Towards applications of genome-scale metabolic model-based approaches in designing synthetic microbial communities
Huan Du, Meng Li, Yang Liu
Towards applications of genome-scale metabolic model-based approaches in designing synthetic microbial communities
Background: Synthetic microbial communities, with different strains brought together by balancing their nutrition and promoting their interactions, demonstrate great advantages for exploring complex performance of communities and for further biotechnology applications. The potential of such microbial communities has not been explored, due to our limited knowledge of the extremely complex microbial interactions that are involved in designing and controlling effective and stable communities.
Results: Genome-scale metabolic models (GEM) have been demonstrated as an effective tool for predicting and guiding the investigation and design of microbial communities, since they can explicitly and efficiently predict the phenotype of organisms from their genotypic data and can be used to explore the molecular mechanisms of microbe-habitats and microbe-microbe interactions. In this work, we reviewed two main categories of GEM-based approaches and three uses related to design of synthetic microbial communities: predicting multi-species interactions, exploring environmental impacts on microbial phenotypes, and optimizing community-level performance.
Conclusions: Although at the infancy stage, GEM-based approaches exhibit an increasing scope of applications in designing synthetic microbial communities. Compared to other methods, especially the use of laboratory cultures, GEM-based approaches can greatly decrease the trial-and-error cost of various procedures for designing synthetic communities and improving their functionality, such as identifying community members, determining media composition, evaluating microbial interaction potential or selecting the best community configuration. Future efforts should be made to overcome the limitations of the approaches, ranging from quality control of GEM reconstructions to community-level modeling algorithms, so that more applications of GEMs in studying phenotypes of microbial communities can be expected.
The applications of computational tools have been demonstrated to increase the development of synthetic microbial communities which is an emerging field and can be used in various biotechnology applications. As one effective tool, genome-scale metabolic modeling helps to reconstruct testable metabolic networks from genomic information and can quantitatively simulate entire metabolic fluxes of communities in considering microbe-microbe and microbe-habitat interactions. In-depth study of underlying mechanisms of microbial interactions using metabolic models and of coupling the models with multi-omics data or machine learning can further extend applications in designing synthetic communities.
genome-scale metabolic modeling / microbial community design / interspecies interaction / environmental impact / community-level performance
[1] |
kopf,T. Soyer,O. (2014). Synthetic microbial communities. Curr. Opin. Microbiol., 18: 72–77
CrossRef
Google scholar
|
[2] |
Zhou,K., Qiao,K., Edgar,S. (2015). Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol., 33: 377–383
CrossRef
Google scholar
|
[3] |
Wang,X., Su,R., Chen,K., Xu,S., Feng,J. (2019). Engineering a microbial consortium based whole-cell system for efficient production of glutarate from L-lysine. Front. Microbiol., 10: 341
CrossRef
Google scholar
|
[4] |
Hays,S. G., Patrick,W. G., Ziesack,M., Oxman,N. Silver,P. (2015). Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol., 36: 40–49
CrossRef
Google scholar
|
[5] |
McCarty,N. S. (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol., 37: 181–197
CrossRef
Google scholar
|
[6] |
Beyter,D., Tang,P. Z., Becker,S., Hoang,T., Bilgin,D., Lim,Y. W., Peterson,T. C., Mayfield,S., Haerizadeh,F., Shurin,J. B.
