The progress on the estimation of DNA methylation level and the detection of abnormal methylation

Shicai Fan, Likun Wang, Liang Liang, Xiaohong Cao, Jianxiong Tang, Qi Tian

PDF(1346 KB)
PDF(1346 KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 55-66. DOI: 10.15302/J-QB-022-0289
REVIEW
REVIEW

The progress on the estimation of DNA methylation level and the detection of abnormal methylation

Author information +
History +

Abstract

Background: DNA methylation is a key heritable epigenetic modification that plays a crucial role in transcriptional regulation and therefore a broad range of biological processes. The complex patterns of DNA methylation highlight the significance of the profiling the DNA methylation landscape.

Results: In this review, the main high-throughput detection technologies are summarized, and then the three trends of computational estimation of DNA methylation levels were analyzed, especially the expanding of the methylation data with lower coverage. Furthermore, the detection methods of differential methylation patterns for sequencing and array data were presented.

Conclusions: More and more research indicated the great importance of DNA methylation changes across different diseases, such as cancers. Although a lot of enormous progress has been made in understanding the role of DNA methylation, only few methylated genes or functional elements serve as clinically relevant cancer biomarkers. The bottleneck in DNA methylation advances has shifted from data generation to data analysis. Therefore, it is meaningful to develop machine learning models for computational estimation of methylation profiling and identify the potential biomarkers.

Author summary

With the development of experimental profiling approach for both pooled and single cells, the research on computational methods for methylome analysis is also a hot field for the understanding of epigenomic code. The computational estimation of DNA methylation levels, especially, the expanding methods for methylome data with lower coverage was intensively analyzed. With the broader range of DNA methylation landscapes both in coverage and sample size, it provides better opportunity for the identification of the potential biomarkers.

Graphical abstract

Keywords

DNA methylation / genome-wide profiling / computational estimation / single-cell methylome / differential methylation detection

Cite this article

Download citation ▾
Shicai Fan, Likun Wang, Liang Liang, Xiaohong Cao, Jianxiong Tang, Qi Tian. The progress on the estimation of DNA methylation level and the detection of abnormal methylation. Quant. Biol., 2022, 10(1): 55‒66 https://doi.org/10.15302/J-QB-022-0289

