Mapping allosteric pathway in NIa-Pro using computational approach
Rashmi Panigrahi, Senthilkumar Kailasam
Mapping allosteric pathway in NIa-Pro using computational approach
Background: Computer simulation studies complement in vitro experiments and provide avenue to understand allosteric regulation in the absence of other molecular viewing techniques. Molecular dynamics captures internal motion within the protein and enables tracing the communication path between a catalytic site and a distal allosteric site. In this article, we have identified the communication pathway between the viral protein genome linked (VPg) binding region and catalytic active site in nuclear inclusion protein-a protease (NIa-Pro).
Methods: Molecular dynamics followed by in silico analyses have been used to map the allosteric pathway.
Results: This study delineates the residue interaction network involved in allosteric regulation of NIa-Pro activity by VPg. Simulation studies indicate that point mutations in the VPg interaction interface of NIa-Pro lead to disruption in these networks and change the orientation of catalytic residues. His142Ala and His167Ala mutations do not show a substantial change in the overall protease structure, but rather in the residue interaction network and catalytic site geometry.
Conclusion: Our mutagenic study delineates the allosteric pathway and facilitates the understanding of the modulation of NIa-Pro activity on a molecular level in the absence of the structure of its complex with the known regulator VPg. Additionally, our in silico analysis explains the molecular concepts and highlights the dynamics behind the previously reported wet lab study findings.
Allosteric control of enzymes is a key regulatory process, ubiquitous in all kingdoms of life. It involves the binding of the specific regulatory molecule (either an activator or an inhibitor) to a location distal from the enzyme’s active site. Our research provides a simple in silico methodology for gaining insight into the allosteric pathways that regulate specific enzyme activity. In the presence of a 3D structure of the enzyme and the knowledge of specific interaction sites with its regulator, this methodology can be applied to understand enzyme regulation, even in the absence of the structure of the enzyme-regulator complex.
NIa-Pro / VPg / simulation / residue interaction network / allostery
[1] |
nez, F., Rodrigo, G., Ruiz, M., Lodewijk, I., ndez, U., Elena, S. F. (2016). Interaction network of tobacco etch potyvirus NIa protein with the host proteome during infection. BMC Genomics, 17: 87
CrossRef
Google scholar
|
[2] |
Anindya, R., Joseph, J., Gowri, T. D. Savithri, H. (2004). Complete genomic sequence of pepper vein banding virus (PVBV): a distinct member of the genus Potyvirus. Arch. Virol., 149: 625–632
CrossRef
Google scholar
|
[3] |
Joseph, J. Savithri, H. (2000). Mutational analysis of the NIa protease from pepper vein banding potyvirus. Arch. Virol., 145: 2493–2502
CrossRef
Google scholar
|
[4] |
Anindya, R., Chittori, S. Savithri, H. (2005). Tyrosine 66 of pepper vein banding virus genome-linked protein is uridylylated by RNA-dependent RNA polymerase. Virology, 336: 154–162
CrossRef
Google scholar
|
[5] |
Urcuqui-Inchima, S., Haenni, A. L. (2001). Potyvirus proteins: a wealth of functions. Virus Res., 74: 157–175
CrossRef
Google scholar
|
[6] |
Ghabrial, S. A., Smith, H. A., Parks, T. D. Dougherty, W. (1990). Molecular genetic analyses of the soybean mosaic virus NIa proteinase. J. Gen. Virol., 71: 1921–1927
CrossRef
Google scholar
|
[7] |
Dougherty, W. G. Parks, T. (1989). Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology, 172: 145–155
CrossRef
Google scholar
|
[8] |
Merits, A., ki, M. L., Lindholm, P., Runeberg-Roos, P., Kekarainen, T., Puustinen, P., inen, K., Valkonen, J. P. T. (2002). Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J. Gen. Virol., 83: 1211–1221