CrossRef
Google scholar
|
[7] |
Shurin,J. B., Abbott,R. L., Deal,M. S., Kwan,G. T., Litchman,E., McBride,R. C., Mandal,S. Smith,V. (2013). Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol. Lett., 16: 1393–1404
CrossRef
Google scholar
|
[8] |
Senthilvelan,T., Kanagaraj,J., Panda,R. C. Mandal,A. (2014). Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean Technol. Environ. Policy, 16: 113–126
CrossRef
Google scholar
|
[9] |
Zhang,H., Pereira,B., Li,Z. (2015). Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U.S.A., 112: 8266–8271
CrossRef
Google scholar
|
[10] |
Zuroff,T. R., Xiques,S. B. Curtis,W. (2013). Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. Biofuels, 6: 59
CrossRef
Google scholar
|
[11] |
Patle,S. (2007). Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett., 29: 1839–1843
CrossRef
Google scholar
|
[12] |
Wang,J. P., Lin,W., Wray,V., Lai,D. (2013). Induced production of depsipeptides by co-culturing Fusarium tricinctum and Fusarium begoniae. Tetrahedron Lett., 54: 2492–2496
CrossRef
Google scholar
|
[13] |
Caballero,S., Kim,S., Carter,R. A., Leiner,I. M., ac,B., Miller,L., Kim,G. J., Ling,L. Pamer,E. (2017). Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe, 21: 592–602.e4
CrossRef
Google scholar
|
[14] |
Brugiroux,S., Beutler,M., Pfann,C., Garzetti,D., Ruscheweyh,H. J., Ring,D., Diehl,M., Herp,S., tscher,Y., Hussain,S.
CrossRef
Google scholar
|
[15] |
Che,S. (2019). Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J. Ind. Microbiol. Biotechnol., 46: 1343–1358
CrossRef
Google scholar
|
[16] |
Johns,N. I., Blazejewski,T., Gomes,A. L. Wang,H. (2016). Principles for designing synthetic microbial communities. Curr. Opin. Microbiol., 31: 146–153
CrossRef
Google scholar
|
[17] |
Mee,M. T., Collins,J. J., Church,G. M. Wang,H. (2014). Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. U.S.A., 111: E2149–E2156
CrossRef
Google scholar
|
[18] |
Embree,M., Liu,J. K., Al-Bassam,M. M. (2015). Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl. Acad. Sci. U.S.A., 112: 15450–15455
CrossRef
Google scholar
|
[19] |
Zengler,K. Zaramela,L. (2018). The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol., 16: 383–390
CrossRef
Google scholar
|
[20] |
Bauer,E., Zimmermann,J., Baldini,F., Thiele,I. (2017). BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLOS Comput. Biol., 13: e1005544
CrossRef
Google scholar
|
[21] |
Chan,S. H. J., Simons,M. N. Maranas,C. (2017). SteadyCom: Predicting microbial abundances while ensuring community stability. PLOS Comput. Biol., 13: e1005539
CrossRef
Google scholar
|
[22] |
Kumar,M., Ji,B., Zengler,K. (2019). Modelling approaches for studying the microbiome. Nat. Microbiol., 4: 1253–1267
CrossRef
Google scholar
|
[23] |
Kanehisa,M., Furumichi,M., Sato,Y., Ishiguro-Watanabe,M. (2021). KEGG: integrating viruses and cellular organisms. Nucleic Acids Res., 49: D545–D551
CrossRef
Google scholar
|
[24] |
Caspi,R., Billington,R., Keseler,I. M., Kothari,A., Krummenacker,M., Midford,P. E., Ong,W. K., Paley,S., Subhraveti,P. Karp,P. (2020). The MetaCyc database of metabolic pathways and enzymes — a 2019 update. Nucleic Acids Res., 48: D445–D453
CrossRef
Google scholar
|
[25] |
King,Z. A., Lu,J., ger,A., Miller,P., Federowicz,S., Lerman,J. A., Ebrahim,A., Palsson,B. O. Lewis,N. (2016). BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res., 44: D515–D522
CrossRef
Google scholar
|
[26] |
Thiele,I. Palsson,B. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc., 5: 93–121
CrossRef
Google scholar
|
[27] |
Pramanik,J. Keasling,J. (1997). Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng., 56: 398–421
CrossRef
Google scholar
|
[28] |
Feist,A. Scholten,J. Palsson,B., Brockman,F. (2006). Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2,
CrossRef
Google scholar
|
[29] |
Gu,C., Kim,G. B., Kim,W. J., Kim,H. U. Lee,S. (2019). Current status and applications of genome-scale metabolic models. Genome Biol., 20: 121
CrossRef
Google scholar
|
[30] |
Machado,D., Andrejev,S., Tramontano,M. Patil,K. (2018). Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res., 46: 7542–7553
CrossRef
Google scholar
|
[31] |
Seaver,S. M. D., Liu,F., Zhang,Q., Jeffryes,J., Faria,J. P., Edirisinghe,J. N., Mundy,M., Chia,N., Noor,E., Beber,M. E.