References

[1]
BirdA. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321 : 209–213
CrossRef Google scholar
[2]
ReikW. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet., 2 : 21–32
CrossRef Google scholar
[3]
ReikW., DeanW. (2001). Epigenetic reprogramming in mammalian development. Science, 293 : 1089–1093
CrossRef Google scholar
[4]
MohandasT., SparkesR. S. ShapiroL. (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science, 211 : 393–396
CrossRef Google scholar
[5]
GartlerS. M. RiggsA. (1983). Mammalian X-chromosome inactivation. Annu. Rev. Genet., 17 : 155–190
CrossRef Google scholar
[6]
ReikW., CollickA., NorrisM. L., BartonS. C. SuraniM. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328 : 248–251
CrossRef Google scholar
[7]
ChenS., YanG., ZhangW., LiJ., JiangR. (2021). RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat. Commun., 12 : 2177
CrossRef Google scholar
[8]
LiuQ., XiaF., YinQ. (2018). Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 34 : 732–738
CrossRef Google scholar
[9]
BaylinS. B. JonesP. (2011). A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer, 11 : 726–734
CrossRef Google scholar
[10]
SkvortsovaK., StirzakerC. (2019). The DNA methylation landscape in cancer. Essays Biochem., 63 : 797–811
CrossRef Google scholar
[11]
FanS. (2016). Methods for genome-wide DNA methylation analysis in human cancer. Brief. Funct. Genomics, 15 : 432–442
CrossRef Google scholar
[12]
LairdP. (2010). Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11 : 191–203
CrossRef Google scholar
[13]
BockC. (2012). Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13 : 705–719
CrossRef Google scholar
[14]
CokusS. J., FengS., ZhangX., ChenZ., MerrimanB., HaudenschildC. D., PradhanS., NelsonS. F., PellegriniM. JacobsenS. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452 : 215–219
CrossRef Google scholar
[15]
FrisoS., ChoiS. W., DolnikowskiG. G. (2002). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem., 74 : 4526–4531
CrossRef Google scholar
[16]
LisantiS., OmarW. A., TomaszewskiB., De PrinsS., JacobsG., KoppenG., MathersJ. C. LangieS. (2013). Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 8 : e79044
CrossRef Google scholar
[17]
ListerR., MalleyR. C., Tonti-FilippiniJ., GregoryB. D., BerryC. C., MillarA. H. EckerJ. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133 : 523–536
CrossRef Google scholar
[18]
KellyT. K., LiuY., LayF. D., LiangG., BermanB. P. JonesP. (2012). Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res., 22 : 2497–2506
CrossRef Google scholar
[19]
WeberM., DaviesJ. J., WittigD., OakeleyE. J., HaaseM., LamW. L. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet., 37 : 853–862
CrossRef Google scholar
[20]
PidsleyR., ZotenkoE., PetersT. J., LawrenceM. G., RisbridgerG. P., MolloyP., Van DjikS., MuhlhauslerB., StirzakerC. ClarkS. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol., 17 : 208
CrossRef Google scholar
[21]
EckhardtF., LewinJ., CorteseR., RakyanV. K., AttwoodJ., BurgerM., BurtonJ., CoxT. V., DaviesR., DownT. A. . (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet., 38 : 1378–1385
CrossRef Google scholar
[22]
TianY., MorrisT. J., WebsterA. P., YangZ., BeckS., FeberA. TeschendorffA. (2017). ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33 : 3982–3984
CrossRef Google scholar
[23]
SmallwoodS. A., LeeH. J., AngermuellerC., KruegerF., SaadehH., PeatJ., AndrewsS. R., StegleO., ReikW. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods, 11 : 817–820
CrossRef Google scholar
[24]
AngermuellerC., ClarkS. J., LeeH. J., MacaulayI. C., TengM. J., HuT. X., KruegerF., SmallwoodS., PontingC. P., VoetT. . (2016). Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods, 13 : 229–232
CrossRef Google scholar
[25]
PottS. (2017). Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife, e23203
