Bioinformatics approaches to analyzing CRISPR screen data: from dropout screens to single-cell CRISPR screens

Yueshan Zhao , Min Zhang , Da Yang

Quant. Biol. ›› 2022, Vol. 10 ›› Issue (4) : 307 -320.

PDF (2483KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (4) : 307 -320. DOI: 10.15302/J-QB-022-0299
REVIEW
REVIEW

Bioinformatics approaches to analyzing CRISPR screen data: from dropout screens to single-cell CRISPR screens

Author information +
History +
PDF (2483KB)

Abstract

Background: Pooled CRISPR screen is a promising tool in drug targets or essential genes identification with the utilization of three different systems including CRISPR knockout (CRISPRko), CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa). Aside from continuous improvements in technology, more and more bioinformatics methods have been developed to analyze the data obtained by CRISPR screens which facilitate better understanding of physiological effects.

Results: Here, we provide an overview on the application of CRISPR screens and bioinformatics approaches to analyzing different types of CRISPR screen data. We also discuss mechanisms and underlying challenges for the analysis of dropout screens, sorting-based screens and single-cell screens.

Conclusion: Different analysis approaches should be chosen based on the design of screens. This review will help community to better design novel algorithms and provide suggestions for wet-lab researchers to choose from different analysis methods.

Graphical abstract

Keywords

CRISPR/Cas9 / dropout screen / sorting-based screen / single-cell CRISPR screen / drug-gene interaction

Cite this article

Download citation ▾
Yueshan Zhao, Min Zhang, Da Yang. Bioinformatics approaches to analyzing CRISPR screen data: from dropout screens to single-cell CRISPR screens. Quant. Biol., 2022, 10(4): 307-320 DOI:10.15302/J-QB-022-0299

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. Church, G. (2013). RNA-guided human genome engineering via Cas9. Science, 339: 823–826

[2]

Sander, J. D. Joung, J. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32: 347–355

[3]

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. Lim, W. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152: 1173–1183

[4]

Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A. . (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154: 442–451

[5]

Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H. . (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517: 583–588

[6]

Klann, T. S., Black, J. B., Chellappan, M., Safi, A., Song, L., Hilton, I. B., Crawford, G. E., Reddy, T. E. Gersbach, C. (2017). CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol., 35: 561–568

[7]

Joung, J., Engreitz, J. M., Konermann, S., Abudayyeh, O. O., Verdine, V. K., Aguet, F., Gootenberg, J. S., Sanjana, N. E., Wright, J. B., Fulco, C. P. . (2017). Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature, 548: 343–346

[8]

Bodapati, S., Daley, T. P., Lin, X., Zou, J. Qi, L. (2020). A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol., 21: 62

[9]

Shalem, O., Sanjana, N. E., Hartenian, E., Shi, X., Scott, D. A., Mikkelson, T., Heckl, D., Ebert, B. L., Root, D. E., Doench, J. G. . (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 343: 84–87

[10]

Gurusamy, D., Henning, A. N., Yamamoto, T. N., Yu, Z., Zacharakis, N., Krishna, S., Kishton, R. J., Vodnala, S. K., Eidizadeh, A., Jia, L. . (2020). Multi-phenotype CRISPR-Cas9 screen identifies p38 kinase as a target for adoptive immunotherapies. Cancer Cell, 37: 818–833.e9

[11]

Zhang, H., Zhang, Y., Zhou, X., Wright, S., Hyle, J., Zhao, L., An, J., Zhao, X., Shao, Y., Xu, B. . (2020). Functional interrogation of HOXA9 regulome in MLLr leukemia via reporter-based CRISPR/Cas9 screen. eLife, 9: e57858

[12]

Parnas, O., Jovanovic, M., Eisenhaure, T. M., Herbst, R. H., Dixit, A., Ye, C. J., Przybylski, D., Platt, R. J., Tirosh, I., Sanjana, N. E. . (2015). A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell, 162: 675–686

[13]

Adamson, B., Norman, T. M., Jost, M., Cho, M. Y., ez, J. K., Chen, Y., Villalta, J. E., Gilbert, L. A., Horlbeck, M. A., Hein, M. Y. . (2016). A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 167, 1867–1882.e1821

[14]

Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C. P., Jerby-Arnon, L., Marjanovic, N. D., Dionne, D., Burks, T., Raychowdhury, R. . (2016). Perturb-seq: Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell. 167, 1853–1866.e1817

[15]

Jaitin, D. A., Weiner, A., Yofe, I., Lara-Astiaso, D., Keren-Shaul, H., David, E., Salame, T. M., Tanay, A., van Oudenaarden, A. (2016). Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell. 167, 1883–1896.e1815

[16]

Datlinger, P., Rendeiro, A. F., Schmidl, C., Krausgruber, T., Traxler, P., Klughammer, J., Schuster, L. C., Kuchler, A., Alpar, D. (2017). Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods, 14: 297–301

