Bioinformatics approaches to analyzing CRISPR screen data: from dropout screens to single-cell CRISPR screens
Yueshan Zhao, Min Zhang, Da Yang
Bioinformatics approaches to analyzing CRISPR screen data: from dropout screens to single-cell CRISPR screens
Background: Pooled CRISPR screen is a promising tool in drug targets or essential genes identification with the utilization of three different systems including CRISPR knockout (CRISPRko), CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa). Aside from continuous improvements in technology, more and more bioinformatics methods have been developed to analyze the data obtained by CRISPR screens which facilitate better understanding of physiological effects.
Results: Here, we provide an overview on the application of CRISPR screens and bioinformatics approaches to analyzing different types of CRISPR screen data. We also discuss mechanisms and underlying challenges for the analysis of dropout screens, sorting-based screens and single-cell screens.
Conclusion: Different analysis approaches should be chosen based on the design of screens. This review will help community to better design novel algorithms and provide suggestions for wet-lab researchers to choose from different analysis methods.
CRISPR screen has become a promising tool in the identification of essential genes or drug targets. In this review, we provide an overview on the application of CRISPR screens and bioinformatics approaches to analyzing different types of CRISPR screen data. We also discuss mechanisms and underlying challenges for the analysis of dropout screens, sorting-based screens and single-cell screens.
CRISPR/Cas9 / dropout screen / sorting-based screen / single-cell CRISPR screen / drug-gene interaction
[1] |
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. Church, G. (2013). RNA-guided human genome engineering via Cas9. Science, 339: 823–826
CrossRef
Google scholar
|
[2] |
Sander, J. D. Joung, J. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32: 347–355
CrossRef
Google scholar
|
[3] |
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. Lim, W. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152: 1173–1183
CrossRef
Google scholar
|
[4] |
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A.
CrossRef
Google scholar
|
[5] |
Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H.
CrossRef
Google scholar
|
[6] |
Klann, T. S., Black, J. B., Chellappan, M., Safi, A., Song, L., Hilton, I. B., Crawford, G. E., Reddy, T. E. Gersbach, C. (2017). CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol., 35: 561–568
CrossRef
Google scholar
|
[7] |
Joung, J., Engreitz, J. M., Konermann, S., Abudayyeh, O. O., Verdine, V. K., Aguet, F., Gootenberg, J. S., Sanjana, N. E., Wright, J. B., Fulco, C. P.
CrossRef
Google scholar
|
[8] |
Bodapati, S., Daley, T. P., Lin, X., Zou, J. Qi, L. (2020). A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol., 21: 62
CrossRef
Google scholar
|
[9] |
Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelson, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G.
CrossRef
Google scholar
|
[10] |
Gurusamy, D., Henning, A. N., Yamamoto, T. N., Yu, Z., Zacharakis, N., Krishna, S., Kishton, R. J., Vodnala, S. K., Eidizadeh, A., Jia, L.
CrossRef
Google scholar
|
[11] |
Zhang, H., Zhang, Y., Zhou, X., Wright, S., Hyle, J., Zhao, L., An, J., Zhao, X., Shao, Y., Xu, B.
CrossRef
Google scholar
|
[12] |
Parnas, O., Jovanovic, M., Eisenhaure, T. M., Herbst, R. H., Dixit, A., Ye, C. J., Przybylski, D., Platt, R. J., Tirosh, I., Sanjana, N. E.
CrossRef
Google scholar
|
[13] |
Adamson, B., Norman, T. M., Jost, M., Cho, M. Y., ez, J. K., Chen, Y., Villalta, J. E., Gilbert, L. A., Horlbeck, M. A., Hein, M. Y.
|
[14] |
Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C. P., Jerby-Arnon, L., Marjanovic, N. D., Dionne, D., Burks, T., Raychowdhury, R.
|
[15] |
Jaitin, D. A., Weiner, A., Yofe, I., Lara-Astiaso, D., Keren-Shaul, H., David, E., Salame, T. M., Tanay, A., van Oudenaarden, A. (2016). Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell. 167,
|
[16] |
Datlinger, P., Rendeiro, A. F., Schmidl, C., Krausgruber, T., Traxler, P., Klughammer, J., Schuster, L. C., Kuchler, A., Alpar, D. (2017). Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods, 14: 297–301
CrossRef
Google scholar
|
[17] |
Li, W., Xu, H., Xiao, T., Cong, L., Love, M. I., Zhang, F., Irizarry, R. A., Liu, J. S., Brown, M. Liu, X. (2014). MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol., 15: 554
CrossRef
Google scholar
|
[18] |
Anders, S. (2010). Differential expression analysis for sequence count data. Genome Biol., 11: R106
CrossRef
Google scholar
|
[19] |
Robinson, M. D., McCarthy, D. J. Smyth, G. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26: 139–140
CrossRef
Google scholar
|
[20] |
Kolde, R., Laur, S., Adler, P. (2012). Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 28: 573–580
CrossRef
Google scholar
|
[21] |
Li, W., ster, J., Xu, H., Chen, C. H., Xiao, T., Liu, J. S., Brown, M. Liu, X. (2015). Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol., 16: 281
CrossRef
Google scholar
|
[22] |
Wang, B., Wang, M., Zhang, W., Xiao, T., Chen, C. H., Wu, A., Wu, F., Traugh, N., Wang, X., Li, Z.
