Distal nucleotides affect the rate of stop codon read-through
Luciana I. Escobar, Andres M. Alonso, Jorge R. Ronderos, Luis Diambra
Distal nucleotides affect the rate of stop codon read-through
Background: A key step in gene expression is the recognition of the stop codon to terminate translation at the correct position. However, it has been observed that ribosomes can misinterpret the stop codon and continue the translation in the 3′UTR region. This phenomenon is called stop codon read-through (SCR). It has been suggested that these events would occur on a programmed basis, but the underlying mechanisms are still not well understood.
Methods: Here, we present a strategy for the comprehensive identification of SCR events in the Drosophila melanogaster transcriptome by evaluating the ribosomal density profiles. The associated ribosomal leak rate was estimated for every event identified. A statistical characterization of the frequency of nucleotide use in the proximal region to the stop codon in the sequences associated to SCR events was performed.
Results: The results show that the nucleotide usage pattern in transcripts with the UGA codon is different from the pattern for those transcripts ending in the UAA codon, suggesting the existence of at least two mechanisms that could alter the translational termination process. Furthermore, a linear regression models for each of the three stop codons was developed, and we show that the models using the nucleotides at informative positions outperforms those models that consider the entire sequence context to the stop codon.
Conclusions: We report that distal nucleotides can affect the SCR rate in a stop-codon dependent manner.
Sometimes ribosomes can misinterpret the stop codon and continue the translation to produce an extended protein. These events can occur by chance, as well as, by a programmed mechanism. However, the basis of this mechanism is still not known. In this paper, we report that the codon usage bias, at the end of the transcripts with UAA stop-codon, are a key determinant of the stop codon read-through. The non-optimal codon usage suggests that the canonical interpretation of the UAA codons might require ribosomal pause at the end of the coding region of the transcript.
translational readthrough / stop codons / translational termination / ribosomal density profiles / nucleotide usage frequency
[1] |
Brown, A., Shao, S., Murray, J., Hegde, R. S. (2015). Structural basis for stop codon recognition in eukaryotes. Nature, 524: 493–496
CrossRef
Google scholar
|
[2] |
Ryoji, M., Hsia, K. (1983). Read-through translation. Trends Biochem. Sci., 8: 88–90
CrossRef
Google scholar
|
[3] |
Robinson, D. N. (1997). Examination of the function of two kelch proteins generated by stop codon suppression. Development, 124: 1405–1417
CrossRef
Google scholar
|
[4] |
Jungreis, I., Lin, M. F., Spokony, R., Chan, C. S., Negre, N., Victorsen, A., White, K. P. (2011). Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res., 21: 2096–2113
CrossRef
Google scholar
|
[5] |
Freitag, J., Ast, J. (2012). Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature, 485: 522–525
CrossRef
Google scholar
|
[6] |
Loughran, G., Jungreis, I., Tzani, I., Power, M., Dmitriev, R. I., Ivanov, I. P., Kellis, M. Atkins, J. (2018). Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J. Biol. Chem., 293: 4434–4444
CrossRef
Google scholar
|
[7] |
von der Haar, T. Tuite, M. (2007). Regulated translational bypass of stop codons in yeast. Trends Microbiol., 15: 78–86
CrossRef
Google scholar
|
[8] |
Loughran, G., Chou, M. Y., Ivanov, I. P., Jungreis, I., Kellis, M., Kiran, A. M., Baranov, P. V. Atkins, J. (2014). Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res., 42: 8928–8938
CrossRef
Google scholar
|
[9] |
Eswarappa, S. Potdar, A. Koch, W. Fan, Y., Vasu, K., Lindner, D., Willard, B., Graham, L. DiCorleto, P. Fox, P. (2014). Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell, 157: 1605–1618
CrossRef
Google scholar
|
[10] |
Schueren, F. (2016). Functional translational readthrough: A systems biology perspective. PLoS Genet., 12: e1006196
CrossRef
Google scholar
|
[11] |
Weiss, R. B., Dunn, D. M., Atkins, J. F. Gesteland, R. (1990). Ribosomal frameshifting from ‒2 to +50 nucleotides. Prog. Nucleic Acid Res. Mol. Biol., 39: 159–183
CrossRef
Google scholar
|
[12] |
Wills, N. M., Connor, M., Nelson, C. C., Rettberg, C. C., Huang, W. M., Gesteland, R. F. Atkins, J. (2008). Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO J., 27: 2533–2544
CrossRef
Google scholar
|
[13] |
Beier, H. (2001). Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res., 29: 4767–4782
CrossRef
Google scholar
|
[14] |
Firth, A. E. (2012). Non-canonical translation in RNA viruses. J. Gen. Virol., 93: 1385–1409
CrossRef
Google scholar
|
[15] |
Steneberg, P. (2001). A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea. EMBO Rep., 2: 593–597
CrossRef
Google scholar
|
[16] |
Harrell, L., Melcher, U. Atkins, J. (2002). Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res., 30: 2011–2017
CrossRef
Google scholar
|
[17] |
Dabrowski, M., Bukowy-Bieryllo, Z. (2015). Translational readthrough potential of natural termination codons in eucaryotes―The impact of RNA sequence. RNA Biol., 12: 950–958
CrossRef
Google scholar
|
[18] |
Cridge, A. G., Crowe-McAuliffe, C., Mathew, S. F. Tate, W. (2018). Eukaryotic translational termination efficiency is influenced by the 3′ nucleotides within the ribosomal mRNA channel. Nucleic Acids Res., 46: 1927–1944