CrossRef Google scholar
[26]
WangY., WangA., LiuZ., ThurmanA. L., PowersL. S., ZouM., ZhaoY., HefelA., LiY., ZabnerJ. . (2019). Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res., 29 : 1329–1342
CrossRef Google scholar
[27]
GuH., RamanA. T., WangX., GaitiF., ChaligneR., MohammadA. W., ArczewskaA., SmithZ. D., LandauD. A., AryeeM. J. . (2021). Smart-RRBS for single-cell methylome and transcriptome analysis. Nat. Protoc., 16 : 4004–4030
CrossRef Google scholar
[28]
YongW. S., HsuF. M. ChenP. (2016). Profiling genome-wide DNA methylation. Epigenet Chromatin. 9, 26
CrossRef Google scholar
[29]
DirksR. A., StunnenbergH. G. (2016). Genome-wide epigenomic profiling for biomarker discovery. Clin. Epigenetics, 8 : 122
CrossRef Google scholar
[30]
RauluseviciuteI., RyeM. (2019). DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin. Epigenetics, 11 : 193
CrossRef Google scholar
[31]
ZuoT., TyckoB., LiuT. M., LinJ. J. HuangT. (2009). Methods in DNA methylation profiling. Epigenomics, 1 : 331–345
CrossRef Google scholar
[32]
LiS. Tollefsbol T. (2021). DNA methylation methods: Global DNA methylation and methylomic analyses. Methods, 187 : 28–43
CrossRef Google scholar
[33]
AroraI. TollefsbolT. (2021). Computational methods and next-generation sequencing approaches to analyze epigenetics data: Profiling of methods and applications. Methods, 187 : 92–103
CrossRef Google scholar
[34]
LiD., ZhangB., XingX. (2015). Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods, 72 : 29–40
CrossRef Google scholar
[35]
MaunakeaA. K., NagarajanR. P., BilenkyM., BallingerT. J., SouzaC., FouseS. D., JohnsonB. E., HongC., NielsenC., ZhaoY. . (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466 : 253–257
CrossRef Google scholar
[36]
BernsteinB. E., StamatoyannopoulosJ. A., CostelloJ. F., RenB., MilosavljevicA., MeissnerA., KellisM., MarraM. A., BeaudetA. L., EckerJ. R. . (2010). The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol., 28 : 1045–1048
CrossRef Google scholar
[37]
DunhamI., KundajeA., AldredS. F., CollinsP. J., DavisC., DoyleF., EpsteinC. B., FrietzeS., HarrowJ., KaulR. . (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489 : 57–74
CrossRef Google scholar
[38]
MeissnerA., MikkelsenT. S., GuH., WernigM., HannaJ., SivachenkoA., ZhangX., BernsteinB. E., NusbaumC., JaffeD. B. . (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454 : 766–770
CrossRef Google scholar
[39]
RobertsR. J., CarneiroM. O. SchatzM. (2013). The advantages of SMRT sequencing. Genome Biol., 14 : 405
CrossRef Google scholar
[40]
BibikovaM., BarnesB., TsanC., HoV., KlotzleB., LeJ. M., DelanoD., ZhangL., SchrothG. P., GundersonK. L. . (2011). High density DNA methylation array with single CpG site resolution. Genomics, 98 : 288–295
CrossRef Google scholar
[41]
MoranS., ArribasC. (2016). Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics, 8 : 389–399
CrossRef Google scholar
[42]
FanS., TangJ., LiN., ZhaoY., AiR., ZhangK., WangM., DuW. (2019). Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. NPJ Genom. Med., 4 : 2
CrossRef Google scholar
[43]
GuoH., ZhuP., WuX., LiX., WenL. (2013). Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res., 23 : 2126–2135
CrossRef Google scholar
[44]
FarlikM., SheffieldN. C., NuzzoA., DatlingerP., neggerA., KlughammerJ. (2015). Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep., 10 : 1386–1397
CrossRef Google scholar
[45]
ZhuP., GuoH., RenY., HouY., DongJ., LiR., LianY., FanX., HuB., GaoY. . (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet., 50 : 12–19
CrossRef Google scholar
[46]
GuoH., ZhuP., YanL., LiR., HuB., LianY., YanJ., RenX., LinS., LiJ. . (2014). The DNA methylation landscape of human early embryos. Nature, 511 : 606–610
CrossRef Google scholar
[47]
