Towards applications of genome-scale metabolic model-based approaches in designing synthetic microbial communities

Huan Du, Meng Li, Yang Liu

PDF(5527 KB)
PDF(5527 KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (1) : 15-30. DOI: 10.15302/J-QB-022-0313
REVIEW
REVIEW

Towards applications of genome-scale metabolic model-based approaches in designing synthetic microbial communities

Author information +
History +

Abstract

Background: Synthetic microbial communities, with different strains brought together by balancing their nutrition and promoting their interactions, demonstrate great advantages for exploring complex performance of communities and for further biotechnology applications. The potential of such microbial communities has not been explored, due to our limited knowledge of the extremely complex microbial interactions that are involved in designing and controlling effective and stable communities.

Results: Genome-scale metabolic models (GEM) have been demonstrated as an effective tool for predicting and guiding the investigation and design of microbial communities, since they can explicitly and efficiently predict the phenotype of organisms from their genotypic data and can be used to explore the molecular mechanisms of microbe-habitats and microbe-microbe interactions. In this work, we reviewed two main categories of GEM-based approaches and three uses related to design of synthetic microbial communities: predicting multi-species interactions, exploring environmental impacts on microbial phenotypes, and optimizing community-level performance.

Conclusions: Although at the infancy stage, GEM-based approaches exhibit an increasing scope of applications in designing synthetic microbial communities. Compared to other methods, especially the use of laboratory cultures, GEM-based approaches can greatly decrease the trial-and-error cost of various procedures for designing synthetic communities and improving their functionality, such as identifying community members, determining media composition, evaluating microbial interaction potential or selecting the best community configuration. Future efforts should be made to overcome the limitations of the approaches, ranging from quality control of GEM reconstructions to community-level modeling algorithms, so that more applications of GEMs in studying phenotypes of microbial communities can be expected.

Author summary

The applications of computational tools have been demonstrated to increase the development of synthetic microbial communities which is an emerging field and can be used in various biotechnology applications. As one effective tool, genome-scale metabolic modeling helps to reconstruct testable metabolic networks from genomic information and can quantitatively simulate entire metabolic fluxes of communities in considering microbe-microbe and microbe-habitat interactions. In-depth study of underlying mechanisms of microbial interactions using metabolic models and of coupling the models with multi-omics data or machine learning can further extend applications in designing synthetic communities.

Graphical abstract

Keywords

genome-scale metabolic modeling / microbial community design / interspecies interaction / environmental impact / community-level performance

Cite this article

Download citation ▾
Huan Du, Meng Li, Yang Liu. Towards applications of genome-scale metabolic model-based approaches in designing synthetic microbial communities. Quant. Biol., 2023, 11(1): 15‒30 https://doi.org/10.15302/J-QB-022-0313