CrossRef
Google scholar
|
[32] |
Aite,M., Chevallier,M., Frioux,C., Trottier,C., Got,J., Mendoza,S. N., Carrier,G., Dameron,O., Guillaudeux,N.
CrossRef
Google scholar
|
[33] |
Henry,C. S., Jankowski,M. D., Broadbelt,L. J. (2006). Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J., 90: 1453–1461
CrossRef
Google scholar
|
[34] |
Pereira,B., Miguel,J., Soares,S., Rocha,I. (2018). Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. BMC Syst. Biol., 12: 61
CrossRef
Google scholar
|
[35] |
Orth,J. D., Thiele,I. Palsson,B. (2010). What is flux balance analysis? Nat. Biotechnol., 28: 245–248
CrossRef
Google scholar
|
[36] |
Edwards,J. S. Palsson,B. (1999). Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem., 274: 17410–17416
CrossRef
Google scholar
|
[37] |
Monk,J. M., Lloyd,C. J., Brunk,E., Mih,N., Sastry,A., King,Z., Takeuchi,R., Nomura,W., Zhang,Z., Mori,H.
CrossRef
Google scholar
|
[38] |
zdamar,T. (2017). Analyses of extracellular protein production in Bacillus subtilis – I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem. Eng. J., 127: 229–241
CrossRef
Google scholar
|
[39] |
Nazem-Bokaee,H., Gopalakrishnan,S., Ferry,J. G., Wood,T. K. Maranas,C. (2016). Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microb. Cell Fact., 15: 10
CrossRef
Google scholar
|
[40] |
rster,J., Famili,I., Fu,P., Palsson,B. (2003). Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res., 13: 244–253
CrossRef
Google scholar
|
[41] |
Mintz-Oron,S., Meir,S., Malitsky,S., Ruppin,E., Aharoni,A. (2012). Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc. Natl. Acad. Sci. U.S.A., 109: 339–344
CrossRef
Google scholar
|
[42] |
Mardinoglu,A., Agren,R., Kampf,C., Asplund,A., Nookaew,I., Jacobson,P., Walley,A. J., Froguel,P., Carlsson,L. M., Uhlen,M.
CrossRef
Google scholar
|
[43] |
Arkin,A. P., Cottingham,R. W., Henry,C. S., Harris,N. L., Stevens,R. L., Maslov,S., Dehal,P., Ware,D., Perez,F., Canon,S.
CrossRef
Google scholar
|
[44] |
Heirendt,L., Arreckx,S., Pfau,T., Mendoza,S. N., Richelle,A., Heinken,A., ttir,H. S., Wachowiak,J., Keating,S. M., Vlasov,V.
CrossRef
Google scholar
|
[45] |
Karp,P. D., Midford,P. E., Billington,R., Kothari,A., Krummenacker,M., Latendresse,M., Ong,W. K., Subhraveti,P., Caspi,R., Fulcher,C.
CrossRef
Google scholar
|
[46] |
ttir,S., Heinken,A., Kutt,L., Ravcheev,D. A., Bauer,E., Noronha,A., Greenhalgh,K., ger,C., Baginska,J., Wilmes,P.
CrossRef
Google scholar
|
[47] |
Blasco,T., rez-Burillo,S., Balzerani,F., Hinojosa-Nogueira,D., Lerma-Aguilera,A., Pastoriza,S., Cendoya,X., Gosalbes,M. J., ndez,N.
