Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data

Weiran Chen , Md Wahiduzzaman , Quan Li , Yixue Li , Guangyong Zheng , Tao Huang

Quant. Biol. ›› 2022, Vol. 10 ›› Issue (4) : 333 -340.

PDF (3004KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (4) : 333 -340. DOI: 10.15302/J-QB-022-0295
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data

Author information +
History +
PDF (3004KB)

Abstract

Background: Single-cell RNA sequencing (scRNA-seq) technology is now becoming a widely applied method of transcriptome exploration that helps to reveal cell-type composition as well as cell-state heterogeneity for specific biological processes. Distinct sequencing platforms and processing pipelines may contribute to various results even for the same sequencing samples. Therefore, benchmarking sequencing platforms and processing pipelines was considered as a necessary step to interpret scRNA-seq data. However, recent comparing efforts were constrained in sequencing platforms or analyzing pipelines. There is still a lack of knowledge of analyzing pipelines matched with specific sequencing platforms in aspects of sensitivity, precision, and so on.

Methods: We downloaded public scRNA-seq data that was generated by two distinct sequencers, NovaSeq 6000 and MGISEQ 2000. Then data was processed through the Drop-seq-tools, UMI-tools and Cell Ranger pipeline respectively. We calculated multiple measurements based on the expression profiles of the six platform-pipeline combinations.

Results: We found that all three pipelines had comparable performance, the Cell Ranger pipeline achieved the best performance in precision while UMI-tools prevailed in terms of sensitivity and marker calling.

Conclusions: Our work provided an insight into the selection of scRNA-seq data processing tools for two sequencing platforms as well as a framework to evaluate platform-pipeline combinations.

Graphical abstract

Keywords

Single-cell RNA sequencing / cell-type / data processing / pipeline / platform

Cite this article

Download citation ▾
Weiran Chen, Md Wahiduzzaman, Quan Li, Yixue Li, Guangyong Zheng, Tao Huang. Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data. Quant. Biol., 2022, 10(4): 333-340 DOI:10.15302/J-QB-022-0295

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hwang,B., Lee,J. H. ( 2018). Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med., 50 : 1– 14

[2]

Trapnell,C. ( 2015). Defining cell types and states with single-cell genomics. Genome Res., 25 : 1491– 1498

[3]

Michalopoulos,G. ( 2021). Novel insights into liver homeostasis and regeneration. Nat. Rev. Gastroenterol. Hepatol., 18 : 369– 370

[4]

Chen,G., Ning,B. ( 2019). Single-cell RNA-seq technologies and related computational data analysis. Front. Genet., 10 : 317

[5]

Drmanac,R., Sparks,A. B., Callow,M. J., Halpern,A. L., Burns,N. L., Kermani,B. G., Carnevali,P., Nazarenko,I., Nilsen,G. B., Yeung,G. . ( 2010). Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327 : 78– 81

[6]

Goodwin,S., McPherson,J. D. McCombie,W. ( 2016). Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet., 17 : 333– 351

[7]

Zheng,G. X., Terry,J. M., Belgrader,P., Ryvkin,P., Bent,Z. W., Wilson,R., Ziraldo,S. B., Wheeler,T. D., McDermott,G. P., Zhu,J. . ( 2017). Massively parallel digital transcriptional profiling of single cells. Nat. Commun., 8 : 14049

[8]

Macosko,E. Z., Basu,A., Satija,R., Nemesh,J., Shekhar,K., Goldman,M., Tirosh,I., Bialas,A. R., Kamitaki,N., Martersteck,E. M. . ( 2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161 : 1202– 1214

[9]

Smith,T., Heger,A. ( 2017). UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res., 27 : 491– 499

[10]

Parekh,S., Ziegenhain,C., Vieth,B., Enard,W. ( 2018). zUMIs—A fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience, 7 : 6

[11]

Petukhov,V., Guo,J., Baryawno,N., Severe,N., Scadden,D. T., Samsonova,M. G. Kharchenko,P. ( 2018). dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome Biol., 19 : 78

[12]

Tian,L., Su,S., Dong,X., Amann-Zalcenstein,D., Biben,C., Seidi,A., Hilton,D. J., Naik,S. H. Ritchie,M. ( 2018). scPipe: A flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data. PLOS Comput. Biol., 14 : e1006361

[13]

Gao,M., Ling,M., Tang,X., Wang,S., Xiao,X., Qiao,Y., Yang,W. ( 2021). Comparison of high-throughput single-cell RNA sequencing data processing pipelines. Brief. Bioinform., 22 : bbaa116

[14]

Ziegenhain,C., Vieth,B., Parekh,S., Reinius,B., Guillaumet-Adkins,A., Smets,M., Leonhardt,H., Heyn,H., Hellmann,I. ( 2017). Comparative analysis of single-cell rna sequencing methods. Mol. Cell, 65 : 631– 643.e4

[15]

Natarajan,K. N., Miao,Z., Jiang,M., Huang,X., Zhou,H., Xie,J., Wang,C., Qin,S., Zhao,Z., Wu,L. . ( 2019). Comparative analysis of sequencing technologies for single-cell transcriptomics. Genome Biol., 20 : 70

[16]

Jeon,S. A., Park,J. L., Kim,J. H., Kim,J. H., Kim,Y. S., Kim,J. C. Kim,S. ( 2019). Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing. Genomics Inform., 17 : e32

[17]

AndrewsS.. ( 2014) FastQC: A quality control tool for high throughput sequence data

[18]

Stuart,T., Butler,A., Hoffman,P., Hafemeister,C., Papalexi,E., Mauck,W. M. Hao,Y., Stoeckius,M., Smibert,P. ( 2019). Comprehensive integration of single-cell data. Cell, 177 : 1888– 1902.e21

[19]

Shao,X., Liao,J., Lu,X., Xue,R., Ai,N. ( 2020). Sccatch: automatic annotation on cell types of clusters from single-cell rna sequencing data. iScience, 23 : 100882

[20]

Senabouth,A., Andersen,S., Shi,Q., Shi,L., Jiang,F., Zhang,W., Wing,K., Daniszewski,M., Lukowski,S. W., Hung,S. S. C. . ( 2020). Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing. NAR Genom. Bioinform., 2 : lqaa034

RIGHTS & PERMISSIONS

The Author (s). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (3004KB)

Supplementary files

QB-22295-OF-HT_suppl_1

2868

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/