HanL., WuH. J., ZhuH., KimK. Y., MarjaniS. L., RiesterM., EuskirchenG., ZiX., YangJ., HanJ. . (2017). Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res., 45 : e77
CrossRef Google scholar
[48]
ChenP. Y., CokusS. J. (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics, 11 : 203
CrossRef Google scholar
[49]
GuoW., FizievP., YanW., CokusS., SunX., ZhangM. Q., ChenP. Y. (2013). BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14 : 774
CrossRef Google scholar
[50]
HuangK. Y. Y., HuangY. J. ChenP. (2018). BS-Seeker3: ultrafast pipeline for bisulfite sequencing. BMC Bioinformatics, 19 : 111
CrossRef Google scholar
[51]
ByunH. M., SiegmundK. D., PanF., WeisenbergerD. J., KanelG., LairdP. W. YangA. (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet., 18 : 4808–4817
CrossRef Google scholar
[52]
CaliskanM., CusanovichD. A., OberC. (2012). The effects of EBV transformation on gene expression levels and methylation profiles. Hum. Mol. Genet., 20 : 1643–1652
CrossRef Google scholar
[53]
ZouL. S., ErdosM. R., TaylorD. L., ChinesP. S., VarshneyA., ParkerS. C. J., CollinsF. S., DidionJ. P. InstM. G. (2018). BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues. BMC Genomics, 19 : 390
CrossRef Google scholar
[54]
ZhangW., SpectorT. D., DeloukasP., BellJ. T. EngelhardtB. (2015). Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol., 16 : 14
CrossRef Google scholar
[55]
FangF., FanS., ZhangX. ZhangM. (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics, 22 : 2204–2209
CrossRef Google scholar
[56]
MaB., WilkerE. H., Willis-OwenS. A. G., ByunH. M., WongK. C. C., MottaV., BaccarelliA. A., SchwartzJ., CooksonW. O. C. M., KhabbazK. . (2014). Predicting DNA methylation level across human tissues. Nucleic Acids Res., 42 : 3515–3528
CrossRef Google scholar
[57]
PavlovicM., RayP., PavlovicK., KotamartiA., ChenM. ZhangM. (2017). DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes. Bioinformatics, 33 : 2986–2994
CrossRef Google scholar
[58]
MaB., AllardC., BouchardL., PerronP., MittlemanM. A., HivertM. F. (2019). Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics, 14 : 405–420
CrossRef Google scholar
[59]
TianQ., ZouJ., TangJ., FangY., YuZ. (2019). MRCNN: a deep learning model for regression of genome-wide DNA methylation. BMC Genomics, 20 : 192
CrossRef Google scholar
[60]
FanS., HuangK., AiR., WangM. (2016). Predicting CpG methylation levels by integrating Infinium HumanMethylation450 BeadChip array data. Genomics, 107 : 132–137
CrossRef Google scholar
[61]
FanS., LiC., AiR., WangM., FiresteinG. S. (2016). Computationally expanding infinium HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis. Bioinformatics, 32 : 1773–1778
CrossRef Google scholar
[62]
ZhengY., JoyceB. T., LiuL., ZhangZ., KibbeW. A., ZhangW. (2017). Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res., 45 : 8697–8711
CrossRef Google scholar
[63]
LiG., RaffieldL., LogueM., MillerM. W., SantosH. P., SheaT. M., FryR. C. (2020). CUE: CpG imputation ensemble for DNA methylation levels across the human methylation450 (hm450) and epic (hm850) beadchip platforms. Epigenetics, 16 : 851–861
CrossRef Google scholar
[64]
TangJ., ZouJ., ZhangX., FanM., TianQ., FuS., GaoS. (2020). PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics, 21 : 364
CrossRef Google scholar
[65]
YuF., XuC., DengH. W. (2020). A novel computational strategy for DNA methylation imputation using mixture regression model (MRM). BMC Bioinformatics, 21 : 552
CrossRef Google scholar
[66]
AngermuellerC., LeeH. J., ReikW. (2017). DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18 : 67
CrossRef Google scholar
[67]
JiangL., WangC., TangJ. (2019). LightCpG: a multi-view CpG sites detection on single-cell whole genome sequence data. BMC Genomics, 20 : 306
CrossRef Google scholar
[68]
