Distal nucleotides affect the rate of stop codon read-through

Luciana I. Escobar , Andres M. Alonso , Jorge R. Ronderos , Luis Diambra

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (1) : 44 -58.

PDF (5942KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (1) : 44 -58. DOI: 10.15302/J-QB-022-0298
RESEARCH ARTICLE
RESEARCH ARTICLE

Distal nucleotides affect the rate of stop codon read-through

Author information +
History +
PDF (5942KB)

Abstract

Background: A key step in gene expression is the recognition of the stop codon to terminate translation at the correct position. However, it has been observed that ribosomes can misinterpret the stop codon and continue the translation in the 3′UTR region. This phenomenon is called stop codon read-through (SCR). It has been suggested that these events would occur on a programmed basis, but the underlying mechanisms are still not well understood.

Methods: Here, we present a strategy for the comprehensive identification of SCR events in the Drosophila melanogaster transcriptome by evaluating the ribosomal density profiles. The associated ribosomal leak rate was estimated for every event identified. A statistical characterization of the frequency of nucleotide use in the proximal region to the stop codon in the sequences associated to SCR events was performed.

Results: The results show that the nucleotide usage pattern in transcripts with the UGA codon is different from the pattern for those transcripts ending in the UAA codon, suggesting the existence of at least two mechanisms that could alter the translational termination process. Furthermore, a linear regression models for each of the three stop codons was developed, and we show that the models using the nucleotides at informative positions outperforms those models that consider the entire sequence context to the stop codon.

Conclusions: We report that distal nucleotides can affect the SCR rate in a stop-codon dependent manner.

Graphical abstract

Keywords

translational readthrough / stop codons / translational termination / ribosomal density profiles / nucleotide usage frequency

Cite this article

Download citation ▾
Luciana I. Escobar, Andres M. Alonso, Jorge R. Ronderos, Luis Diambra. Distal nucleotides affect the rate of stop codon read-through. Quant. Biol., 2023, 11(1): 44-58 DOI:10.15302/J-QB-022-0298

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown, A., Shao, S., Murray, J., Hegde, R. S. (2015). Structural basis for stop codon recognition in eukaryotes. Nature, 524: 493–496

[2]

Ryoji, M., Hsia, K. (1983). Read-through translation. Trends Biochem. Sci., 8: 88–90

[3]

Robinson, D. N. (1997). Examination of the function of two kelch proteins generated by stop codon suppression. Development, 124: 1405–1417

[4]

Jungreis, I., Lin, M. F., Spokony, R., Chan, C. S., Negre, N., Victorsen, A., White, K. P. (2011). Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res., 21: 2096–2113

[5]

Freitag, J., Ast, J. (2012). Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature, 485: 522–525

[6]

Loughran, G., Jungreis, I., Tzani, I., Power, M., Dmitriev, R. I., Ivanov, I. P., Kellis, M. Atkins, J. (2018). Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J. Biol. Chem., 293: 4434–4444

[7]

von der Haar, T. Tuite, M. (2007). Regulated translational bypass of stop codons in yeast. Trends Microbiol., 15: 78–86

[8]

Loughran, G., Chou, M. Y., Ivanov, I. P., Jungreis, I., Kellis, M., Kiran, A. M., Baranov, P. V. Atkins, J. (2014). Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res., 42: 8928–8938

[9]

Eswarappa, S. Potdar, A. Koch, W. Fan, Y., Vasu, K., Lindner, D., Willard, B., Graham, L. DiCorleto, P. Fox, P. (2014). Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell, 157: 1605–1618

[10]

Schueren, F. (2016). Functional translational readthrough: A systems biology perspective. PLoS Genet., 12: e1006196

[11]

Weiss, R. B., Dunn, D. M., Atkins, J. F. Gesteland, R. (1990). Ribosomal frameshifting from ‒2 to +50 nucleotides. Prog. Nucleic Acid Res. Mol. Biol., 39: 159–183

[12]

Wills, N. M., Connor, M., Nelson, C. C., Rettberg, C. C., Huang, W. M., Gesteland, R. F. Atkins, J. (2008). Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO J., 27: 2533–2544

[13]

Beier, H. (2001). Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res., 29: 4767–4782

[14]

Firth, A. E. (2012). Non-canonical translation in RNA viruses. J. Gen. Virol., 93: 1385–1409

[15]

Steneberg, P. (2001). A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea. EMBO Rep., 2: 593–597

[16]

Harrell, L., Melcher, U. Atkins, J. (2002). Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res., 30: 2011–2017

[17]

Dabrowski, M., Bukowy-Bieryllo, Z. (2015). Translational readthrough potential of natural termination codons in eucaryotes―The impact of RNA sequence. RNA Biol., 12: 950–958

[18]