CrossRef
Google scholar
|
[9] |
Pasin, F., n-Mateo, C. (2014). The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog., 10: e1003985
CrossRef
Google scholar
|
[10] |
Riechmann, J. L., (1992). Highlights and prospects of potyvirus molecular biology. J. Gen. Virol., 73: 1–16
CrossRef
Google scholar
|
[11] |
Schaad, M. C., Haldeman-Cahill, R., Cronin, S. Carrington, J. (1996). Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J. Virol., 70: 7039–7048
CrossRef
Google scholar
|
[12] |
Carrington, J. C., Haldeman, R., Dolja, V. V. Restrepo-Hartwig, M. (1993). Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. J. Virol., 67: 6995–7000
CrossRef
Google scholar
|
[13] |
Sabharwal, P., Srinivas, S. Savithri, H. (2018). Mapping the domain of interaction of PVBV VPg with NIa-Pro: Role of N-terminal disordered region of VPg in the modulation of structure and function. Virology, 524: 18–31
CrossRef
Google scholar
|
[14] |
Mathur, C. Savithri, H. (2012). Novel ATPase activity of the polyprotein intermediate, viral protein genome-linked-nuclear inclusion-a protease, of pepper vein banding potyvirus. Biochem. Biophys. Res. Commun., 427: 113–118
CrossRef
Google scholar
|
[15] |
Mathur, C., Jimsheena, V. K., Banerjee, S., Makinen, K., Gowda, L. R. Savithri, H. (2012). Functional regulation of PVBV nuclear inclusion protein—a protease activity upon interaction with viral protein genome-linked and phosphorylation. Virology, 422: 254–264
CrossRef
Google scholar
|
[16] |
Boerner, J. E., Lyle, J. M., Daijogo, S., Semler, B. L., Schultz, S. C., Kirkegaard, K. Richards, O. (2005). Allosteric effects of ligands and mutations on poliovirus RNA-dependent RNA polymerase. J. Virol., 79: 7803–7811
CrossRef
Google scholar
|
[17] |
Changeux, J. (2012). Allostery and the Monod-Wyman-Changeux model after 50 years. Annu. Rev. Biophys., 41: 103–133
CrossRef
Google scholar
|
[18] |
del Sol, A., Fujihashi, H., Amoros, D. (2006). Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol. Syst. Biol., 2: 0019
CrossRef
Google scholar
|
[19] |
Tyukhtenko, S., Ma, X., Rajarshi, G., Karageorgos, I., Anderson, K. W., Hudgens, J. W., Guo, J. J., Nasr, M. L., Zvonok, N., Vemuri, K.
CrossRef
Google scholar
|
[20] |
Cooper, A. Dryden, D. (1984). Allostery without conformational change. A plausible model. Eur. Biophys. J., 11: 103–109
CrossRef
Google scholar
|
[21] |
Popovych, N., Sun, S., Ebright, R. H. Kalodimos, C. (2006). Dynamically driven protein allostery. Nat. Struct. Mol. Biol., 13: 831–838
CrossRef
Google scholar
|
[22] |
Blacklock, K. Verkhivker, G. (2014). Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. PLOS Comput. Biol., 10: e1003679
CrossRef
Google scholar
|
[23] |
Ghosh, A. (2007). A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. Proc. Natl. Acad. Sci. USA., 104: 15711–15716
CrossRef
Google scholar
|
[24] |
Atilgan, A. R., Turgut, D. (2007). Screened nonbonded interactions in native proteins manipulate optimal paths for robust residue communication. Biophys. J., 92: 3052–3062
CrossRef
Google scholar
|
[25] |
Ghosh, A., Sakaguchi, R., Liu, C., Vishveshwara, S. Hou, Y. (2011). Allosteric communication in cysteinyl tRNA synthetase: a network of direct and indirect readout. J. Biol. Chem., 286: 37721–37731
CrossRef
Google scholar
|
[26] |
Taverna, D. M. Goldstein, R. (2002). Why are proteins so robust to site mutations? J. Mol. Biol., 315: 479–484
CrossRef
Google scholar
|
[27] |
Sun, P., Austin, B. P., Waugh, D. (2010). Structural determinants of tobacco vein mottling virus protease substrate specificity. Protein Sci., 19: 2240–2251
|
[28] |
Phan, J., Zdanov, A., Evdokimov, A. G., Tropea, J. E., Peters, H. K. Kapust, R. B., Li, M., Wlodawer, A. Waugh, D. (2002). Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem., 277: 50564–50572