CrossRef
Google scholar
|
[48] |
Agren,R., Liu,L., Shoaie,S., Vongsangnak,W., Nookaew,I. (2013). The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLOS Comput. Biol., 9: e1002980
CrossRef
Google scholar
|
[49] |
Capela,J., Lagoa,D., Rodrigues,R., Cunha,E., Cruz,F., Barbosa,A., Bastos,J., Lima,D., Ferreira,E. C., Rocha,M.
CrossRef
Google scholar
|
[50] |
nchez,B. J., Zhang,C., Nilsson,A., Lahtvee,P. J., Kerkhoven,E. J. (2017). Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13: 935
CrossRef
Google scholar
|
[51] |
Steffensen,J. L., Dufault-Thompson,K. (2016). PSAMM: A portable system for the analysis of metabolic models. PLOS Comput. Biol., 12: e1004732
CrossRef
Google scholar
|
[52] |
rnson,E., (2016). Personalized cardiovascular disease prediction and treatment—A review of existing strategies and novel systems medicine tools. Front. Physiol., 7: 2
CrossRef
Google scholar
|
[53] |
Cho,J. S., Gu,C., Han,T. H., Ryu,J. Y. Lee,S. (2019). Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring. Curr. Opin. Syst. Biol., 15: 1–11
CrossRef
Google scholar
|
[54] |
Esvap,E. Ulgen,K. (2021). Advances in genome-scale metabolic modeling toward microbial community analysis of the human microbiome. ACS Synth. Biol., 10: 2121–2137
CrossRef
Google scholar
|
[55] |
Lin,L. (2022). Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. Biotechnol. Biofuels Bioprod., 15: 14
CrossRef
Google scholar
|
[56] |
guez,J., Kleerebezem,R., Lema,J. M. van Loosdrecht,M. C. (2006). Modeling product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng., 93: 592–606
CrossRef
Google scholar
|
[57] |
Pramanik,J., Trelstad,P. L., Schuler,A. J., Jenkins,D. Keasling,J. (1999). Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Water Res., 33: 462–476
CrossRef
Google scholar
|
[58] |
Zomorrodi,A. R. Maranas,C. (2012). OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLOS Comput. Biol., 8: e1002363
CrossRef
Google scholar
|
[59] |
Khandelwal,R. A., Olivier,B. G., ling,W. F. M., Teusink,B. Bruggeman,F. (2013). Community flux balance analysis for microbial consortia at balanced growth. PLoS One, 8: e64567
CrossRef
Google scholar
|
[60] |
Thommes,M., Wang,T., Zhao,Q., Paschalidis,I. C. (2019). Designing metabolic division of labor in microbial communities. mSystems, 4: e00263–e18
CrossRef
Google scholar
|
[61] |
Vitkin,E., Gillis,A., Polikovsky,M., Bender,B., Golberg,A. (2020). Distributed flux balance analysis simulations of serial biomass fermentation by two organisms. PLoS One, 15: e0227363
CrossRef
Google scholar
|
[62] |
Zelezniak,A., Andrejev,S., Ponomarova,O., Mende,D. R., Bork,P. Patil,K. (2015). Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. U.S.A., 112: 6449–6454
CrossRef
Google scholar
|
[63] |
Zhuang,K., Izallalen,M., Mouser,P., Richter,H., Risso,C., Mahadevan,R. Lovley,D. (2011). Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J., 5: 305–316
CrossRef
Google scholar
|
[64] |
Zomorrodi,A. R., Islam,M. M. Maranas,C. (2014). d-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol., 3: 247–257
CrossRef
Google scholar
|
[65] |
Harcombe,W. R., Riehl,W. J., Dukovski,I., Granger,B. R., Betts,A., Lang,A. H., Bonilla,G., Kar,A., Leiby,N., Mehta,P.
