Modeling the relationship between gene expression and mutational signature

Limin Jiang , Hui Yu , Yan Guo

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (1) : 31 -43.

PDF (13504KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (1) : 31 -43. DOI: 10.15302/J-QB-022-0309
RESEARCH ARTICLE
RESEARCH ARTICLE

Modeling the relationship between gene expression and mutational signature

Author information +
History +
PDF (13504KB)

Abstract

Background: Mutational signatures computed from somatic mutations, allow an in-depth understanding of tumorigenesis and may illuminate early prevention strategies. Many studies have shown the regulation effects between somatic mutation and gene expression dysregulation.

Methods: We hypothesized that there are potential associations between mutational signature and gene expression. We capitalized upon RNA-seq data to model 49 established mutational signatures in 33 cancer types. Both accuracy and area under the curve were used as performance measures in five-fold cross-validation.

Results: A total of 475 models using unconstrained genes, and 112 models using protein-coding genes were selected for future inference purposes. An independent gene expression dataset on lung cancer smoking status was used for validation which achieved over 80% for both accuracy and area under the curve.

Conclusion: These results demonstrate that the associations between gene expression and somatic mutations can translate into the associations between gene expression and mutational signatures.

Graphical abstract

Keywords

mutational signature / gene expression / support vector machine / random forest / extreme gradient boost

Cite this article

Download citation ▾
Limin Jiang, Hui Yu, Yan Guo. Modeling the relationship between gene expression and mutational signature. Quant. Biol., 2023, 11(1): 31-43 DOI:10.15302/J-QB-022-0309

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergstrom,E. N., Huang,M. N., Mahto,U., Barnes,M., Stratton,M. R., Rozen,S. G. Alexandrov,L. (2019). SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics, 20: 685

[2]

Alexandrov,L. Nik-Zainal,S., Wedge,D. C., Campbell,P. J., Stratton,M. (2013). Deciphering signatures of mutational processes operative in human cancer. Cell Rep., 3: 246–259

[3]

Petljak,M., Alexandrov,L. B., Brammeld,J. S., Price,S., Wedge,D. C., Grossmann,S., Dawson,K. J., Ju,Y. S., Iorio,F., Tubio,J. M. C. . (2019). Characterizing mutational mignatures in muman cancer cell lines reveals episodic APOBEC mutagenesis. Cell, 176: 1282–1294.e20

[4]

Alexandrov,L. B., Nik-Zainal,S., Wedge,D. C., Aparicio,S. A., Behjati,S., Biankin,A. V., Bignell,G. R., Bolli,N., Borg,A., rresen-Dale,A. L. . (2013). Signatures of mutational processes in human cancer. Nature, 500: 415–421

[5]

Alexandrov,L. B., Nik-Zainal,S., Wedge,D. C., Campbell,P. J. Stratton,M. (2013). Deciphering signatures of mutational processes operative in human cancer. Cell Rep., 3: 246–259

[6]

Shinde,J., Renault,V., Couchy,G., Blanc,J. F., Tubacher,E., Bayard,Q., Bacq,D., Meyer,V., Semhoun,J. . (2017). Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun., 8: 1315

[7]

Polak,P., Kim,J., Braunstein,L. Z., Karlic,R., Haradhavala,N. J., Tiao,G., Rosebrock,D., Livitz,D., bler,K., Mouw,K. W. . (2017). A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet., 49: 1476–1486

[8]

Petljak,M. Alexandrov,L. (2016). Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis, 37: 531–540

[9]

Alexandrov,L. B., Ju,Y. S., Haase,K., Van Loo,P., Martincorena,I., Nik-Zainal,S., Totoki,Y., Fujimoto,A., Nakagawa,H., Shibata,T. . (2016). Mutational signatures associated with tobacco smoking in human cancer. Science, 354: 618–622

[10]

Alexandrov,L. B., Jones,P. H., Wedge,D. C., Sale,J. E., Campbell,P. J., Nik-Zainal,S. Stratton,M. (2015). Clock-like mutational processes in human somatic cells. Nat. Genet., 47: 1402–1407

[11]

Kucab,J. E., Zou,X., Morganella,S., Joel,M., Nanda,A. S., Nagy,E., Gomez,C., Degasperi,A., Harris,R., Jackson,S. P. . (2019). A compendium of mutational signatures of environmental agents. Cell, 177: 821–836.e16

[12]

Gulhan,D. C., Lee,J. J. Melloni,G. E. M., s-Ciriano,I. Park,P. (2019). Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat. Genet., 51: 912–919

[13]

Masica,D. L. (2011). Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res., 71: 4550–4561

[14]

