Structural and dynamic properties of the YTH domain in complex with N6-methyladenosine RNA studied by accelerated molecular dynamics simulations

Mingwei Li , Guanglin Chen , Zhiyong Zhang

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (1) : 72 -81.

PDF (3849KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (1) : 72 -81. DOI: 10.15302/J-QB-022-0297
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural and dynamic properties of the YTH domain in complex with N6-methyladenosine RNA studied by accelerated molecular dynamics simulations

Author information +
History +
PDF (3849KB)

Abstract

Background: N6-methyl adenosine (m6A) modifications of mRNA and long non-coding RNA (lncRNAs) are known to play a significant role in regulation of gene expression and organismal development. Besides writer and eraser proteins of this dynamic modification, the YT521-B homology (YTH) domain can recognize the modification involved in numerous cellular processes. The function of proteins containing YTH domain and its binding mode with N6-Methyladenosine RNA has attracted considerable attention. However, the structural and dynamic characteristics of the YTH domain in complex with m6A RNA is still unknown.

Method: This work presents results of accelerated molecular dynamics (aMD) simulations at the timescale of microseconds. Principal component analysis (PCA), molecular mechanics generalized Born surface area (MM/GBSA) calculations, contact analysis and contact-based principal component analysis (conPCA) provide new insights into structure and dynamics of the YTH-RNA complex.

Results: The aMD simulations indicate that the recognition loop has a larger movement away from the binding pocket in the YTH-A3 RNA than that in the YTH-m6A3 RNA. In aMD trajectories of the apo YTH, there is a significant close-open transition of the recognition loop, that is to say, the apo YTH can take both the closed and open structure. We have found that the YTH domain binds more favorably to the methylated RNA than the non-methylated RNA. The per-residue free energy decomposition and conPCA suggest that hydrophobic residues including W380, L383-V385, W431-P434, M437, and M441-L442, may play important roles in favorable binding of the m6A RNA to the YTH domain, which is also supported by aMD simulations of a double mutated system (L383A/M437A).

Conclusion: The results are in good agreement with higher structural stability of the YTH-m6A RNA than that of the YTH-A3 RNA. The addition of a methylation group on A3 can enhance its binding to the hydrophobic pocket in the YTH domain. Our simulations support a ‘conformational selection’ mechanism between the YTH-RNA binding. This work may aid in our understanding of the structural and dynamic characteristics of the YTH protein in complex with the methylated RNA.

Graphical abstract

Keywords

RNA methylation / YTH-m 6A3 RNA / principal component analysis (PCA) / binding free energy / contact-based PCA

Cite this article

Download citation ▾
Mingwei Li, Guanglin Chen, Zhiyong Zhang. Structural and dynamic properties of the YTH domain in complex with N6-methyladenosine RNA studied by accelerated molecular dynamics simulations. Quant. Biol., 2023, 11(1): 72-81 DOI:10.15302/J-QB-022-0297

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Meyer, K. D. Jaffrey, S. (2014). The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol., 15: 313–326

[2]

Fu, Y., Dominissini, D., Rechavi, G. (2014). Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet., 15: 293–306

[3]

Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. Jaffrey, S. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 149: 1635–1646

[4]

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M. . (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485: 201–206

[5]

Liu, N., Zhou, K. I., Parisien, M., Dai, Q., Diatchenko, L. (2017). N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res., 45: 6051–6063

[6]

Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G. . (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 505: 117–120

[7]

Chandola, U., Das, R. (2015). Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief. Funct. Genomics, 14: 169–179

[8]

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X. . (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 10: 93–95

[9]

Lee, M., Kim, B. Kim, V. (2014). Emerging roles of RNA modification: m6A and U-tail. Cell, 158: 980–987

[10]

Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y. G. . (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol., 7: 885–887

[11]

Aik, W., Scotti, J. S., Choi, H., Gong, L., Demetriades, M., Schofield, C. J. McDonough, M. (2014). Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res., 42: 4741–4754

[12]

Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell, 161: 1388–1399

[13]

Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S. R. Qian, S. (2015). Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature, 526: 591–594

[14]

Zhang, Z., Theler, D., Kaminska, K. H., Hiller, M., de la Grange, P., Pudimat, R., Rafalska, I., Heinrich, B., Bujnicki, J. M., Allain, F. H. T. . (2010). The YTH domain is a novel RNA binding domain. J. Biol. Chem., 285: 14701–14710

[15]

Hsu, P. J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., Qi, M., Lu, Z., Shi, H., Wang, J. . (2017). YTHDC2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res., 27: 1115–1127

[16]

Imai, Y., Matsuo, N., Ogawa, S., Tohyama, M. (1998). Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation. Brain Res. Mol. Brain Res., 53: 33–40