CrossRef
Google scholar
|
[19] |
Dabrowski, M., Bukowy-Bieryllo, Z. (2018). Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol. Med., 24: 25
CrossRef
Google scholar
|
[20] |
Howard, M. T., Shirts, B. H., Petros, L. M., Flanigan, K. M., Gesteland, R. F. Atkins, J. (2000). Sequence specificity of aminoglycoside-induced stop condon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann. Neurol., 48: 164–169
CrossRef
Google scholar
|
[21] |
Bidou, L., Allamand, V., Rousset, J. (2012). Sense from nonsense: therapies for premature stop codon diseases. Trends Mol. Med., 18: 679–688
CrossRef
Google scholar
|
[22] |
Floquet, C., Hatin, I., Rousset, J. (2012). Statistical analysis of readthrough levels for nonsense mutations in mammalian cells reveals a major determinant of response to gentamicin. PLoS Genet., 8: e1002608
CrossRef
Google scholar
|
[23] |
Keeling, K. M., Xue, X., Gunn, G. Bedwell, D. (2014). Therapeutics based on stop codon readthrough. Annu. Rev. Genomics Hum. Genet., 15: 371–394
CrossRef
Google scholar
|
[24] |
Weiner, A. M. (1971). Natural read-through at the UGA termination signal of Q-beta coat protein cistron. Nat. New Biol., 234: 206–209
CrossRef
Google scholar
|
[25] |
Pelham, H. (1978). Leaky UAG termination codon in tobacco mosaic virus RNA. Nature, 272: 469–471
CrossRef
Google scholar
|
[26] |
Brown, C. M., Dinesh-Kumar, S. P. Miller, W. (1996). Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J. Virol., 70: 5884–5892
CrossRef
Google scholar
|
[27] |
Namy, O., Duchateau-Nguyen, G. Rousset, J. (2002). Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol. Microbiol., 43: 641–652
CrossRef
Google scholar
|
[28] |
Chittum, H. S., Lane, W. S., Carlson, B. A., Roller, P. P., Lung, F. D., Lee, B. J. Hatfield, D. (1998). Rabbit beta-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps. Biochemistry, 37: 10866–10870
CrossRef
Google scholar
|
[29] |
Klagges, B. R., Heimbeck, G., Godenschwege, T. A., Hofbauer, A., Pflugfelder, G. O., Reifegerste, R., Reisch, D., Schaupp, M., Buchner, S. (1996). Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J. Neurosci., 16: 3154–3165
CrossRef
Google scholar
|
[30] |
Lin, M. F., Jungreis, I. (2011). PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 27: i275–i282
CrossRef
Google scholar
|
[31] |
Jungreis, I., Chan, C. S., Waterhouse, R. M., Fields, G., Lin, M. F. (2016). Evolutionary dynamics of abundant stop codon readthrough. Mol. Biol. Evol., 33: 3108–3132
CrossRef
Google scholar
|
[32] |
Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. Weissman, J. (2013). Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife, 2: e01179
CrossRef
Google scholar
|
[33] |
Schueren, F., Lingner, T., George, R., Hofhuis, J., Dickel, C., rtner, J. (2014). Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife, 3: e03640
CrossRef
Google scholar
|
[34] |
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. Weissman, J. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324: 218–223
CrossRef
Google scholar
|
[35] |
Stiebler, A. C., Freitag, J., Schink, K. O., Stehlik, T., Tillmann, B. A., Ast, J. (2014). Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet., 10: e1004685
CrossRef
Google scholar
|
[36] |
Gramates, L. S., Marygold, S. J., Santos, G. D., Urbano, J. M., Antonazzo, G., Matthews, B. B., Rey, A. J., Tabone, C. J., Crosby, M. A., Emmert, D. B.
CrossRef
Google scholar
|
[37] |
Singh, A., Manjunath, L. E., Kundu, P., Sahoo, S., Das, A., Suma, H. R., Fox, P. L. Eswarappa, S. (2019). Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor. EMBO J., 38: e100727
CrossRef
Google scholar
|
[38] |
Diambra, L. (2017). Differential bicodon usage in lowly and highly abundant proteins. PeerJ, 5: e3081
CrossRef
Google scholar
|
[39] |
Dana, A. (2012). Determinants of translation elongation speed and ribosomal profiling biases in mouse embryonic stem cells. PLOS Comput. Biol., 8: e1002755
CrossRef
Google scholar
|
[40] |
McCarthy, C., Carrea, A. (2017). Bicodon bias can determine the role of synonymous SNPs in human diseases. BMC Genomics, 18: 227
CrossRef
Google scholar
|
[41] |
Sharma, A. K., Sormanni, P., Ahmed, N., Ciryam, P., Friedrich, U. A., Kramer, G. Brien, E. (2019). A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLOS Comput. Biol., 15: e1007070
CrossRef
Google scholar
|
[42] |
Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T., Dahan, O., Furman, I. (2010). An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell, 141: 344–354
CrossRef
Google scholar
|
[43] |
Firth, A. E., Wills, N. M., Gesteland, R. F. Atkins, J. (2011). Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic Acids Research, 39: 6679–6691
CrossRef
Google scholar
|
[44] |
Blanchet, S., Cornu, D., Argentini, M. (2014). New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res., 42: 10061–10072
CrossRef
Google scholar
|
[45] |
Martin, M. (2011). Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet. J., 17: 10
CrossRef
Google scholar
|
[46] |
Langmead, B. Salzberg, S. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357–359
CrossRef
Google scholar
|
[47] |
Trapnell, C., Pachter, L. Salzberg, S. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25: 1105–1111
CrossRef
Google scholar
|
[48] |
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25: 2078–2079
CrossRef
Google scholar
|
[49] |
MacKayD. J.Mac KayD.. (2003) Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press
|
/
〈 | 〉 |