Cridge, A. G., Crowe-McAuliffe, C., Mathew, S. F. Tate, W. (2018). Eukaryotic translational termination efficiency is influenced by the 3′ nucleotides within the ribosomal mRNA channel. Nucleic Acids Res., 46: 1927–1944

[19]

Dabrowski, M., Bukowy-Bieryllo, Z. (2018). Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol. Med., 24: 25

[20]

Howard, M. T., Shirts, B. H., Petros, L. M., Flanigan, K. M., Gesteland, R. F. Atkins, J. (2000). Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann. Neurol., 48: 164–169

[21]

Bidou, L., Allamand, V., Rousset, J. (2012). Sense from nonsense: therapies for premature stop codon diseases. Trends Mol. Med., 18: 679–688

[22]

Floquet, C., Hatin, I., Rousset, J. (2012). Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet., 8: e1002608

[23]

Keeling, K. M., Xue, X., Gunn, G. Bedwell, D. (2014). Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet., 15: 371–394

[24]

Weiner, A. M. (1971). Natural read-through at the UGA termination signal of Q-beta coat protein cistron. Nat. New Biol., 234: 206–209

[25]

Pelham, H. (1978). Leaky UAG termination codon in tobacco mosaic virus RNA. Nature, 272: 469–471

[26]

Brown, C. M., Dinesh-Kumar, S. P. Miller, W. (1996). Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J. Virol., 70: 5884–5892

[27]

Namy, O., Duchateau-Nguyen, G. Rousset, J. (2002). Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol. Microbiol., 43: 641–652

[28]

Chittum, H. S., Lane, W. S., Carlson, B. A., Roller, P. P., Lung, F. D., Lee, B. J. Hatfield, D. (1998). Rabbit beta-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps. Biochemistry, 37: 10866–10870

[29]

Klagges, B. R., Heimbeck, G., Godenschwege, T. A., Hofbauer, A., Pflugfelder, G. O., Reifegerste, R., Reisch, D., Schaupp, M., Buchner, S. (1996). Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J. Neurosci., 16: 3154–3165

[30]

Lin, M. F., Jungreis, I. (2011). PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 27: i275–i282

[31]

Jungreis, I., Chan, C. S., Waterhouse, R. M., Fields, G., Lin, M. F. (2016). Evolutionary dynamics of abundant stop codon readthrough. Mol. Biol. Evol., 33: 3108–3132

[32]

Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. Weissman, J. (2013). Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife, 2: e01179

[33]

Schueren, F., Lingner, T., George, R., Hofhuis, J., Dickel, C., rtner, J. (2014). Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife, 3: e03640

[34]

Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. Weissman, J. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324: 218–223

[35]

Stiebler, A. C., Freitag, J., Schink, K. O., Stehlik, T., Tillmann, B. A., Ast, J. (2014). Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet., 10: e1004685

[36]

Gramates, L. S., Marygold, S. J., Santos, G. D., Urbano, J. M., Antonazzo, G., Matthews, B. B., Rey, A. J., Tabone, C. J., Crosby, M. A., Emmert, D. B. . (2017). FlyBase at 25: looking to the future. Nucleic Acids Res., 45: D663–D671

[37]

Singh, A., Manjunath, L. E., Kundu, P., Sahoo, S., Das, A., Suma, H. R., Fox, P. L. Eswarappa, S. (2019). Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor. EMBO J., 38: e100727

[38]

Diambra, L. (2017). Differential bicodon usage in lowly and highly abundant proteins. PeerJ, 5: e3081

[39]

Dana, A. (2012). Determinants of translation elongation speed and ribosomal profiling biases in mouse embryonic stem cells. PLOS Comput. Biol., 8: e1002755

[40]

McCarthy, C., Carrea, A. (2017). Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics, 18: 227

[41]

Sharma, A. K., Sormanni, P., Ahmed, N., Ciryam, P., Friedrich, U. A., Kramer, G. Brien, E. (2019). A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLOS Comput. Biol., 15: e1007070

[42]

Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T., Dahan, O., Furman, I. (2010). An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell, 141: 344–354

[43]

Firth, A. E., Wills, N. M., Gesteland, R. F. Atkins, J. (2011). Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic Acids Research, 39: 6679–6691

[44]

Blanchet, S., Cornu, D., Argentini, M. (2014). New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res., 42: 10061–10072

[45]

Martin, M. (2011). Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet. J., 17: 10

[46]

Langmead, B. Salzberg, S. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357–359

[47]

Trapnell, C., Pachter, L. Salzberg, S. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25: 1105–1111

[48]

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25: 2078–2079

[49]

MacKayD. J.Mac KayD.. (2003) Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press

RIGHTS & PERMISSIONS

The Author (s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (5942KB)

Supplementary files

Supplementary materials

Table_S1

Table_S2

2242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/