References

[1]
kopf,T. Soyer,O. (2014). Synthetic microbial communities. Curr. Opin. Microbiol., 18: 72–77
CrossRef Google scholar
[2]
Zhou,K., Qiao,K., Edgar,S. (2015). Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol., 33: 377–383
CrossRef Google scholar
[3]
Wang,X., Su,R., Chen,K., Xu,S., Feng,J. (2019). Engineering a microbial consortium based whole-cell system for efficient production of glutarate from L-lysine. Front. Microbiol., 10: 341
CrossRef Google scholar
[4]
Hays,S. G., Patrick,W. G., Ziesack,M., Oxman,N. Silver,P. (2015). Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol., 36: 40–49
CrossRef Google scholar
[5]
McCarty,N. S. (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol., 37: 181–197
CrossRef Google scholar
[6]
Beyter,D., Tang,P. Z., Becker,S., Hoang,T., Bilgin,D., Lim,Y. W., Peterson,T. C., Mayfield,S., Haerizadeh,F., Shurin,J. B. . (2016). Diversity, productivity, and stability of an industial microbial ecosystem. Appl. Environ. Microbiol., 82: 2494–2505
CrossRef Google scholar
[7]
Shurin,J. B., Abbott,R. L., Deal,M. S., Kwan,G. T., Litchman,E., McBride,R. C., Mandal,S. Smith,V. (2013). Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol. Lett., 16: 1393–1404
CrossRef Google scholar
[8]
Senthilvelan,T., Kanagaraj,J., Panda,R. C. Mandal,A. (2014). Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technol. Environ. Policy, 16: 113–126
CrossRef Google scholar
[9]
Zhang,H., Pereira,B., Li,Z. (2015). Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U.S.A., 112: 8266–8271
CrossRef Google scholar
[10]
Zuroff,T. R., Xiques,S. B. Curtis,W. (2013). Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. Biofuels, 6: 59
CrossRef Google scholar
[11]
Patle,S. (2007). Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett., 29: 1839–1843
CrossRef Google scholar
[12]
Wang,J. P., Lin,W., Wray,V., Lai,D. (2013). Induced production of depsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae. Tetrahedron Lett., 54: 2492–2496
CrossRef Google scholar
[13]
Caballero,S., Kim,S., Carter,R. A., Leiner,I. M., ac,B., Miller,L., Kim,G. J., Ling,L. Pamer,E. (2017). Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe, 21: 592–602.e4
CrossRef Google scholar
[14]
Brugiroux,S., Beutler,M., Pfann,C., Garzetti,D., Ruscheweyh,H. J., Ring,D., Diehl,M., Herp,S., tscher,Y., Hussain,S. . (2017). Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol., 2: 16215
CrossRef Google scholar
[15]
Che,S. (2019). Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J. Ind. Microbiol. Biotechnol., 46: 1343–1358
CrossRef Google scholar
[16]
Johns,N. I., Blazejewski,T., Gomes,A. L. Wang,H. (2016). Principles for designing synthetic microbial communities. Curr. Opin. Microbiol., 31: 146–153
CrossRef Google scholar
[17]
Mee,M. T., Collins,J. J., Church,G. M. Wang,H. (2014). Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. U.S.A., 111: E2149–E2156
CrossRef Google scholar
[18]
Embree,M., Liu,J. K., Al-Bassam,M. M. (2015). Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl. Acad. Sci. U.S.A., 112: 15450–15455
CrossRef Google scholar
[19]
Zengler,K. Zaramela,L. (2018). The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol., 16: 383–390
CrossRef Google scholar
[20]
Bauer,E., Zimmermann,J., Baldini,F., Thiele,I. (2017). BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLOS Comput. Biol., 13: e1005544
CrossRef Google scholar
[21]
Chan,S. H. J., Simons,M. N. Maranas,C. (2017). SteadyCom: Predicting microbial abundances while ensuring community stability. PLOS Comput. Biol., 13: e1005539
CrossRef Google scholar
[22]
Kumar,M., Ji,B., Zengler,K. (2019). Modelling approaches for studying the microbiome. Nat. Microbiol., 4: 1253–1267
CrossRef Google scholar
[23]
Kanehisa,M., Furumichi,M., Sato,Y., Ishiguro-Watanabe,M. (2021). KEGG: integrating viruses and cellular organisms. Nucleic Acids Res., 49: D545–D551
