Quantitative functionalization of biosynthetic caged protein materials
Quan Cheng, Xuan Wang, Xian-En Zhang, Chengchen Xu, Feng Li
Quantitative functionalization of biosynthetic caged protein materials
Background: As one of the representative protein materials, protein nanocages (PNCs) are self-assembled supramolecular structures with multiple advantages, such as good monodispersity, biocompatibility, structural addressability, and facile production. Precise quantitative functionalization is essential to the construction of PNCs with designed purposes.
Results: With three modifiable interfaces, the interior surface, outer surface, and interfaces between building blocks, PNCs can serve as an ideal platform for precise multi-functionalization studies and applications. This review summarizes the currently available methods for precise quantitative functionalization of PNCs and highlights the significance of precise quantitative control in fabricating PNC-based materials or devices. These methods can be categorized into three groups, genetic, chemical, and combined modification.
Conclusion: This review would be constructive for those who work with biosynthetic PNCs in diverse fields.
Protein nanocages (PNCs) are a group of self-assembling biomacromolecules that have been recognized as natural nanomaterials and are attracting increasing interest in multidisciplinary fields. Various strategies have been developed to modify and functionalize PNCs for tailored applications. This review aims to summarize the currently available methods for PNC modification with emphasis on the significance of quantitative control of functionalization.
protein nanocages / virus-like particles / functionalization / genetic modification / chemical modification
[1] |
Li, F., Wang, D., Zhou, J., Men, D. Zhan, X. (2020). Design and biosynthesis of functional protein nanostructures. Sci. China Life Sci., 63: 1142–1158
CrossRef
Google scholar
|
[2] |
Nooraei, S., Bahrulolum, H., Hoseini, Z. S., Katalani, C., Hajizade, A., Easton, A. J. (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology, 19: 59
CrossRef
Google scholar
|
[3] |
Divine, R., Dang, H. V., Ueda, G., Fallas, J. A., Vulovic, I., Sheffler, W., Saini, S., Zhao, Y. T., Raj, I. X., Morawski, P. A.
CrossRef
Google scholar
|
[4] |
Korpi, A., Anaya-Plaza, E., ki, S. (2020). Highly ordered protein cage assemblies: a toolkit for new materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 12: e1578
CrossRef
Google scholar
|
[5] |
Aoust, M. A., Couture, M. M., Charland, N., panier, S., Landry, N., Ors, F. zina, L. (2010). The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J., 8: 607–619
CrossRef
Google scholar
|
[6] |
Naskalska, A., cka-Solarz, K., ycki, J., Stupka, I., Bochenek, M., Pyza, E. Heddle, J. (2021). Artificial protein cage delivers active protein cargos to the cell interior. Biomacromolecules, 22: 4146–4154
CrossRef
Google scholar
|
[7] |
Williams, S. M. (2021). An overview of Dps: dual acting nanovehicles in prokaryotes with DNA binding and ferroxidation properties. Subcell. Biochem., 96: 177–216
CrossRef
Google scholar
|
[8] |
Aumiller, W. M., Uchida, M. (2018). Protein cage assembly across multiple length scales. Chem. Soc. Rev., 47: 3433–3469
CrossRef
Google scholar
|
[9] |
Uchida, M., McCoy, K., Fukuto, M., Yang, L., Yoshimura, H., Miettinen, H. M., LaFrance, B., Patterson, D. P., Schwarz, B., Karty, J. A.
CrossRef
Google scholar
|
[10] |
Raeeszadeh-Sarmazdeh, M., Hartzell, E., Price, J. V. (2016). Protein nanoparticles as multifunctional biocatalysts and health assessment sensors. Curr. Opin. Chem. Eng., 13: 109–118
CrossRef
Google scholar
|
[11] |
Lin, X., Xie, J., Niu, G., Zhang, F., Gao, H., Yang, M., Quan, Q., Aronova, M. A., Zhang, G., Lee, S.