CrossRef
Google scholar
|
[23] |
Eden, E., Navon, R., Steinfeld, I., Lipson, D. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 10: 48
CrossRef
Google scholar
|
[24] |
Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T.
CrossRef
Google scholar
|
[25] |
Yu, J., Silva, J. (2016). ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics, 32: 260–267
|
[26] |
Hart, T. (2016). BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics, 17: 164
CrossRef
Google scholar
|
[27] |
Kim, E. (2021). Improved analysis of CRISPR fitness screens and reduced off-target effects with the BAGEL2 gene essentiality classifier. Genome Med., 13: 2
CrossRef
Google scholar
|
[28] |
Hanna, R. E. Doench, J. (2020). Design and analysis of CRISPR-Cas experiments. Nat. Biotechnol., 38: 813–823
CrossRef
Google scholar
|
[29] |
Jia, G., Wang, X. (2017). A permutation-based non-parametric analysis of CRISPR screen data. BMC Genomics, 18: 545
CrossRef
Google scholar
|
[30] |
Daley, T. P., Lin, Z., Lin, X., Liu, Y., Wong, W. H. Qi, L. (2018). CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome Biol., 19: 159
CrossRef
Google scholar
|
[31] |
Horlbeck, M. A., Witkowsky, L. B., Guglielmi, B., Replogle, J. M., Gilbert, L. A., Villalta, J. E., Torigoe, S. E., Tjian, R. Weissman, J. (2016). Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife, 5: e12677
CrossRef
Google scholar
|
[32] |
Pombo, A. (2015). Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol., 16: 245–257
CrossRef
Google scholar
|
[33] |
Imkeller, K., Ambrosi, G., Boutros, M. (2020). gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol., 21: 53
CrossRef
Google scholar
|
[34] |
Allen, F., Behan, F., Khodak, A., Iorio, F., Yusa, K., Garnett, M. (2019). JACKS: joint analysis of CRISPR/Cas9 knockout screens. Genome Res., 29: 464–471
CrossRef
Google scholar
|
[35] |
de Boer, C. G., Ray, J. P., Hacohen, N. (2020). MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biol., 21: 134
CrossRef
Google scholar
|
[36] |
Moffat, J. Sabatini, D. (2006). Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol., 7: 177–187
CrossRef
Google scholar
|
[37] |
Schramek, D., Sendoel, A., Segal, J. P., Beronja, S., Heller, E., Oristian, D., Reva, B. (2014). Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science, 343: 309–313
CrossRef
Google scholar
|
[38] |
Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G. Linsley, P. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 21: 635–637
CrossRef
Google scholar
|
[39] |
Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. Williams, B. R. (2003). Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol., 5: 834–839
CrossRef
Google scholar
|
[40] |
Smith, I., Greenside, P. G., Natoli, T., Lahr, D. L., Wadden, D., Tirosh, I., Narayan, R., Root, D. E., Golub, T. R., Subramanian, A.
CrossRef
Google scholar
|
[41] |
Ihry, R. J., Salick, M. R., Ho, D. J., Sondey, M., Kommineni, S., Paula, S., Raymond, J., Henry, B., Frias, E., Wang, Q.
CrossRef
Google scholar
|
[42] |
Luo, B., Cheung, H. W., Subramanian, A., Sharifnia, T., Okamoto, M., Yang, X., Hinkle, G., Boehm, J. S., Beroukhim, R., Weir, B. A.
CrossRef
Google scholar
|
[43] |
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.
CrossRef
Google scholar
|
[44] |
Jin, X., Simmons, S. K., Guo, A., Shetty, A. S., Ko, M., Nguyen, L., Jokhi, V., Robinson, E., Oyler, P., Curry, N.