CrossRef Google scholar
[24]
Caspi,R., Billington,R., Keseler,I. M., Kothari,A., Krummenacker,M., Midford,P. E., Ong,W. K., Paley,S., Subhraveti,P. Karp,P. (2020). The MetaCyc database of metabolic pathways and enzymes — a 2019 update. Nucleic Acids Res., 48: D445–D453
CrossRef Google scholar
[25]
King,Z. A., Lu,J., ger,A., Miller,P., Federowicz,S., Lerman,J. A., Ebrahim,A., Palsson,B. O. Lewis,N. (2016). BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44: D515–D522
CrossRef Google scholar
[26]
Thiele,I. Palsson,B. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc., 5: 93–121
CrossRef Google scholar
[27]
Pramanik,J. Keasling,J. (1997). Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng., 56: 398–421
CrossRef Google scholar
[28]
Feist,A. Scholten,J. Palsson,B., Brockman,F. (2006). Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2, 2006.0004
CrossRef Google scholar
[29]
Gu,C., Kim,G. B., Kim,W. J., Kim,H. U. Lee,S. (2019). Current status and applications of genome-scale metabolic models. Genome Biol., 20: 121
CrossRef Google scholar
[30]
Machado,D., Andrejev,S., Tramontano,M. Patil,K. (2018). Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res., 46: 7542–7553
CrossRef Google scholar
[31]
Seaver,S. M. D., Liu,F., Zhang,Q., Jeffryes,J., Faria,J. P., Edirisinghe,J. N., Mundy,M., Chia,N., Noor,E., Beber,M. E. . (2021). The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res., 49: D575–D588
CrossRef Google scholar
[32]
Aite,M., Chevallier,M., Frioux,C., Trottier,C., Got,J., Mendoza,S. N., Carrier,G., Dameron,O., Guillaudeux,N. . (2018). Traceability, reproducibility and wiki-exploration for “à-la-carte” reconstructions of genome-scale metabolic models. PLOS Comput. Biol., 14: e1006146
CrossRef Google scholar
[33]
Henry,C. S., Jankowski,M. D., Broadbelt,L. J. (2006). Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J., 90: 1453–1461
CrossRef Google scholar
[34]
Pereira,B., Miguel,J., Soares,S., Rocha,I. (2018). Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. BMC Syst. Biol., 12: 61
CrossRef Google scholar
[35]
Orth,J. D., Thiele,I. Palsson,B. (2010). What is flux balance analysis? Nat. Biotechnol., 28: 245–248
CrossRef Google scholar
[36]
Edwards,J. S. Palsson,B. (1999). Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem., 274: 17410–17416
CrossRef Google scholar
[37]
Monk,J. M., Lloyd,C. J., Brunk,E., Mih,N., Sastry,A., King,Z., Takeuchi,R., Nomura,W., Zhang,Z., Mori,H. . (2017). iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol., 35: 904–908
CrossRef Google scholar
[38]
zdamar,T. (2017). Analyses of extracellular protein production in Bacillus subtilis – I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem. Eng. J., 127: 229–241
CrossRef Google scholar
[39]
Nazem-Bokaee,H., Gopalakrishnan,S., Ferry,J. G., Wood,T. K. Maranas,C. (2016). Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microb. Cell Fact., 15: 10
CrossRef Google scholar
[40]
rster,J., Famili,I., Fu,P., Palsson,B. (2003). Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res., 13: 244–253
CrossRef Google scholar
[41]
Mintz-Oron,S., Meir,S., Malitsky,S., Ruppin,E., Aharoni,A. (2012). Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc. Natl. Acad. Sci. U.S.A., 109: 339–344
CrossRef Google scholar
[42]
Mardinoglu,A., Agren,R., Kampf,C., Asplund,A., Nookaew,I., Jacobson,P., Walley,A. J., Froguel,P., Carlsson,L. M., Uhlen,M. . (2013). Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol., 9: 649
CrossRef Google scholar
[43]
Arkin,A. P., Cottingham,R. W., Henry,C. S., Harris,N. L., Stevens,R. L., Maslov,S., Dehal,P., Ware,D., Perez,F., Canon,S. . (2018). KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol., 36: 566–569
CrossRef Google scholar
[44]