CrossRef
Google scholar
|
[12] |
Molino, N. M. Wang, S. (2014). Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol., 28: 75–82
CrossRef
Google scholar
|
[13] |
Moon, H., Lee, J., Kim, H., Heo, S., Min, J. (2014). Genetically engineering encapsulin protein cage nanoparticle as a SCC-7 cell targeting optical nanoprobe. Biomater. Res., 18: 21
CrossRef
Google scholar
|
[14] |
Hamby, S. E. Hirst, J. (2008). Prediction of glycosylation sites using random forests. BMC Bioinformatics, 9: 500
CrossRef
Google scholar
|
[15] |
Schwarzer, J., Rapp, E. (2008). N-glycan analysis by CGE-LIF: profiling influenza A virus hemagglutinin N-glycosylation during vaccine production. Electrophoresis, 29: 4203–4214
CrossRef
Google scholar
|
[16] |
Hyakumura, M., Walsh, R., Thaysen-Andersen, M., Kingston, N. J., La, M., Lu, L., Lovrecz, G., Packer, N. H., Locarnini, S. Netter, H. (2015). Modification of asparagine-linked glycan density for the design of hepatitis B virus virus-like particles with enhanced immunogenicity. J. Virol., 89: 11312–11322
CrossRef
Google scholar
|
[17] |
Joe, C. C. D., Chatterjee, S., Lovrecz, G., Adams, T. E., Thaysen-Andersen, M., Walsh, R., Locarnini, S. A., Smooker, P. Netter, H. (2020). Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine, 38: 3892–3901
CrossRef
Google scholar
|
[18] |
De Filette, M., Min Jou, W., Birkett, A., Lyons, K., Schultz, B., Tonkyro, A., Resch, S. (2005). Universal influenza A vaccine: optimization of M2-based constructs. Virology, 337: 149–161
CrossRef
Google scholar
|
[19] |
Ling, S., Yang, S., Hu, X., Yin, D., Dai, Y., Qian, X., Wang, D., Pan, X., Hong, J., Sun, X.
CrossRef
Google scholar
|
[20] |
Levasseur, M. D., Mantri, S., Hayashi, T., Reichenbach, M., Hehn, S., Waeckerle-Men, Y., Johansen, P. (2021). Cell-specific delivery using an engineered protein nanocage. ACS Chem. Biol., 16: 838–843
CrossRef
Google scholar
|
[21] |
Wang, Z., Zhao, Y., Zhang, S., Chen, X., Sun, G., Zhang, B., Jiang, B., Yang, Y., Yan, X. (2022). Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy. Theranostics, 12: 1800–1815
CrossRef
Google scholar
|
[22] |
Martino, M. L., Crooke, S. N., Manchester, M. Finn, M. (2021). Single-point mutations in Qβ virus-like particles change binding to cells. Biomacromolecules, 22: 3332–3341
CrossRef
Google scholar
|
[23] |
Edwardson, T. G. W., Mori, T. (2018). Rational engineering of a designed protein cage for siRNA delivery. J. Am. Chem. Soc., 140: 10439–10442
CrossRef
Google scholar
|
[24] |
Patterson, D., Schwarz, B., Avera, J., Western, B., Hicks, M., Krugler, P., Terra, M., Uchida, M., McCoy, K. (2017). Sortase-mediated ligation as a modular approach for the covalent attachment of proteins to the exterior of the bacteriophage P22 virus-like particle. Bioconjug. Chem., 28: 2114–2124
CrossRef
Google scholar
|
[25] |
Peabody, D. (1997). Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Arch. Biochem. Biophys., 347: 85–92
CrossRef
Google scholar
|
[26] |
Aanei, I. L., Huynh, T., Seo, Y. Francis, M. (2018). Vascular cell adhesion molecule-targeted MS2 viral capsids for the detection of early-stage atherosclerotic plaques. Bioconjug. Chem., 29: 2526–2530
CrossRef
Google scholar
|
[27] |
Tong, G. J., Hsiao, S. C., Carrico, Z. M. Francis, M. (2009). Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc., 131: 11174–11178
CrossRef
Google scholar
|
[28] |
Stephanopoulos, N., Tong, G. J., Hsiao, S. C. Francis, M. (2010). Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano, 4: 6014–6020
CrossRef
Google scholar
|
[29] |
Brauer, D. D., Hartman, E. C., Bader, D. L. V., Merz, Z. N., Tullman-Ercek, D. Francis, M. (2019). Systematic engineering of a protein nanocage for high-yield, site-specific modification. J. Am. Chem. Soc., 141: 3875–3884
CrossRef
Google scholar
|
[30] |
Karpenko, L. I., Ivanisenko, V. A., Pika, I. A., Chikaev, N. A., Eroshkin, A. M., Veremeiko, T. A. Ilyichev, A. (2000). Insertion of foreign epitopes in HBcAg: how to make the chimeric particle assemble. Amino Acids, 18: 329–337
CrossRef
Google scholar
|
[31] |
Takahashi, R. U., Kanesashi, S. N., Inoue, T., Enomoto, T., Kawano, M. A., Tsukamoto, H., Takeshita, F., Imai, T., Ochiya, T., Kataoka, K.