CrossRef
Google scholar
|
[66] |
Borer,B., Ataman,M., Hatzimanikatis,V. (2019). Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLOS Comput. Biol., 15: e1007127
CrossRef
Google scholar
|
[67] |
Geng,J., Ji,B., Li,G., pez-Isunza,F. (2021). CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc. Natl. Acad. Sci. U.S.A., 118: e2019336118
CrossRef
Google scholar
|
[68] |
Brien,E. J., Monk,J. M. Palsson,B. (2015). Using genome-scale models to predict biological capabilities. Cell, 161: 971–987
CrossRef
Google scholar
|
[69] |
Stolyar,S., Van Dien,S., Hillesland,K. L., Pinel,N., Lie,T. J., Leigh,J. A. Stahl,D. (2007). Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol., 3: 92
CrossRef
Google scholar
|
[70] |
El-Semman,I. E., Karlsson,F. H., Shoaie,S., Nookaew,I., Soliman,T. H. (2014). Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol., 8: 41
CrossRef
Google scholar
|
[71] |
Baldini,F., Heinken,A., Heirendt,L., Magnusdottir,S., Fleming,R. M. T. (2019). The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics, 35: 2332–2334
CrossRef
Google scholar
|
[72] |
Mendes-Soares,H., Mundy,M., Soares,L. M. (2016). MMinte: an application for predicting metabolic interactions among the microbial species in a community. BMC Bioinformatics, 17: 343
CrossRef
Google scholar
|
[73] |
Pacheco,A. R., Moel,M. (2019). Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun., 10: 103
CrossRef
Google scholar
|
[74] |
Brien,E. J., Lerman,J. A., Chang,R. L., Hyduke,D. R. Palsson,B. (2013). Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol., 9: 693
CrossRef
Google scholar
|
[75] |
Khodayari,A. Maranas,C. (2016). A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun., 7: 13806
CrossRef
Google scholar
|
[76] |
Klitgord,N. (2010). Environments that induce synthetic microbial ecosystems. PLOS Comput. Biol., 6: e1001002
CrossRef
Google scholar
|
[77] |
Heinken,A. (2015). Anoxic conditions promote species-specific mutualism between gut microbes In Silico. Appl. Environ. Microbiol., 81: 4049–4061
CrossRef
Google scholar
|
[78] |
Chen,K., Gao,Y., Mih,N., Brien,E. J., Yang,L. Palsson,B. (2017). Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation. Proc. Natl. Acad. Sci. U.S.A., 114: 11548–11553
CrossRef
Google scholar
|
[79] |
Yang,L., Mih,N., Anand,A., Park,J. H., Tan,J., Yurkovich,J. T., Monk,J. M., Lloyd,C. J., Sandberg,T. E., Seo,S. W.
CrossRef
Google scholar
|
[80] |
Du,B., Yang,L., Lloyd,C. J., Fang,X. Palsson,B. (2019). Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLOS Comput. Biol., 15: e1007525
CrossRef
Google scholar
|
[81] |
diCenzo,G. C., Tesi,M., Pfau,T., Mengoni,A. (2020). Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat. Commun., 11: 2574
CrossRef
Google scholar
|
[82] |
Shreiner,A. B., Kao,J. Y. Young,V. (2015). The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 31: 69–75
CrossRef
Google scholar
|
[83] |
Qin,J., Li,Y., Cai,Z., Li,S., Zhu,J., Zhang,F., Liang,S., Zhang,W., Guan,Y., Shen,D.
CrossRef
Google scholar
|
[84] |
Turnbaugh,P. J., Hamady,M., Yatsunenko,T., Cantarel,B. L., Duncan,A., Ley,R. E., Sogin,M. L., Jones,W. J., Roe,B. A., Affourtit,J. P.