Heirendt,L., Arreckx,S., Pfau,T., Mendoza,S. N., Richelle,A., Heinken,A., ttir,H. S., Wachowiak,J., Keating,S. M., Vlasov,V. . (2019). Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0. Nat. Protoc., 14: 639–702
CrossRef Google scholar
[45]
Karp,P. D., Midford,P. E., Billington,R., Kothari,A., Krummenacker,M., Latendresse,M., Ong,W. K., Subhraveti,P., Caspi,R., Fulcher,C. . (2021). Pathway Tools version 23. 0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform., 22: 109–126
CrossRef Google scholar
[46]
ttir,S., Heinken,A., Kutt,L., Ravcheev,D. A., Bauer,E., Noronha,A., Greenhalgh,K., ger,C., Baginska,J., Wilmes,P. . (2017). Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol., 35: 81–89
CrossRef Google scholar
[47]
Blasco,T., rez-Burillo,S., Balzerani,F., Hinojosa-Nogueira,D., Lerma-Aguilera,A., Pastoriza,S., Cendoya,X., Gosalbes,M. J., ndez,N. . (2021). An extended reconstruction of human gut microbiota metabolism of dietary compounds. Nat. Commun., 12: 4728
CrossRef Google scholar
[48]
Agren,R., Liu,L., Shoaie,S., Vongsangnak,W., Nookaew,I. (2013). The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLOS Comput. Biol., 9: e1002980
CrossRef Google scholar
[49]
Capela,J., Lagoa,D., Rodrigues,R., Cunha,E., Cruz,F., Barbosa,A., Bastos,J., Lima,D., Ferreira,E. C., Rocha,M. . (2022). merlin, an improved framework for the reconstruction of high-quality genome-scale metabolic models. Nucleic Acids Res., 50: 6052–6066
CrossRef Google scholar
[50]
nchez,B. J., Zhang,C., Nilsson,A., Lahtvee,P. J., Kerkhoven,E. J. (2017). Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13: 935
CrossRef Google scholar
[51]
Steffensen,J. L., Dufault-Thompson,K. (2016). PSAMM: A portable system for the analysis of metabolic models. PLOS Comput. Biol., 12: e1004732
CrossRef Google scholar
[52]
rnson,E., (2016). Personalized cardiovascular disease prediction and treatment—A review of existing strategies and novel systems medicine tools. Front. Physiol., 7: 2
CrossRef Google scholar
[53]
Cho,J. S., Gu,C., Han,T. H., Ryu,J. Y. Lee,S. (2019). Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring. Curr. Opin. Syst. Biol., 15: 1–11
CrossRef Google scholar
[54]
Esvap,E. Ulgen,K. (2021). Advances in genome-scale metabolic modeling toward microbial community analysis of the human microbiome. ACS Synth. Biol., 10: 2121–2137
CrossRef Google scholar
[55]
Lin,L. (2022). Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. Biotechnol. Biofuels Bioprod., 15: 14
CrossRef Google scholar
[56]
guez,J., Kleerebezem,R., Lema,J. M. van Loosdrecht,M. C. (2006). Modeling product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng., 93: 592–606
CrossRef Google scholar
[57]
Pramanik,J., Trelstad,P. L., Schuler,A. J., Jenkins,D. Keasling,J. (1999). Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Water Res., 33: 462–476
CrossRef Google scholar
[58]
Zomorrodi,A. R. Maranas,C. (2012). OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLOS Comput. Biol., 8: e1002363
CrossRef Google scholar
[59]
Khandelwal,R. A., Olivier,B. G., ling,W. F. M., Teusink,B. Bruggeman,F. (2013). Community flux balance analysis for microbial consortia at balanced growth. PLoS One, 8: e64567
CrossRef Google scholar
[60]
Thommes,M., Wang,T., Zhao,Q., Paschalidis,I. C. (2019). Designing metabolic division of labor in microbial communities. mSystems, 4: e00263–e18
CrossRef Google scholar
[61]
Vitkin,E., Gillis,A., Polikovsky,M., Bender,B., Golberg,A. (2020). Distributed flux balance analysis simulations of serial biomass fermentation by two organisms. PLoS One, 15: e0227363
CrossRef Google scholar
[62]
Zelezniak,A., Andrejev,S., Ponomarova,O., Mende,D. R., Bork,P. Patil,K. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. U.S.A., 112: 6449–6454
CrossRef Google scholar
[63]