[17]

Li, W., Xu, H., Xiao, T., Cong, L., Love, M. I., Zhang, F., Irizarry, R. A., Liu, J. S., Brown, M. Liu, X. (2014). MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol., 15: 554

[18]

Anders, S. (2010). Differential expression analysis for sequence count data. Genome Biol., 11: R106

[19]

Robinson, M. D., McCarthy, D. J. Smyth, G. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26: 139–140

[20]

Kolde, R., Laur, S., Adler, P. (2012). Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 28: 573–580

[21]

Li, W., ster, J., Xu, H., Chen, C. H., Xiao, T., Liu, J. S., Brown, M. Liu, X. (2015). Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol., 16: 281

[22]

Wang, B., Wang, M., Zhang, W., Xiao, T., Chen, C. H., Wu, A., Wu, F., Traugh, N., Wang, X., Li, Z. . (2019). Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc., 14: 756–780

[23]

Eden, E., Navon, R., Steinfeld, I., Lipson, D. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 10: 48

[24]

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T. . (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res., 38: W214–W220

[25]

Yu, J., Silva, J. (2016). ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics, 32: 260–267

[26]

Hart, T. (2016). BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics, 17: 164

[27]

Kim, E. (2021). Improved analysis of CRISPR fitness screens and reduced off-target effects with the BAGEL2 gene essentiality classifier. Genome Med., 13: 2

[28]

Hanna, R. E. Doench, J. (2020). Design and analysis of CRISPR-Cas experiments. Nat. Biotechnol., 38: 813–823

[29]

Jia, G., Wang, X. (2017). A permutation-based non-parametric analysis of CRISPR screen data. BMC Genomics, 18: 545

[30]

Daley, T. P., Lin, Z., Lin, X., Liu, Y., Wong, W. H. Qi, L. (2018). CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome Biol., 19: 159

[31]

Horlbeck, M. A., Witkowsky, L. B., Guglielmi, B., Replogle, J. M., Gilbert, L. A., Villalta, J. E., Torigoe, S. E., Tjian, R. Weissman, J. (2016). Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife, 5: e12677

[32]

Pombo, A. (2015). Three-dimensional genome architecture: players and mechanisms. Nat. Rev. Mol. Cell Biol., 16: 245–257

[33]

Imkeller, K., Ambrosi, G., Boutros, M. (2020). gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol., 21: 53

[34]

Allen, F., Behan, F., Khodak, A., Iorio, F., Yusa, K., Garnett, M. (2019). JACKS: joint analysis of CRISPR/Cas9 knockout screens. Genome Res., 29: 464–471

[35]

de Boer, C. G., Ray, J. P., Hacohen, N. (2020). MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biol., 21: 134

[36]

Moffat, J. Sabatini, D. (2006). Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol., 7: 177–187

[37]

Schramek, D., Sendoel, A., Segal, J. P., Beronja, S., Heller, E., Oristian, D., Reva, B. (2014). Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science, 343: 309–313

[38]

Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G. Linsley, P. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 21: 635–637

[39]

Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. Williams, B. R. (2003). Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol., 5: 834–839

[40]

Smith, I., Greenside, P. G., Natoli, T., Lahr, D. L., Wadden, D., Tirosh, I., Narayan, R., Root, D. E., Golub, T. R., Subramanian, A. . (2017). Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the connectivity map. PLoS Biol., 15: e2003213

[41]

Ihry, R. J., Salick, M. R., Ho, D. J., Sondey, M., Kommineni, S., Paula, S., Raymond, J., Henry, B., Frias, E., Wang, Q. . (2019). Genome-scale CRISPR screens identify human pluripotency-specific genes. Cell Rep., 27: 616–630.e6

[42]

Luo, B., Cheung, H. W., Subramanian, A., Sharifnia, T., Okamoto, M., Yang, X., Hinkle, G., Boehm, J. S., Beroukhim, R., Weir, B. A. . (2008). Highly parallel identification of essential genes in cancer cells. Proc. Natl. Acad. Sci. USA., 105: 20380–20385

[43]

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. . (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102: 15545–15550

[44]

Jin, X., Simmons, S. K., Guo, A., Shetty, A. S., Ko, M., Nguyen, L., Jokhi, V., Robinson, E., Oyler, P., Curry, N. . (2020). In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science, 370: eaaz6063

[45]

Hill, A. J., McFaline-Figueroa, J. L., Starita, L. M., Gasperini, M. J., Matreyek, K. A., Packer, J., Jackson, D., Shendure, J. (2018). On the design of CRISPR-based single-cell molecular screens. Nat. Methods, 15: 271–274

[46]

Norman, T. M., Horlbeck, M. A., Replogle, J. M., Ge, A. Y., Xu, A., Jost, M., Gilbert, L. A. Weissman, J. (2019). Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science, 365: 786–793