KapouraniC. A. (2019). Melissa: Bayesian clustering and imputation of single-cell methylomes. Genome Biol., 20 : 61
CrossRef Google scholar
[69]
P E de SouzaC., AndronescuM., MasudT., KabeerF., BieleJ., LaksE., LaiD., YeP., BrimhallJ., WangB. . (2020). Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data. PLOS Comput. Biol., 16 : e1008270
CrossRef Google scholar
[70]
TangJ., ZouJ., FanM., TianQ., ZhangJ. (2021). CaMelia: imputation in single-cell methylomes based on local similarities between cells. Bioinformatics, 37 : btab029
CrossRef Google scholar
[71]
SuJ., YanH., WeiY., LiuH., LiuH., WangF., LvJ., WuQ. (2013). CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res., 41 : e4
CrossRef Google scholar
[72]
ParkY., FigueroaM. E., RozekL. S. SartorM. (2014). MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics, 30 : 2414–2422
CrossRef Google scholar
[73]
ZhangB., ZhouY., LinN., LowdonR. F., HongC., NagarajanR. P., ChengJ. B., LiD., StevensM., LeeH. J. . (2013). Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res., 23 : 1522–1540
CrossRef Google scholar
[74]
KorthauerK., ChakrabortyS., BenjaminiY. IrizarryR. (2019). Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing. Biostatistics, 20 : 367–383
CrossRef Google scholar
[75]
WuD., GuJ. Zhang M. (2013). FastDMA: an infinium humanmethylation450 beadchip analyzer. PLoS One, 8 : e74275
CrossRef Google scholar
[76]
ShenL., ZhuJ., Robert LiS. Y. (2017). Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Bioinformatics, 33 : 3701–3708
CrossRef Google scholar
[77]
ZhangY., LiuH., LvJ., XiaoX., ZhuJ., LiuX., SuJ., LiX., WuQ., WangF. . (2011). QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res., 39 : e58
CrossRef Google scholar
[78]
LeeW. MorrisJ. (2016). Identification of differentially methylated loci using wavelet-based functional mixed models. Bioinformatics, 32 : 664–672
CrossRef Google scholar
[79]
DenaultW.. R. P. and Jugessur, A. (2021) Detecting differentially methylated regions using a fast wavelet-based approach to functional association analysis. BMC Bioinformatics, BMC Bioinformatics. 22, 61. doi: 10.1186/s12859–021-03979-y
[80]
WuH., XuT., FengH., ChenL., LiB., YaoB., QinZ., JinP. ConneelyK. (2015). Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res., 43 : e141
CrossRef Google scholar
[81]
AkalinA., KormakssonM., LiS., Garrett-BakelmanF. E., FigueroaM. E., MelnickA. MasonC. (2012). methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13 : R87
CrossRef Google scholar
[82]
FengH. (2019). Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol., 7 : 327–334
CrossRef Google scholar
[83]
NishiyamaA. (2021). Navigating the DNA methylation landscape of cancer. Trends Genet., 37 : 1012–1027
CrossRef Google scholar
[84]
FeinbergA. P., KoldobskiyM. A. (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet., 17 : 284–299
CrossRef Google scholar
[85]
HanahanD. WeinbergR. (2011). Hallmarks of cancer: the next generation. Cell, 144 : 646–674
CrossRef Google scholar
[86]
McDonaldO. G., LiX., SaundersT., TryggvadottirR., MentchS. J., WarmoesM. O., WordA. E., CarrerA., SalzT. H., NatsumeS. . (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet., 49 : 367–376
CrossRef Google scholar
[87]
GlossopJ. R., NixonN. B., EmesR. D., SimJ., PackhamJ. C., MatteyD. L., FarrellW. E. FryerA. (2017). DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. Epigenomics, 9 : 419–428
CrossRef Google scholar
[88]
SunZ. H., LiuY. H., LiuJ. D., XuD. D., LiX. F., MengX. M., MaT. T., HuangC. (2017). Mecp2 regulates ptch1 expression through DNA methylation in rheumatoid arthritis. Inflammation, 40 : 1497–1508
CrossRef Google scholar
[89]
AiR., HammakerD., BoyleD. L., MorganR., WalshA. M., FanS., FiresteinG. S. (2016). Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun., 7 : 11849
CrossRef Google scholar
[90]