Zhuang,K., Izallalen,M., Mouser,P., Richter,H., Risso,C., Mahadevan,R. Lovley,D. (2011). Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J., 5: 305–316
CrossRef Google scholar
[64]
Zomorrodi,A. R., Islam,M. M. Maranas,C. (2014). d-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol., 3: 247–257
CrossRef Google scholar
[65]
Harcombe,W. R., Riehl,W. J., Dukovski,I., Granger,B. R., Betts,A., Lang,A. H., Bonilla,G., Kar,A., Leiby,N., Mehta,P. . (2014). Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep., 7: 1104–1115
CrossRef Google scholar
[66]
Borer,B., Ataman,M., Hatzimanikatis,V. (2019). Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLOS Comput. Biol., 15: e1007127
CrossRef Google scholar
[67]
Geng,J., Ji,B., Li,G., pez-Isunza,F. (2021). CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc. Natl. Acad. Sci. U.S.A., 118: e2019336118
CrossRef Google scholar
[68]
Brien,E. J., Monk,J. M. Palsson,B. (2015). Using genome-scale models to predict biological capabilities. Cell, 161: 971–987
CrossRef Google scholar
[69]
Stolyar,S., Van Dien,S., Hillesland,K. L., Pinel,N., Lie,T. J., Leigh,J. A. Stahl,D. (2007). Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol., 3: 92
CrossRef Google scholar
[70]
El-Semman,I. E., Karlsson,F. H., Shoaie,S., Nookaew,I., Soliman,T. H. (2014). Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol., 8: 41
CrossRef Google scholar
[71]
Baldini,F., Heinken,A., Heirendt,L., Magnusdottir,S., Fleming,R. M. T. (2019). The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics, 35: 2332–2334
CrossRef Google scholar
[72]
Mendes-Soares,H., Mundy,M., Soares,L. M. (2016). MMinte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinformatics, 17: 343
CrossRef Google scholar
[73]
Pacheco,A. R., Moel,M. (2019). Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun., 10: 103
CrossRef Google scholar
[74]
Brien,E. J., Lerman,J. A., Chang,R. L., Hyduke,D. R. Palsson,B. (2013). Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol., 9: 693
CrossRef Google scholar
[75]
Khodayari,A. Maranas,C. (2016). A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun., 7: 13806
CrossRef Google scholar
[76]
Klitgord,N. (2010). Environments that induce synthetic microbial ecosystems. PLOS Comput. Biol., 6: e1001002
CrossRef Google scholar
[77]
Heinken,A. (2015). Anoxic conditions promote species-specific mutualism between gut microbes In Silico. Appl. Environ. Microbiol., 81: 4049–4061
CrossRef Google scholar
[78]
Chen,K., Gao,Y., Mih,N., Brien,E. J., Yang,L. Palsson,B. (2017). Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc. Natl. Acad. Sci. U.S.A., 114: 11548–11553
CrossRef Google scholar
[79]
Yang,L., Mih,N., Anand,A., Park,J. H., Tan,J., Yurkovich,J. T., Monk,J. M., Lloyd,C. J., Sandberg,T. E., Seo,S. W. . (2019). Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc. Natl. Acad. Sci. U.S.A., 116: 14368–14373
CrossRef Google scholar
[80]
Du,B., Yang,L., Lloyd,C. J., Fang,X. Palsson,B. (2019). Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLOS Comput. Biol., 15: e1007525
CrossRef Google scholar
[81]
diCenzo,G. C., Tesi,M., Pfau,T., Mengoni,A. (2020). Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat. Commun., 11: 2574
CrossRef Google scholar
[82]
Shreiner,A. B., Kao,J. Y. Young,V. (2015). The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 31: 69–75
CrossRef Google scholar
[83]
Qin,J., Li,Y., Cai,Z., Li,S., Zhu,J., Zhang,F., Liang,S., Zhang,W., Guan,Y., Shen,D. . (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490: 55–60
CrossRef Google scholar
[84]
Turnbaugh,P. J., Hamady,M., Yatsunenko,T., Cantarel,B. L., Duncan,A., Ley,R. E., Sogin,M. L., Jones,W. J., Roe,B. A., Affourtit,J. P. . (2009). A core gut microbiome in obese and lean twins. Nature, 457: 480–484
CrossRef Google scholar
[85]
Heinken,A., Ravcheev,D. A., Baldini,F., Heirendt,L., Fleming,R. M. T. (2019). Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome, 7: 75