Ping,J., Oyebamiji,O., Yu,H., Ness,S., Chien,J., Ye,F., Kang,H., Samuels,D., Ivanov,S., Chen,D. . (2020). MutEx: a multifaceted gateway for exploring integrative pan-cancer genomic data. Brief. Bioinform., 21: 1479–1486

[15]

Wang,X., Sun,Q., Chen,C., Yin,R., Huang,X., Wang,X., Shi,R., Xu,L. (2016). ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression. Oncotarget, 7: 8029–8042

[16]

Shen,D. J., Jiang,Y. H., Li,J. Q., Xu,L. W. Tao,K. (2020). The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/β-catentin signaling. Surg. Oncol., 34: 31–39

[17]

Zhang,H., Chen,X., Wang,J., Guang,W., Han,W., Zhang,H., Tan,X. (2014). EGR1 decreases the malignancy of human non-small cell lung carcinoma by regulating KRT18 expression. Sci. Rep., 4: 5416

[18]

Inman,G. J., Wang,J., Nagano,A., Alexandrov,L. B., Purdie,K. J., Taylor,R. G., Sherwood,V., Thomson,J., Hogan,S., Spender,L. C. . (2018). The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun., 9: 3667

[19]

Ng,A. W. T., Poon,S. L., Huang,M. N., Lim,J. Q., Boot,A., Yu,W., Suzuki,Y., Thangaraju,S., Ng,C. C. Y., Tan,P. . (2017). Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci. Transl. Med., 9: eaan6446

[20]

Davies,H., Glodzik,D., Morganella,S., Yates,L. R., Staaf,J., Zou,X., Ramakrishna,M., Martin,S., Boyault,S., Sieuwerts,A. M. . (2017). HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med., 23: 517–525

[21]

Alexandrov,L. B., Nik-Zainal,S., Siu,H. C., Leung,S. Y. Stratton,M. (2015). A mutational signature in gastric cancer suggests therapeutic strategies. Nat. Commun., 6: 8683

[22]

Meijer,T. G., Verkaik,N. S., Sieuwerts,A. M., van Riet,J., Naipal,K. A. T., van Deurzen,C. H. M., den Bakker,M. A., Sleddens,H. F. B. M., Dubbink,H. J., den Toom,T. D. . (2018). Functional ex vivo assay reveals homologous recombination deficiency in breast cancer beyond BRCA gene defects. Clin. Cancer Res., 24: 6277–6287

[23]

Waddell,N., Pajic,M., Patch,A. M., Chang,D. K., Kassahn,K. S., Bailey,P., Johns,A. L., Miller,D., Nones,K., Quek,K. . (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518: 495–501

[24]

Morganella,S., Alexandrov,L. B., Glodzik,D., Zou,X., Davies,H., Staaf,J., Sieuwerts,A. M., Brinkman,A. B., Martin,S., Ramakrishna,M. . (2016). The topography of mutational processes in breast cancer genomes. Nat. Commun., 7: 11383

[25]

Haradhvala,N. J., Kim,J., Maruvka,Y. E., Polak,P., Rosebrock,D., Livitz,D., Hess,J. M., Leshchiner,I., Kamburov,A., Mouw,K. W. . (2018). Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nat. Commun., 9: 1746

[26]

ShengQ.,Samuels D. C.,YuH.,NessS.,ZhaoY. Y.. (2020) Cancer-specific expression quantitative loci are affected by expression dysregulation. Brief. Bioinform, 21, 338−347.

[27]

Ye,B., Shi,J., Kang,H., Oyebamiji,O., Hill,D., Yu,H., Ness,S., Ye,F., Ping,J., He,J. . (2020). Advancing pan-cancer gene expression survial analysis by inclusion of non-coding RNA. RNA Biol., 17: 1666–1673

[28]

Georganos,S., Grippa,T., Vanhuysse,S., Lennert,M., Shimoni,M. (2018). Very high resolution object-based land use-land cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett., 15: 607–611

[29]

Manikandaprabhu,P. (2016). Unified RF-SVM model based digital radiography classification for Inferior Alveolar Nerve Injury (IANI) identification. Biomed Res-India, 27: 1107–1117

[30]

Shao,Y. Lunetta,R. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens., 70: 78–87

[31]

Blokzijl,F., Janssen,R., van Boxtel,R. (2018). MutationalPatterns: comprehensive genome-wide analysis of mutational processes. Genome Med., 10: 33

[32]

Thorsson,V., Gibbs,D. L., Brown,S. D., Wolf,D., Bortone,D. S. Yang,O. T. H., Porta-Pardo,E., Gao,G. F., Plaisier,C. L., Eddy,J. A. . (2019). The immune landscape of cancer. Immunity, 51: 411–412

RIGHTS & PERMISSIONS

The Author (s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (13504KB)

Supplementary files

QB-22309-of-GY_suppl_1

QB-22309-of-GY_suppl_2

2815

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/