CrossRef
Google scholar
|
[85] |
Heinken,A., Ravcheev,D. A., Baldini,F., Heirendt,L., Fleming,R. M. T. (2019). Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome, 7: 75
CrossRef
Google scholar
|
[86] |
Diener,C., Gibbons,S. M. (2020). MICOM: Metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems, 5: e00606–e00619
CrossRef
Google scholar
|
[87] |
Kumar,M., Ji,B., Babaei,P., Das,P., Lappa,D., Ramakrishnan,G., Fox,T. E., Haque,R., Petri,W. A., ckhed,F.
CrossRef
Google scholar
|
[88] |
Shoaie,S. (2014). Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front. Genet., 5: 86
CrossRef
Google scholar
|
[89] |
Shoaie,S., Ghaffari,P., Kovatcheva-Datchary,P., Mardinoglu,A., Sen,P., Pujos-Guillot,E., de Wouters,T., Juste,C., Rizkalla,S., Chilloux,J.
CrossRef
Google scholar
|
[90] |
Swainston,N., Smallbone,K., Hefzi,H., Dobson,P. D., Brewer,J., Hanscho,M., Zielinski,D. C., Ang,K. S., Gardiner,N. J., Gutierrez,J. M.
CrossRef
Google scholar
|
[91] |
Brunk,E., Sahoo,S., Zielinski,D. C., Altunkaya,A., ger,A., Mih,N., Gatto,F., Nilsson,A., Preciat Gonzalez,G. A., Aurich,M. K.
CrossRef
Google scholar
|
[92] |
Duarte,N. C., Becker,S. A., Jamshidi,N., Thiele,I., Mo,M. L., Vo,T. D., Srivas,R. Palsson,B. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A., 104: 1777–1782
CrossRef
Google scholar
|
[93] |
Sahoo,S. (2013). Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells. Hum. Mol. Genet., 22: 2705–2722
CrossRef
Google scholar
|
[94] |
Zampieri,M. (2016). Model-based media selection to minimize the cost of metabolic cooperation in microbial ecosystems. Bioinformatics, 32: 1733–1739
CrossRef
Google scholar
|
[95] |
Du,H., Pan,J., Zou,D., Huang,Y., Liu,Y. (2022). Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. Microbiome, 10: 224
CrossRef
Google scholar
|
[96] |
Mahadevan,R., Edwards,J. S. Doyle,F. J. (2002). Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J., 83: 1331–1340
CrossRef
Google scholar
|
[97] |
Hanly,T. J. Henson,M. (2013). Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels, 6: 44
CrossRef
Google scholar
|
[98] |
Hanly,T. J. Henson,M. (2011). Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng., 108: 376–385
CrossRef
Google scholar
|
[99] |
Salimi,F., Zhuang,K. (2010). Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J., 5: 726–738
CrossRef
Google scholar
|
[100] |
nez,B., (2018). FLYCOP: metabolic modeling-based analysis and engineering microbial communities. Bioinformatics, 34: i954–i963
CrossRef
Google scholar
|
[101] |
Colarusso,A. V., Goodchild-Michelman,I., Rayle,M. Zomorrodi,A. (2021). Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol., 26: 46–57
CrossRef
Google scholar
|
[102] |
nez,B., Torres-Bacete,J. (2020). Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J., 19: 226–246
CrossRef
Google scholar
|
[103] |
Burgard,A. P., Pharkya,P. Maranas,C. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84: 647–657
CrossRef
Google scholar
|
[104] |
Vitkup,D. Church,G. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A., 99: 15112–15117
CrossRef
Google scholar
|
[105] |
Tepper,N. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics, 26: 536–543
CrossRef
Google scholar
|
[106] |
Choi,H. S., Lee,S. Y., Kim,T. Y. Woo,H. (2010). In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol., 76: 3097–3105
CrossRef
Google scholar
|
[107] |
Bernstein,D. B., Sulheim,S., Almaas,E. (2021). Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol., 22: 64
CrossRef
Google scholar
|
[108] |
Xavier,J. C., Patil,K. R. (2017). Integration of biomass formulations of genome-scale metabolic models with experimental data reveals universally essential cofactors in prokaryotes. Metab. Eng., 39: 200–208
CrossRef
Google scholar
|
[109] |
Lieven,C., Beber,M. E., Olivier,B. G., Bergmann,F. T., Ataman,M., Babaei,P., Bartell,J. A., Blank,L. M., Chauhan,S., Correia,K.
