., Ren, M., Chen, L., Song, X. (2022). Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic-heterotrophic coculture system revealed by integrated omics analysis. Biotechnol. Biofuels Bioprod., 15: 69

[40]

Lin, T. Y., Wen, R. C., Shen, C. R. Tsai, S. (2020). Biotransformation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a syntrophic consortium of engineered Synechococcus elongatus and Pseudomonas putida. Biotechnol. J., 15: e1900357

[41]

Liu, H., Cao, Y., Guo, J., Xu, X., Long, Q., Song, L. (2021). Study on the isoprene-producing co-culture system of Synechococcus elongates-Escherichia coli through omics analysis. Microb. Cell Fact., 20: 6

[42]

Bohutskyi, P., Kucek, L. A., Hill, E., Pinchuk, G. E., Mundree, S. G. Beliaev, A. (2018). Conversion of stranded waste-stream carbon and nutrients into value-added products via metabolically coupled binary heterotroph-photoautotroph system. Bioresour. Technol., 260: 68–75

[43]

Weusthuis, R. A., Lamot, I., van der Oost, J. Sanders, J. P. (2011). Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol., 29: 153–158

[44]

Fakhimi, N., Dubini, A., Tavakoli, O. (2019). Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures. Bioresour. Technol., 289: 121648

[45]

Esper, B., Badura, A. (2006). Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci., 11: 543–549

[46]

Ban, S., Lin, W., Wu, F. (2018). Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour. Technol., 251: 350–357

[47]

Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol., 122: 127–136

[48]

Touloupakis, E., Faraloni, C., Benavides, A. M. S. (2021). Recent achievements in microalgal photobiological hydrogen production. Energies, 14: 7170

[49]

Fakhimi, N., Gonzalez-Ballester, D., ndez, E., (2020). Algae-bacteria consortia as a strategy to enhance H2 production. Cells, 9: 1353

[50]

Xu, L. L., Li, D. Z., Wang, Q. X. Wu, S. (2016). Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Int. J. Hydrogen Energy, 41: 9276–9283

[51]

Fakhimi, N., Tavakoli, O., Marashi, S. A., Moghimi, H., Mehrnia, M. R., Dubini, A. (2019). Acetic acid uptake rate controls H2 production in Chlamydomonas-bacteria co-cultures. Algal Res., 42: 101605

[52]

Javed, M. A., Zafar, A. M. Hassan, A. (2022). Regulate oxygen concentration using a co-culture of activated sludge bacteria and Chlorella vulgaris to maximize biophotolytic hydrogen production. Algal Res., 63: 102649

[53]

Laurinavichene, T., Tolstygina, I. (2004). The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotechnol., 114: 143–151

[54]

Xu, L., Xu, X., Wu, S., Wang, Q. (2015). Optimization of co-cultivation conditions of Chlamydomonas reinhardtii and Bradyrhizobium japonicum for hydrogen production. Taiyang Neng Xuebao (in Chinese), 36: 2565–2570

[55]

Rabaey, K. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23: 291–298

[56]

rtner, J., Lai, B. mer, J. (2019). Biophotovoltaics: green power generation from sunlight and water. Front. Microbiol., 10: 866

[57]

McCormick, A. J., Bombelli, P., Bradley, R. W., Thorne, R., Wenzel, T. Howe, C. (2015). Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci., 8: 1092–1109

[58]

Mateo, S., Gonzalez del Campo, A., izares, P., Lobato, J., Rodrigo, M. A. Fernandez, F. (2014). Bioelectricity generation in a self-sustainable microbial solar cell. Bioresour. Technol., 159: 451–454

[59]

Zhang, Y. F., Noori, J. S. (2011). Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ. Sci., 4: 4340–4346

[60]

Nishio, K., Hashimoto, K. (2013). Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter. J. Biosci. Bioeng., 115: 412–417

[61]

Liu, L. (2017). Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria. J. Power Sources, 348: 138–144

[62]

Liu, L., Mohammadifar, M., Elhadad, A., Tahernia, M., Zhang, Y. X., Zhao, W. F. (2021). Spatial engineering of microbial consortium for long-lasting, self-sustaining, and high-power generation in a bacteria-powered biobattery. Adv. Energy Mater., 11: 2100713

[63]

Zhu, H., Meng, H., Zhang, W., Gao, H., Zhou, J., Zhang, Y. (2019). Development of a longevous two-species biophotovoltaics with constrained electron flow. Nat. Commun., 10: 4282

[64]

Zhu, H., Xu, L., Luan, G., Zhan, T., Kang, Z., Li, C., Lu, X., Zhang, X., Zhu, Z., Zhang, Y. . (2022). A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nat. Commun., 13: 5608

[65]

Strik, D. P., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M. Buisman, C. J. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol., 29: 41–49

[66]

Nishio, K., Hashimoto, K. (2010). Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Appl. Microbiol. Biotechnol., 86: 957–964

[67]

Zou, Y., Pisciotta, J., Billmyre, R. B. Baskakov, I. (2009). Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng., 104: 939–946

[68]

Malik, S., Drott, E., Grisdela, P., Lee, J., Lee, C., Lowy, D. A., Gray, S. Tender, L. (2009). A self-assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ. Sci., 2: 292–298

[69]

He, Z., Kan, J., Mansfeld, F., Angenent, L. T. Nealson, K. (2009). Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ. Sci. Technol., 43: 1648–1654

[70]

Logan, B. E., Rossi, R., Ragab, A. Saikaly, P. (2019). Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol., 17: 307–319

[71]

Lindemann, S. R., Bernstein, H. C., Song, H. S., Fredrickson, J. K., Fields, M. W., Shou, W., Johnson, D. R. Beliaev, A. (2016). Engineering microbial consortia for controllable outputs. ISME J., 10: 2077–2084

[72]

Goers, L., Freemont, P. Polizzi, K. (2014). Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface, 11: 20140065

[73]

Shahab, R. L., Brethauer, S., Davey, M. P., Smith, A. G., Vignolini, S., Luterbacher, J. S. Studer, M. (2020). A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science, 369: eabb1214

[74]

Jeong, Y. (2022). Multi-layered alginate hydrogel structures and bacteria encapsulation. Chem. Commun. (Camb.), 58: 8584–8587

[75]

Burmeister, A. (2020). Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures. Curr. Opin. Biotechnol., 62: 106–115

[76]

Bennett, G. N. San, K. (2017). Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes. J. Ind. Microbiol. Biotechnol., 44: 647–658

[77]

Cui, Y., Yang, K. (2021). Using co-culture to functionalize Clostridium fermentation. Trends Biotechnol., 39: 914–926

RIGHTS & PERMISSIONS

The Author(s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (1328KB)

1854

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/