CrossRef Google scholar
[86]
Diener,C., Gibbons,S. M. (2020). MICOM: Metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems, 5: e00606–e00619
CrossRef Google scholar
[87]
Kumar,M., Ji,B., Babaei,P., Das,P., Lappa,D., Ramakrishnan,G., Fox,T. E., Haque,R., Petri,W. A., ckhed,F. . (2018). Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab. Eng., 49: 128–142
CrossRef Google scholar
[88]
Shoaie,S. (2014). Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front. Genet., 5: 86
CrossRef Google scholar
[89]
Shoaie,S., Ghaffari,P., Kovatcheva-Datchary,P., Mardinoglu,A., Sen,P., Pujos-Guillot,E., de Wouters,T., Juste,C., Rizkalla,S., Chilloux,J. . (2015). Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab., 22: 320–331
CrossRef Google scholar
[90]
Swainston,N., Smallbone,K., Hefzi,H., Dobson,P. D., Brewer,J., Hanscho,M., Zielinski,D. C., Ang,K. S., Gardiner,N. J., Gutierrez,J. M. . (2016). Recon 2. 2: from reconstruction to model of human metabolism. Metabolomics, 12: 109
CrossRef Google scholar
[91]
Brunk,E., Sahoo,S., Zielinski,D. C., Altunkaya,A., ger,A., Mih,N., Gatto,F., Nilsson,A., Preciat Gonzalez,G. A., Aurich,M. K. . (2018). Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol., 36: 272–281
CrossRef Google scholar
[92]
Duarte,N. C., Becker,S. A., Jamshidi,N., Thiele,I., Mo,M. L., Vo,T. D., Srivas,R. Palsson,B. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A., 104: 1777–1782
CrossRef Google scholar
[93]
Sahoo,S. (2013). Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Hum. Mol. Genet., 22: 2705–2722
CrossRef Google scholar
[94]
Zampieri,M. (2016). Model-based media selection to minimize the cost of metabolic cooperation in microbial ecosystems. Bioinformatics, 32: 1733–1739
CrossRef Google scholar
[95]
Du,H., Pan,J., Zou,D., Huang,Y., Liu,Y. (2022). Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. Microbiome, 10: 224
CrossRef Google scholar
[96]
Mahadevan,R., Edwards,J. S. Doyle,F. J. (2002). Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J., 83: 1331–1340
CrossRef Google scholar
[97]
Hanly,T. J. Henson,M. (2013). Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels, 6: 44
CrossRef Google scholar
[98]
Hanly,T. J. Henson,M. (2011). Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng., 108: 376–385
CrossRef Google scholar
[99]
Salimi,F., Zhuang,K. (2010). Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J., 5: 726–738
CrossRef Google scholar
[100]
nez,B., (2018). FLYCOP: metabolic modeling-based analysis and engineering microbial communities. Bioinformatics, 34: i954–i963
CrossRef Google scholar
[101]
Colarusso,A. V., Goodchild-Michelman,I., Rayle,M. Zomorrodi,A. (2021). Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol., 26: 46–57
CrossRef Google scholar
[102]
nez,B., Torres-Bacete,J. (2020). Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J., 19: 226–246
CrossRef Google scholar
[103]
Burgard,A. P., Pharkya,P. Maranas,C. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84: 647–657
CrossRef Google scholar
[104]
Vitkup,D. Church,G. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A., 99: 15112–15117
CrossRef Google scholar
[105]
Tepper,N. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics, 26: 536–543
CrossRef Google scholar
[106]
Choi,H. S., Lee,S. Y., Kim,T. Y. Woo,H. (2010). In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol., 76: 3097–3105
CrossRef Google scholar
[107]
Bernstein,D. B., Sulheim,S., Almaas,E. (2021). Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol., 22: 64
CrossRef Google scholar
[108]
Xavier,J. C., Patil,K. R. (2017). Integration of biomass formulations of genome-scale metabolic models with experimental data reveals universally essential cofactors in prokaryotes. Metab. Eng., 39: 200–208
CrossRef Google scholar