[47]

Xie, S., Cooley, A., Armendariz, D., Zhou, P. Hon, G. (2018). Frequent sgRNA-barcode recombination in single-cell perturbation assays. PLoS One, 13: e0198635–e0198635

[48]

Yang, L., Zhu, Y., Yu, H., Cheng, X., Chen, S., Chu, Y., Huang, H., Zhang, J. (2020). scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol., 21: 19

[49]

Duan, B., Zhou, C., Zhu, C., Yu, Y., Li, G., Zhang, S., Zhang, C., Ye, X., Ma, H., Qu, S. . (2019). Model-based understanding of single-cell CRISPR screening. Nat. Commun., 10: 2233

[50]

BleiD. M.LaffertyJ.. (2007) A correlated topic model of science. Ann. Appl. Stat., 1, 17−35

[51]

Papalexi, E., Mimitou, E. P., Butler, A. W., Foster, S., Bracken, B., Mauck, W. M. Wessels, H. Hao, Y., Yeung, B. Z., Smibert, P. . (2021). Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet., 53: 322–331

[52]

Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P. K., Swerdlow, H., Satija, R. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods, 14: 865–868

[53]

KatsevichE.. and Roeder, K. (2020) Conditional resampling improves calibration in single cell CRISPR screen analysis. bioRxiv. 2020.2008.2013.250092

[54]

Xu, H., Xiao, T., Chen, C. H., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S. . (2015). Sequence determinants of improved CRISPR sgRNA design. Genome Res., 25: 1147–1157

[55]

Colic, M., Wang, G., Zimmermann, M., Mascall, K., McLaughlin, M., Bertolet, L., Lenoir, W. F., Moffat, J., Angers, S., Durocher, D. . (2019). Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med., 11: 52

[56]

Dong, M. B., Wang, G., Chow, R. D., Ye, L., Zhu, L., Dai, X., Park, J. J., Kim, H. R., Errami, Y., Guzman, C. D. . (2019). Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell, 178: 1189–1204.e23

[57]

Freeman, J. L., Perry, G. H., Feuk, L., Redon, R., McCarroll, S. A., Altshuler, D. M., Aburatani, H., Jones, K. W., Tyler-Smith, C., Hurles, M. E. . (2006). Copy number variation: new insights in genome diversity. Genome Res., 16: 949–961

[58]

Xu, Y., Wu, T., Li, F., Dong, Q., Wang, J., Shang, D., Xu, Y., Zhang, C., Dou, Y., Hu, C. . (2020). Identification and comprehensive characterization of lncRNAs with copy number variations and their driving transcriptional perturbed subpathways reveal functional significance for cancer. Brief. Bioinform., 21: 2153–2166

[59]

Connelly, J. P. Pruett-Miller, S. (2019). Cris. Py: A versatile and high-throughput analysis program for CRISPR-based genome editing. Sci. Rep., 9: 4194

[60]

Meyers, R. M., Bryan, J. G., McFarland, J. M., Weir, B. A., Sizemore, A. E., Xu, H., Dharia, N. V., Montgomery, P. G., Cowley, G. S., Pantel, S. . (2017). Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet., 49: 1779–1784

[61]

Jeong, H. Kim, S. Y., Rousseaux, M. W. C., Zoghbi, H. Y. (2019). Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives. Genome Res., 29: 999–1008

[62]

WinterJ.,SchweringM.,PelzO.,RauscherB.,ZhanT.,HeigwerF.. (2017) Crispranalyzer: Interactive analysis, annotation and documentation of pooled CRISPR screens. bioRxiv. 109967

[63]

Spahn, P. N., Bath, T., Weiss, R. J., Kim, J., Esko, J. D., Lewis, N. E. (2017). PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens. Sci. Rep., 7: 15854

[64]

Clark, S. J., Argelaguet, R., Kapourani, C. Stubbs, T. M., Lee, H. J., Alda-Catalinas, C., Krueger, F., Sanguinetti, G., Kelsey, G., Marioni, J. C. . (2018). scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun., 9: 781

[65]

Cui, Y., Cheng, X., Chen, Q., Song, B., Chiu, A., Gao, Y., Dawson, T., Chao, L., Zhang, W., Li, D. . (2021). CRISP-view: A database of functional genetic screens spanning multiple phenotypes. Nucleic Acids Res., 49: D848–D854

[66]

Jang, K., Park, M. J., Park, J. S., Hwangbo, H., Sung, M. K., Kim, S., Jung, J., Lee, J. W., Ahn, S. Chang, S. . (2020). Computational inference of cancer-specific vulnerabilities in clinical samples. Genome Biol., 21: 155

RIGHTS & PERMISSIONS

The Author (s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (2483KB)

3426

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/