CrossRef
Google scholar
|
[45] |
Hill, A. J., McFaline-Figueroa, J. L., Starita, L. M., Gasperini, M. J., Matreyek, K. A., Packer, J., Jackson, D., Shendure, J. (2018). On the design of CRISPR-based single-cell molecular screens. Nat. Methods, 15: 271–274
CrossRef
Google scholar
|
[46] |
Norman, T. M., Horlbeck, M. A., Replogle, J. M., Ge, A. Y., Xu, A., Jost, M., Gilbert, L. A. Weissman, J. (2019). Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science, 365: 786–793
CrossRef
Google scholar
|
[47] |
Xie, S., Cooley, A., Armendariz, D., Zhou, P. Hon, G. (2018). Frequent sgRNA-barcode recombination in single-cell perturbation assays. PLoS One, 13: e0198635–e0198635
CrossRef
Google scholar
|
[48] |
Yang, L., Zhu, Y., Yu, H., Cheng, X., Chen, S., Chu, Y., Huang, H., Zhang, J. (2020). scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol., 21: 19
CrossRef
Google scholar
|
[49] |
Duan, B., Zhou, C., Zhu, C., Yu, Y., Li, G., Zhang, S., Zhang, C., Ye, X., Ma, H., Qu, S.
CrossRef
Google scholar
|
[50] |
BleiD. M.LaffertyJ.. (2007) A correlated topic model of science. Ann. Appl. Stat., 1, 17−35
|
[51] |
Papalexi, E., Mimitou, E. P., Butler, A. W., Foster, S., Bracken, B., Mauck, W. M. Wessels, H. Hao, Y., Yeung, B. Z., Smibert, P.
CrossRef
Google scholar
|
[52] |
Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., Satija, R. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods, 14: 865–868
CrossRef
Google scholar
|
[53] |
KatsevichE.. and Roeder, K. (2020) Conditional resampling improves calibration in single cell CRISPR screen analysis. bioRxiv. 2020.2008.2013.250092
|
[54] |
Xu, H., Xiao, T., Chen, C. H., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S.
CrossRef
Google scholar
|
[55] |
Colic, M., Wang, G., Zimmermann, M., Mascall, K., McLaughlin, M., Bertolet, L., Lenoir, W. F., Moffat, J., Angers, S., Durocher, D.
CrossRef
Google scholar
|
[56] |
Dong, M. B., Wang, G., Chow, R. D., Ye, L., Zhu, L., Dai, X., Park, J. J., Kim, H. R., Errami, Y., Guzman, C. D.
CrossRef
Google scholar
|
[57] |
Freeman, J. L., Perry, G. H., Feuk, L., Redon, R., McCarroll, S. A., Altshuler, D. M., Aburatani, H., Jones, K. W., Tyler-Smith, C., Hurles, M. E.
CrossRef
Google scholar
|
[58] |
Xu, Y., Wu, T., Li, F., Dong, Q., Wang, J., Shang, D., Xu, Y., Zhang, C., Dou, Y., Hu, C.
CrossRef
Google scholar
|
[59] |
Connelly, J. P. Pruett-Miller, S. (2019). Cris. Py: A versatile and high-throughput analysis program for CRISPR-based genome editing. Sci. Rep., 9: 4194
CrossRef
Google scholar
|
[60] |
Meyers, R. M., Bryan, J. G., McFarland, J. M., Weir, B. A., Sizemore, A. E., Xu, H., Dharia, N. V., Montgomery, P. G., Cowley, G. S., Pantel, S.
CrossRef
Google scholar
|
[61] |
Jeong, H. Kim, S. Y., Rousseaux, M. W. C., Zoghbi, H. Y. (2019). Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives. Genome Res., 29: 999–1008
CrossRef
Google scholar
|
[62] |
WinterJ.,SchweringM.,PelzO.,RauscherB.,ZhanT.,HeigwerF.. (2017) Crispranalyzer: Interactive analysis, annotation and documentation of pooled CRISPR screens. bioRxiv. 109967
|
[63] |
Spahn, P. N., Bath, T., Weiss, R. J., Kim, J., Esko, J. D., Lewis, N. E. (2017). PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens. Sci. Rep., 7: 15854
CrossRef
Google scholar
|
[64] |
Clark, S. J., Argelaguet, R., Kapourani, C. Stubbs, T. M., Lee, H. J., Alda-Catalinas, C., Krueger, F., Sanguinetti, G., Kelsey, G., Marioni, J. C.
CrossRef
Google scholar
|
[65] |
Cui, Y., Cheng, X., Chen, Q., Song, B., Chiu, A., Gao, Y., Dawson, T., Chao, L., Zhang, W., Li, D.
CrossRef
Google scholar
|
[66] |
Jang, K., Park, M. J., Park, J. S., Hwangbo, H., Sung, M. K., Kim, S., Jung, J., Lee, J. W., Ahn, S. Chang, S.
CrossRef
Google scholar
|
/
〈 | 〉 |