[109]
Lieven,C., Beber,M. E., Olivier,B. G., Bergmann,F. T., Ataman,M., Babaei,P., Bartell,J. A., Blank,L. M., Chauhan,S., Correia,K. . (2020). MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol., 38: 272–276
CrossRef Google scholar
[110]
Maghini,D. G., Moss,E. L., Vance,S. E. Bhatt,A. (2021). Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. Nat. Protoc., 16: 458–471
CrossRef Google scholar
[111]
Zheng,W., Zhao,S., Yin,Y., Zhang,H., Needham,D. M., Evans,E. D., Dai,C. L., Lu,P. J., Alm,E. J. Weitz,D. (2022). High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science, 376: eabm1483
CrossRef Google scholar
[112]
Lachance,J. C., Lloyd,C. J., Monk,J. M., Yang,L., Sastry,A. V., Seif,Y., Palsson,B. O., Rodrigue,S., Feist,A. M., King,Z. A. . (2019). BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data. PLOS Comput. Biol., 15: e1006971
CrossRef Google scholar
[113]
LengH.,Wang Y.,ZhaoW.,SievertS. M.. (2022) An expanded deep-branching thermophilic bacterial clade sheds light on the early evolution of bacteria. BioRxiv
[114]
Dreyfuss,J. M., Zucker,J. D., Hood,H. M., Ocasio,L. R., Sachs,M. S. Galagan,J. (2013). Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLOS Comput. Biol., 9: e1003126
CrossRef Google scholar
[115]
Ryu,J. Y., Kim,H. U. Lee,S. (2019). Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc. Natl. Acad. Sci. U.S.A., 116: 13996–14001
CrossRef Google scholar
[116]
Medlock,G. L. Papin,J. (2020). Guiding the refinement of biochemical knowledgebases with ensembles of metabolic networks and machine learning. Cell Syst., 10: 109–119.e3
CrossRef Google scholar
[117]
Plaimas,K., Mallm,J. P., Oswald,M., Svara,F., Sourjik,V., Eils,R. (2008). Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst. Biol., 2: 67
CrossRef Google scholar
[118]
Zhang,J., Petersen,S. D., Radivojevic,T., Ramirez,A., quez,A., Abeliuk,E., nchez,B. J., Costello,Z., Chen,Y., Fero,M. J. . (2020). Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat. Commun., 11: 4880
CrossRef Google scholar
[119]
Oyetunde,T., Liu,D., Martin,H. G. Tang,Y. (2019). Machine learning framework for assessment of microbial factory performance. PLoS One, 14: e0210558
CrossRef Google scholar
[120]
Culley,C., Vijayakumar,S., Zampieri,G. (2020). A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. U.S.A., 117: 18869–18879
CrossRef Google scholar
[121]
Yang,J. H., Wright,S. N., Hamblin,M., McCloskey,D., Alcantar,M. A., bbers,L., Lopatkin,A. J., Satish,S., Nili,A., Palsson,B. O. . (2019). A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell, 177: 1649–1661.e9
CrossRef Google scholar
[122]
Li,L., Zhou,X., Ching,W. K. (2010). Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines. BMC Bioinformatics, 11: 501
CrossRef Google scholar
[123]
DiMucci,D., Kon,M. (2018). Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem network. mSystems, 3: e00181–e18
CrossRef Google scholar
[124]
Perez-Garcia,O., Lear,G. (2016). Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Front. Microbiol., 7: 673
CrossRef Google scholar

ACKNOWLEDGEMENTS

This work was supported by grants from the National Natural Science Foundation of China (Nos. 92051102, 32200099, 32225003 and 31970105); the Innovation Team Project of Universities in Guangdong Province (No. 2020KCXTD023); and the Shenzhen Science and Technology Program (JCYJ20200109105010363). All sketches used in the Fig.1 and Fig.3 are obtained from vecteezy website.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Huan Du, Meng Li, Yang Liu declare that they have no conflict of interest or financial conflicts to disclose.
This review does not contain any studies with human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author (s). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(5527 KB)

Accesses

Citations

Detail

Sections
Recommended

/