CrossRef
Google scholar
|
[32] |
Zhang, Y. L., Guo, Y. J., Wang, K. Y., Lu, K., Li, K., Zhu, Y. Sun, S. (2007). Enhanced immunogenicity of modified hepatitis B virus core particle fused with multiepitopes of foot-and-mouth disease virus. Scand. J. Immunol., 65: 320–328
CrossRef
Google scholar
|
[33] |
CalendarR.. (2006) The Bacteriophages. 2nd ed. 457−468. New York: Oxford University Press
|
[34] |
Mao, H., Hart, S. A., Schink, A. Pollok, B. (2004). Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc., 126: 2670–2671
CrossRef
Google scholar
|
[35] |
Schoonen, L., Pille, J., Borrmann, A., Nolte, R. J. van Hest, J. (2015). Sortase a-mediated N-terminal modification of cowpea chlorotic mottle virus for highly efficient cargo loading. Bioconjug. Chem., 26: 2429–2434
CrossRef
Google scholar
|
[36] |
Schoonen, L. van Hest, J. C. (2018). Modification of CCMV nanocages for enzyme encapsulation. Methods Mol. Biol., 1798: 69–83
CrossRef
Google scholar
|
[37] |
Keeble, A. H. (2020). Power to the protein: enhancing and combining activities using the Spy toolbox. Chem. Sci. (Camb.), 11: 7281–7291
CrossRef
Google scholar
|
[38] |
Sun, F. Zhang, W. (2017). Unleashing chemical power from protein sequence space toward genetically encoded “click” chemistry. Chin. Chem. Lett., 28: 2078–2084
CrossRef
Google scholar
|
[39] |
hl, P. M., Tissot, A. C., Fulurija, A., Maurer, P., Nussberger, J., Sabat, R., Nief, V., Schellekens, C., Sladko, K., Roubicek, K.
CrossRef
Google scholar
|
[40] |
Jegerlehner, A., Storni, T., Lipowsky, G., Schmid, M., Pumpens, P. Bachmann, M. (2002). Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol., 32: 3305–3314
CrossRef
Google scholar
|
[41] |
Gautam, A., Beiss, V., Wang, C., Wang, L. Steinmetz, N. (2021). Plant viral nanoparticle conjugated with anti-PD-1 peptide for ovarian cancer immunotherapy. Int. J. Mol. Sci., 22: 9733
CrossRef
Google scholar
|
[42] |
Anand, P., Neil, A., Lin, E., Douglas, T. (2015). Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci. Rep., 5: 12497
CrossRef
Google scholar
|
[43] |
Galaway, F. A. Stockley, P. (2013). MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol. Pharm., 10: 59–68
CrossRef
Google scholar
|
[44] |
Patel, K. G. Swartz, J. (2011). Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug. Chem., 22: 376–387
CrossRef
Google scholar
|
[45] |
Gillitzer, E., Suci, P., Young, M. (2006). Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. Small, 2: 962–966
CrossRef
Google scholar
|
[46] |
Brunel, F. M., Lewis, J. D., Destito, G., Steinmetz, N. F., Manchester, M., Stuhlmann, H. Dawson, P. (2010). Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett., 10: 1093–1097
CrossRef
Google scholar
|
[47] |
Li, Y., Hu, Y., Xiao, J., Liu, G., Li, X., Zhao, Y., Tan, H., Shi, H. (2016). Investigation of SP94 peptide as a specific probe for hepatocellular carcinoma imaging and Therapy. Sci. Rep., 6: 33511
CrossRef
Google scholar
|
[48] |
Nie, X., Liu, Y., Li, M., Yu, X., Yuan, W., Huang, S., Ren, D., Wang, Y. (2020). Sp94 peptide-functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for targeting therapy of hepatocellular carcinoma. AAPS PharmSciTech, 21: 124
CrossRef
Google scholar
|
[49] |
Ashley, C. E., Carnes, E. C., Phillips, G. K., Durfee, P. N., Buley, M. D., Lino, C. A., Padilla, D. P., Phillips, B., Carter, M. B., Willman, C. L.
CrossRef
Google scholar
|
[50] |
Gao, R., Tan, H., Li, S., Ma, S., Tang, Y., Zhang, K., Zhang, Z., Fan, Q., Yang, J., Zhang, X. E.