AiR., LaragioneT., HammakerD., BoyleD. L., WildbergA., MaeshimaK., PalescandoloE., KrishnaV., PocalykoD., WhitakerJ. W. . (2018). Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun., 9 : 1921
CrossRef Google scholar
[91]
BraunK. V. E., DhanaK., de VriesP. S., VoortmanT., van MeursJ. B. J., UitterlindenA. G., HofmanA., HuF. B., FrancoO. H. (2017). Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics, 9 : 15
CrossRef Google scholar
[92]
LiuZ., LiX., ZhangJ. T., CaiY. J., ChengT. L., ChengC., WangY., ZhangC. C., NieY. H., ChenZ. F. . (2016). Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature, 530 : 98–102
CrossRef Google scholar
[93]
EryilmazI. E., CecenerG., ErerS., EgeliU., TuncaB., ZarifogluM., ElibolB., Bora TokcaerA., SakaE., DemirkiranM. . (2017). Epigenetic approach to early-onset Parkinson’s disease: low methylation status of SNCA and PARK2 promoter regions. Neurol. Res., 39 : 965–972
CrossRef Google scholar
[94]
HorvathS. (2013). DNA methylation age of human tissues and cell types. Genome Biol., 14 : R115
CrossRef Google scholar
[95]
PajaresM. J., Palanca-BallesterC., UrtasunR., Alemany-CosmeE., LahozA. (2021). Methods for analysis of specific DNA methylation status. Methods, 187 : 3–12
CrossRef Google scholar
[96]
MallikS. (2017). Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. Quant. Biol., 5 : 302–327
CrossRef Google scholar
[97]
van den HelderR., WeverB. M. M., van TrommelN. E., van SplunterA. P., MomC. H., KasiusJ. C., BleekerM. C. G. SteenbergenR. D. (2020). Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin. Epigenetics, 12 : 165
CrossRef Google scholar
[98]
WentzensenN., Bakkum-GamezJ. N., KillianJ. K., SampsonJ., GuidoR., GlassA., AdamsL., LuhnP., BrintonL. A., RushB. . (2014). Discovery and validation of methylation markers for endometrial cancer. Int. J. Cancer, 135 : 1860–1868
CrossRef Google scholar
[99]
MaoY. K., LiuZ. B. (2020). Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol. Lett., 20 : 1619–1628
CrossRef Google scholar
[100]
ZhaoJ., WangL., KongD., HuG. (2020). Construction of novel DNA methylation-based prognostic model to predict survival in glioblastoma. J. Comput. Biol., 27 : 718–728
CrossRef Google scholar
[101]
HaradaH., MiyamotoK., YamashitaY., NakanoK., TaniyamaK., MiyataY., OhdanH. (2013). Methylation of breast cancer susceptibility gene 1 (BRCA1) predicts recurrence in patients with curatively resected stage I non-small cell lung cancer. Cancer, 119 : 792–798
CrossRef Google scholar
[102]
GrawS., ChappellK., WashamC. L., GiesA., BirdJ., RobesonM. S. ByrumS. (2021). Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics, 17 : 170–185
CrossRef Google scholar
[103]
CaoS., ZhaoY., WuY., SongT., BurairA. (2017). Transcription regulation by DNA methylation under stressful conditions in human cancer. Quant. Biol., 5 : 328–337
CrossRef Google scholar
[104]
ReelP. S., ReelS., PearsonE., TruccoE. (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 49 : 107739
CrossRef Google scholar
[105]
MaT. (2019). Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). BMC Genomics, 20 : 944
CrossRef Google scholar
[106]
RappoportN. (2018). Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res., 46 : 10546–10562
CrossRef Google scholar

ACKNOWLEDGEMENTS

We thank Prof. Wei Wang at UCSD for insightful comments during manuscript preparation. This work was supported by the National Natural Science Foundation of China (No. 61872063) and Shenzhen Science and Technology Program (No. JCYJ20210324140407021).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Shicai Fan, Likun Wang, Liang Liang, Xiaohong Cao, Jianxiong Tang and Qi Tian declare that they have no conflict of interests.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Higher Education Press.
AI Summary AI Mindmap
PDF(1346 KB)

Accesses

Citations

Detail

Sections
Recommended

/