[17]

Hartmann, A. M., Nayler, O., Schwaiger, F. W., Obermeier, A. (1999). The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59fyn. Mol. Biol. Cell, 10: 3909–3926

[18]

Theler, D., Dominguez, C., Blatter, M., Boudet, J. Allain, F. H. (2014). Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res., 42: 13911–13919

[19]

Luo, S. (2014). Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc. Natl. Acad. Sci. USA, 111: 13834–13839

[20]

Xu, C., Wang, X., Liu, K., Roundtree, I. A., Tempel, W., Li, Y., Lu, Z., He, C. (2014). Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol., 10: 927–929

[21]

Govindaraju, G., Kadumuri, R. V., Sethumadhavan, D. V., Jabeena, C. A., Chavali, S. (2020). N6-adenosine methylation on mRNA is recognized by YTH2 domain protein of human malaria parasite Plasmodium falciparum. Epigenet. Chromatin, 13: 33

[22]

Li, F., Zhao, D., Wu, J. (2014). Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res., 24: 1490–1492

[23]

Xu, C., Liu, K., Ahmed, H., Loppnau, P., Schapira, M. (2015). Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem., 290: 24902–24913

[24]

Li, Y., Bedi, R. K., Wiedmer, L., Sun, X., Huang, D. (2021). Atomistic and thermodynamic analysis of N6-methyladenosine (m6A) recognition by the reader domain of YTHDC1. J. Chem. Theory Comput., 17: 1240–1249

[25]

Li, Y., Bedi, R. K., Moroz-Omori, E. V. (2020). Structural and dynamic insights into redundant function of YTHDF proteins. J. Chem. Inf. Model., 60: 5932–5935

[26]

Amadei, A., Linssen, A. B. M. Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17: 412–425

[27]

Berendsen, H. J. C. (2000). Collective protein dynamics in relation to function. Curr. Opin. Struct. Biol., 10: 165–169

[28]

Miller, B. R. McGee, T. D. Swails, J. M., Homeyer, N., Gohlke, H. Roitberg, A. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 8: 3314–3321

[29]

Ernst, M., Sittel, F. (2015). Contact- and distance-based principal component analysis of protein dynamics. J. Chem. Phys., 143: 244114

[30]

Koshland, D. E. (1958). Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA, 44: 98–104

[31]

Williamson, J. (2000). Induced fit in RNA-protein recognition. Nat. Struct. Biol., 7: 834–837

[32]

Liao, Q. (2020). Enhanced sampling and free energy calculations for protein simulations. In: Progress in Molecular Biology and Translational Science, 177

[33]

Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E. Debolt, S., Ferguson, D., Seibel, G. (1995). Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications. Comput. Phys. Commun., 91: 1–41

[34]

Case, D. A., Cheatham, T. E. Darden, T., Gohlke, H., Luo, R., Merz, K. M. Onufriev, A., Simmerling, C., Wang, B. Woods, R. (2005). The Amber biomolecular simulation programs. J. Comput. Chem., 26: 1668–1688

[35]

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 11: 3696–3713

[36]

Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. Kollman, P. (1995). A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc., 117: 5179–5197

[37]

Otyepka, M., Sponer, J., dek, A., Cheatham, T. E. (2011). Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput., 7: 2886–2902

[38]

Aduri, R., Psciuk, B. T., Saro, P., Taniga, H., Schlegel, H. B. (2007). AMBER force field parameters for the naturally occurring modified nucleosides in RNA. J. Chem. Theory Comput., 3: 1464–1475

[39]

Mark, P. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 105: 9954–9960

[40]

Pastor, R. W., Brooks, B. R. (2006). An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 65: 1409–1419

[41]

Feller, S. E., Zhang, Y. H., Pastor, R. W. Brooks, B. (1995). Constant-pressure molecular-dynamics simulation―the Langevin piston method. J. Chem. Phys., 103: 4613–4621

[42]

Forester, T. R. (2000). SHAKE, rattle, and roll: Efficient constraint algorithms for linked rigid bodies. J. Comput. Chem., 21: 157–157

[43]

Darden, T., York, D. (1993). Particle mesh Eewald: an N. Log(N) method for Ewald sums in large systems. J. Chem. Phys., 98: 10089–10092

[44]

Hamelberg, D., Mongan, J. McCammon, J. (2004). Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys., 120: 11919–11929

[45]

Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W. . (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res., 33: 889–897

[46]

Massova, I. Kollman, P. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des., 18: 113–135

[47]

Pronk, S., ll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D. . (2013). GROMACS 4. 5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29: 845–854

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Higher Education Press.

AI Summary AI Mindmap
PDF (3849KB)

Supplementary files

QB-22297-OF-ZZY_suppl_1

1709

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/