CrossRef
Google scholar
|
[110] |
Maghini,D. G., Moss,E. L., Vance,S. E. Bhatt,A. (2021). Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. Nat. Protoc., 16: 458–471
CrossRef
Google scholar
|
[111] |
Zheng,W., Zhao,S., Yin,Y., Zhang,H., Needham,D. M., Evans,E. D., Dai,C. L., Lu,P. J., Alm,E. J. Weitz,D. (2022). High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science, 376: eabm1483
CrossRef
Google scholar
|
[112] |
Lachance,J. C., Lloyd,C. J., Monk,J. M., Yang,L., Sastry,A. V., Seif,Y., Palsson,B. O., Rodrigue,S., Feist,A. M., King,Z. A.
CrossRef
Google scholar
|
[113] |
LengH.,Wang Y.,ZhaoW.,SievertS. M.. (2022) An expanded deep-branching thermophilic bacterial clade sheds light on the early evolution of bacteria. BioRxiv
|
[114] |
Dreyfuss,J. M., Zucker,J. D., Hood,H. M., Ocasio,L. R., Sachs,M. S. Galagan,J. (2013). Reconstruction and validation of a genome-scale metabolic model for the filamentous fungus Neurospora crassa using FARM. PLOS Comput. Biol., 9: e1003126
CrossRef
Google scholar
|
[115] |
Ryu,J. Y., Kim,H. U. Lee,S. (2019). Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proc. Natl. Acad. Sci. U.S.A., 116: 13996–14001
CrossRef
Google scholar
|
[116] |
Medlock,G. L. Papin,J. (2020). Guiding the refinement of biochemical knowledgebases with ensembles of metabolic networks and machine learning. Cell Syst., 10: 109–119.e3
CrossRef
Google scholar
|
[117] |
Plaimas,K., Mallm,J. P., Oswald,M., Svara,F., Sourjik,V., Eils,R. (2008). Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst. Biol., 2: 67
CrossRef
Google scholar
|
[118] |
Zhang,J., Petersen,S. D., Radivojevic,T., Ramirez,A., quez,A., Abeliuk,E., nchez,B. J., Costello,Z., Chen,Y., Fero,M. J.
CrossRef
Google scholar
|
[119] |
Oyetunde,T., Liu,D., Martin,H. G. Tang,Y. (2019). Machine learning framework for assessment of microbial factory performance. PLoS One, 14: e0210558
CrossRef
Google scholar
|
[120] |
Culley,C., Vijayakumar,S., Zampieri,G. (2020). A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. U.S.A., 117: 18869–18879
CrossRef
Google scholar
|
[121] |
Yang,J. H., Wright,S. N., Hamblin,M., McCloskey,D., Alcantar,M. A., bbers,L., Lopatkin,A. J., Satish,S., Nili,A., Palsson,B. O.
CrossRef
Google scholar
|
[122] |
Li,L., Zhou,X., Ching,W. K. (2010). Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines. BMC Bioinformatics, 11: 501
CrossRef
Google scholar
|
[123] |
DiMucci,D., Kon,M. (2018). Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem network. mSystems, 3: e00181–e18
CrossRef
Google scholar
|
[124] |
Perez-Garcia,O., Lear,G. (2016). Metabolic network modeling of microbial interactions in natural and engineered environmental systems. Front. Microbiol., 7: 673
CrossRef
Google scholar
|
/
〈 | 〉 |