CrossRef
Google scholar
|
[51] |
Li, F., Chen, Y., Chen, H., He, W., Zhang, Z. P., Zhang, X. E. (2011). Monofunctionalization of protein nanocages. J. Am. Chem. Soc., 133: 20040–20043
CrossRef
Google scholar
|
[52] |
Steinmetz, N. F., Hong, V., Spoerke, E. D., Lu, P., Breitenkamp, K., Finn, M. G. (2009). Buckyballs meet viral nanoparticles: candidates for biomedicine. J. Am. Chem. Soc., 131: 17093–17095
CrossRef
Google scholar
|
[53] |
Steinmetz, N. F., Lomonossoff, G. P. Evans, D. (2006). Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir, 22: 3488–3490
CrossRef
Google scholar
|
[54] |
Aljabali, A. A., Shukla, S., Lomonossoff, G. P., Steinmetz, N. F. Evans, D. (2013). CPMV-DOX delivers. Mol. Pharm., 10: 3–10
CrossRef
Google scholar
|
[55] |
Koho, T., Ihalainen, T. O., Stark, M., Uusi-Kerttula, H., Wieneke, R., Rahikainen, R., Blazevic, V., ki, V., Kulomaa, M. S.
CrossRef
Google scholar
|
[56] |
Meunier, S., Strable, E. Finn, M. (2004). Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem. Biol., 11: 319–326
CrossRef
Google scholar
|
[57] |
Hooker, J. M., Datta, A., Botta, M., Raymond, K. N. Francis, M. (2007). Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. Nano Lett., 7: 2207–2210
CrossRef
Google scholar
|
[58] |
Kovacs, E. W., Hooker, J. M., Romanini, D. W., Holder, P. G., Berry, K. E. Francis, M. (2007). Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug. Chem., 18: 1140–1147
CrossRef
Google scholar
|
[59] |
Strable, E., Prasuhn, D. E. Udit, A. K., Brown, S., Link, A. J., Ngo, J. T., Lander, G., Quispe, J., Potter, C. S., Carragher, B.
CrossRef
Google scholar
|
[60] |
CrichtonR.. (2019) Biological inorganic chemistry. 3rd ed. 517−544. Cambridge: Academic Press
|
[61] |
Douglas, T. Stark, V. (2000). Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem., 39: 1828–1830
CrossRef
Google scholar
|
[62] |
Du, P., Liu, R., Sun, S., Dong, H., Zhao, R., Tang, R., Dai, J., Yin, H., Luo, J., Liu, Z.
CrossRef
Google scholar
|
[63] |
Li, F., Zhang, Z. P., Peng, J., Cui, Z. Q., Pang, D. W., Li, K., Wei, H. P., Zhou, Y. F., Wen, J. K. Zhang, X. (2009). Imaging viral behavior in Mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small, 5: 718–726
CrossRef
Google scholar
|
[64] |
Li, F., Li, K., Cui, Z. Q., Zhang, Z. P., Wei, H. P., Gao, D., Deng, J. Y. Zhang, X. (2010). Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. Small, 6: 2301–2308
CrossRef
Google scholar
|
[65] |
rfer, B., Pianowski, Z. (2012). Efficient in vitro encapsulation of protein cargo by an engineered protein container. J. Am. Chem. Soc., 134: 909–911
CrossRef
Google scholar
|
[66] |
Tan, R. Frankel, A. (1995). Structural variety of arginine-rich RNA-binding peptides. Proc. Natl. Acad. Sci. USA., 92: 5282–5286
CrossRef
Google scholar
|
[67] |
Brasch, M., Putri, R. M., de Ruiter, M. V., Luque, D., Koay, M. S., Cornelissen, J. (2017). Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. J. Am. Chem. Soc., 139: 1512–1519
CrossRef
Google scholar
|
[68] |
Vervoort, D. F. M., Heiringhoff, R., Timmermans, S. B. P. E., van Stevendaal, M. H. M. E. van Hest, J. C. (2021). Dual site-selective presentation of functional handles on protein-engineered cowpea chlorotic mottle virus-like particles. Bioconjug. Chem., 32: 958–963
CrossRef
Google scholar
|
[69] |
Fang, T., Zhu, W., Li, C., Zhang, F., Gao, D., Zhang, Z. P., Liang, A., Zhang, X. E. (2019). Role of surface RGD patterns on protein nanocages in tumor targeting revealed using precise discrete models. Small, 15: e1904838
CrossRef
Google scholar
|
[70] |
Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M. (2002). Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater., 14: 415–418
CrossRef
Google scholar
|
[71] |
Li, K., Zhang, Z. P., Luo, M., Yu, X., Han, Y., Wei, H. P., Cui, Z. Q. Zhang, X. (2012). Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale, 4: 188–193
CrossRef
Google scholar
|
[72] |
Yang, M., Sunderland, K. (2017). Virus-derived peptides for clinical applications. Chem. Rev., 117: 10377–10402
CrossRef
Google scholar
|
[73] |
Gandra, N., Wang, D. D., Zhu, Y. (2013). Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells. Angew. Chem. Int. Ed. Engl., 52: 11278–11281
CrossRef
Google scholar
|
/
〈 | 〉 |