CrossRef
Google scholar
|
[29] |
Wenthur, C. J., Gentry, P. R., Mathews, T. P. Lindsley, C. (2014). Drugs for allosteric sites on receptors. Annu. Rev. Pharmacol. Toxicol., 54: 165–184
CrossRef
Google scholar
|
[30] |
Sheik Amamuddy, O., Veldman, W., Manyumwa, C., Khairallah, A., Agajanian, S., Oluyemi, O., Verkhivker, G. (2020). Integrated computational approaches and tools forallosteric drug discovery. Int. J. Mol. Sci., 21: 847
CrossRef
Google scholar
|
[31] |
Sinha, N. (2001). Point mutations and sequence variability in proteins: redistributions of preexisting populations. Proc. Natl. Acad. Sci. USA., 98: 3139–3144
CrossRef
Google scholar
|
[32] |
Vaish, N. K., Dong, F., Andrews, L., Schweppe, R. E., Ahn, N. G., Blatt, L. Seiwert, S. (2002). Monitoring post-translational modification of proteins with allosteric ribozymes. Nat. Biotechnol., 20: 810–815
CrossRef
Google scholar
|
[33] |
Ngo, K. Dunn, M. (1992). Allosteric interactions coordinate catalytic activity between successive metabolic enzymes in the tryptophan synthase bienzyme complex. Biochemistry, 31: 3831–3839
CrossRef
Google scholar
|
[34] |
Hilser, V. J. Thompson, E. (2007). Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl. Acad. Sci. USA, 104: 8311–8315
CrossRef
Google scholar
|
[35] |
Schlessinger, J. (1988). Signal transduction by allosteric receptor oligomerization. Trends Biochem. Sci., 13: 443–447
CrossRef
Google scholar
|
[36] |
Caldo, K. M. P., Acedo, J. Z., Panigrahi, R., Vederas, J. C., Weselake, R. J. Lemieux, M. (2017). Diacylglycerol acyltransferase 1 is regulated by its N-terminal domain in response to allosteric effectors. Plant Physiol., 175: 667–680
|
[37] |
Panigrahi, R., Matsui, T., Song, A. H., Caldo, K. M. P., Young, H. S., Weselake, R. J. Lemieux, M. (2018). Intrinsic disorder in the regulatory N-terminal domain of diacylglycerol acyltransferase 1 from Brassica napus. Sci. Rep., 8: 1–13
|
[38] |
Buller, A. R., Van Roye, P., Cahn, J. K., Scheele, R. A., Herger, M. Arnold, F. (2018). Directed evolution mimics allosteric activation by stepwise tuning of the conformational ensemble. J. Am. Chem. Soc., 140: 7256–7266
|
[39] |
GreenerJ. G.SternbergM.. (2015) AlloPred: Prediction of allosteric pockets on proteins using normal mode perturbation analysis. BMC Bioinformatics, 16, 335
|
[40] |
Panjkovich, A. Daura, X. J. (2014). PARS: A web server for the prediction of protein allosteric and regulatory sites. Bioinformatics, 30: 1314–1315
|
[41] |
Huang, Q., Song, P., Chen, Y., Liu, Z. (2021). Allosteric type and pathways are governed by the forces of protein-ligand binding. J. Phys. Chem. Lett., 12: 5404–5412
|
[42] |
NiD.,ChaiZ.,WangY.,LiM.,YuZ.,LiuY.,LuS.. (2021) Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. Wires Comput. Mol. Sci., e1585
|
[43] |
Huang, W., Lu, S., Huang, Z., Liu, X., Mou, L., Luo, Y., Zhao, Y., Liu, Y., Chen, Z., Hou, T.
CrossRef
Google scholar
|
[44] |
Song, K., Liu, X., Huang, W., Lu, S., Shen, Q., Zhang, L. (2017). Improved method for the identification and validation of allosteric sites. J. Chem. Inf. Model., 57: 2358–2363
CrossRef
Google scholar
|
[45] |
Xu, Y., Wang, S., Hu, Q., Gao, S., Ma, X., Zhang, W., Shen, Y., Chen, F., Lai, L. (2018). CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res., 46: W374–W379
CrossRef
Google scholar
|
[46] |
Tan, Z. W., Guarnera, E., Tee, W. Berezovsky, I. (2020). Allosigma 2: Paving the way to designing allosteric effectors and to exploring allosteric effects of mutations. Nucleic Acids Res., 48: W116–W124
|
[47] |
Guarnera, E., Tan, Z. W., Zheng, Z. Berezovsky, I. (2017). AlloSigMA: Allosteric signaling and mutation analysis server. Bioinformatics, 33: 3996–3998
|
[48] |
Huang, M., Song, K., Liu, X., Lu, S., Shen, Q., Wang, R., Gao, J., Hong, Y., Li, Q., Ni, D.
|
[49] |
Shukla, D., Meng, Y., Roux, B. Pande, V. (2014). Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat. Commun., 5: 3397
CrossRef
Google scholar
|
[50] |
Ghosh, A. (2007). A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. Proc. Natl. Acad. Sci. USA., 104: 15711–15716
CrossRef
Google scholar
|
[51] |
Yang, L., Song, G. Jernigan, R. (2009). Protein elastic network models and the ranges of cooperativity. Proc. Natl. Acad. Sci. USA. 106,
|
[52] |
Atilgan, A. R., Durell, S. R., Jernigan, R. L., Demirel, M. C., Keskin, O. (2001). Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J., 80: 505–515
CrossRef
Google scholar
|
[53] |
Stolzenberg, S., Michino, M., LeVine, M. V., Weinstein, H. (2016). Computational approaches to detect allosteric pathways in transmembrane molecular machines. Biochim. Biophys. Acta, 1858: 1652–1662
CrossRef
Google scholar
|
[54] |
Wang, J., Jain, A., McDonald, L. R., Gambogi, C., Lee, A. L. Dokholyan, N. (2020). Mapping allosteric communications within individual proteins. Nat. Commun., 11: 3862
CrossRef
Google scholar
|
[55] |
michL.,WuN.,BarahonaM.YalirakiS.. (2022) Allosteric hotspots in the main protease of SARS-CoV-2. J. Mol. Biol., 434, 167748
|
[56] |
Wu, N., mich, L. Yaliraki, S. (2022). Prediction of allosteric sites and signaling: Insights from benchmarking datasets. Patterns, 3: 100408
CrossRef
Google scholar
|
[57] |
Kravats, A. N., Tonddast-Navaei, S. (2016). Coarse-grained simulations of topology-dependent mechanisms of protein unfolding and translocation mediated by ClpY ATPase nanomachines. PLOS Comput. Biol., 12: e1004675
CrossRef
Google scholar
|
[58] |
Chandramohan, A., Krishnamurthy, S., Larsson, A., Nordlund, P., Jansson, A. Anand, G. (2016). Predicting allosteric effects from orthosteric binding in hsp90-ligand interactions: Implications for fragment-based drug design. PLOS Comput. Biol., 12: e1004840
CrossRef
Google scholar
|
[59] |
Wootten, D., Reynolds, C. A., Smith, K. J., Mobarec, J. C., Furness, S. G., Miller, L. J., Christopoulos, A. Sexton, P. (2016). Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochem. Pharmacol., 118: 68–87
CrossRef
Google scholar
|
[60] |
SabharwalP.. (2017) Molecular insights into the structure and function of pepper vein banding virus encoded proteins and endocytic uptake pathway of virus-like particles into mammalian cells. Doctorate of Philosophy, Bangalore: Indian Institute of Science
|
[61] |
Roy, A., Xu, D., Poisson, J. (2011). A protocol for computer-based protein structure and function prediction. J. Vis. Exp., 57: e3259
CrossRef
Google scholar
|
[62] |
Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40
CrossRef
Google scholar
|
[63] |
Roy, A., Kucukural, A. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 5: 725–738
CrossRef
Google scholar
|
[64] |
Roy, A., Yang, J. (2012). COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res., 40: W471–477
CrossRef
Google scholar
|
[65] |
Chung, S. Y. (1996). A structural explanation for the twilight zone of protein sequence homology. Structure, 4: 1123–1127
|
[66] |
Venclovas, C. (2005). Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment. Proteins, 61: 99–105
CrossRef
Google scholar
|
[67] |
Lovell, S. C., Davis, I. W., Arendall, W. B. de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S. Richardson, D. (2003). Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins, 50: 437–450
CrossRef
Google scholar
|
[68] |
tz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S. Walker, R. (2012). Routine microsecond molecular dynamics simulations with amber on GPUS. 1. Generalized born. J. Chem. Theory Comput., 8: 1542–1555
CrossRef
Google scholar
|
[69] |
CaseD. A.,DardenT. A.,CheathamT. E.,SimmerlingC. L.,WangJ.,DukeR. E.,LuoR.,WalkerR. C.,ZhangW.,MerzK. M.,. (2012) Amber 12. San Francisco: University of California
|
[70] |
Case, D. A., Cheatham, T. E. Darden, T., Gohlke, H., Luo, R., Merz, K. M. Onufriev, A., Simmerling, C., Wang, B. Woods, R. (2005). The Amber biomolecular simulation programs. J. Comput. Chem., 26: 1668–1688
CrossRef
Google scholar
|
[71] |
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. Klein, M. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79: 926–935
|
[72] |
Ryckaert, J. Ciccotti, G. Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 23: 327–341
CrossRef
Google scholar
|
[73] |
Salomon-Ferrer, R., tz, A. W., Poole, D., Le Grand, S. Walker, R. (2013). Routine microsecond molecular dynamics simulations with amber on GPUS. 2. Explicit solvent particle Mesh Ewald. J. Chem. Theory Comput., 9: 3878–3888
CrossRef
Google scholar
|
[74] |
McDonald, I. K. Thornton, J. (1994). Satisfying hydrogen bonding potential in proteins. J. Mol. Biol., 238: 777–793
CrossRef
Google scholar
|
[75] |
Wallace, A. C., Laskowski, R. A. Thornton, J. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 8: 127–134
CrossRef
Google scholar
|
[76] |
HumphreyW.,DalkeA.. (1996) VMD: visual molecular dynamics. J. Mol. Graph., 14, 33–38., 27–28
|
[77] |
Amadei, A., Linssen, A. B. Berendsen, H. (1993). Essential dynamics of proteins. Proteins, 17: 412–425
CrossRef
Google scholar
|
[78] |
Pronk, S., ll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D.
CrossRef
Google scholar
|
[79] |
DeLanoW.. (2002) The pymol molecular graphics system. DeLano Scientific, San Carlos, CA, USA
|
/
〈 | 〉 |