The progress on the estimation of DNA methylation level and the detection of abnormal methylation
Shicai Fan, Likun Wang, Liang Liang, Xiaohong Cao, Jianxiong Tang, Qi Tian
The progress on the estimation of DNA methylation level and the detection of abnormal methylation
Background: DNA methylation is a key heritable epigenetic modification that plays a crucial role in transcriptional regulation and therefore a broad range of biological processes. The complex patterns of DNA methylation highlight the significance of the profiling the DNA methylation landscape.
Results: In this review, the main high-throughput detection technologies are summarized, and then the three trends of computational estimation of DNA methylation levels were analyzed, especially the expanding of the methylation data with lower coverage. Furthermore, the detection methods of differential methylation patterns for sequencing and array data were presented.
Conclusions: More and more research indicated the great importance of DNA methylation changes across different diseases, such as cancers. Although a lot of enormous progress has been made in understanding the role of DNA methylation, only few methylated genes or functional elements serve as clinically relevant cancer biomarkers. The bottleneck in DNA methylation advances has shifted from data generation to data analysis. Therefore, it is meaningful to develop machine learning models for computational estimation of methylation profiling and identify the potential biomarkers.
With the development of experimental profiling approach for both pooled and single cells, the research on computational methods for methylome analysis is also a hot field for the understanding of epigenomic code. The computational estimation of DNA methylation levels, especially, the expanding methods for methylome data with lower coverage was intensively analyzed. With the broader range of DNA methylation landscapes both in coverage and sample size, it provides better opportunity for the identification of the potential biomarkers.
DNA methylation / genome-wide profiling / computational estimation / single-cell methylome / differential methylation detection
[1] |
BirdA. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321 : 209–213
CrossRef
Google scholar
|
[2] |
ReikW. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet., 2 : 21–32
CrossRef
Google scholar
|
[3] |
ReikW., DeanW. (2001). Epigenetic reprogramming in mammalian development. Science, 293 : 1089–1093
CrossRef
Google scholar
|
[4] |
MohandasT., SparkesR. S. ShapiroL. (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science, 211 : 393–396
CrossRef
Google scholar
|
[5] |
GartlerS. M. RiggsA. (1983). Mammalian X-chromosome inactivation. Annu. Rev. Genet., 17 : 155–190
CrossRef
Google scholar
|
[6] |
ReikW., CollickA., NorrisM. L., BartonS. C. SuraniM. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328 : 248–251
CrossRef
Google scholar
|
[7] |
ChenS., YanG., ZhangW., LiJ., JiangR. (2021). RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat. Commun., 12 : 2177
CrossRef
Google scholar
|
[8] |
LiuQ., XiaF., YinQ. (2018). Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 34 : 732–738
CrossRef
Google scholar
|
[9] |
BaylinS. B. JonesP. (2011). A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer, 11 : 726–734
CrossRef
Google scholar
|
[10] |
SkvortsovaK., StirzakerC. (2019). The DNA methylation landscape in cancer. Essays Biochem., 63 : 797–811
CrossRef
Google scholar
|
[11] |
FanS. (2016). Methods for genome-wide DNA methylation analysis in human cancer. Brief. Funct. Genomics, 15 : 432–442
CrossRef
Google scholar
|
[12] |
LairdP. (2010). Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11 : 191–203
CrossRef
Google scholar
|
[13] |
BockC. (2012). Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13 : 705–719
CrossRef
Google scholar
|
[14] |
CokusS. J., FengS., ZhangX., ChenZ., MerrimanB., HaudenschildC. D., PradhanS., NelsonS. F., PellegriniM. JacobsenS. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452 : 215–219
CrossRef
Google scholar
|
[15] |
FrisoS., ChoiS. W., DolnikowskiG. G. (2002). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem., 74 : 4526–4531
CrossRef
Google scholar
|
[16] |
LisantiS., OmarW. A., TomaszewskiB., De PrinsS., JacobsG., KoppenG., MathersJ. C. LangieS. (2013). Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 8 : e79044
CrossRef
Google scholar
|
[17] |
ListerR., MalleyR. C., Tonti-FilippiniJ., GregoryB. D., BerryC. C., MillarA. H. EckerJ. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133 : 523–536
CrossRef
Google scholar
|
[18] |
KellyT. K., LiuY., LayF. D., LiangG., BermanB. P. JonesP. (2012). Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res., 22 : 2497–2506
CrossRef
Google scholar
|
[19] |
WeberM., DaviesJ. J., WittigD., OakeleyE. J., HaaseM., LamW. L. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet., 37 : 853–862
CrossRef
Google scholar
|
[20] |
PidsleyR., ZotenkoE., PetersT. J., LawrenceM. G., RisbridgerG. P., MolloyP., Van DjikS., MuhlhauslerB., StirzakerC. ClarkS. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol., 17 : 208
CrossRef
Google scholar
|
[21] |
EckhardtF., LewinJ., CorteseR., RakyanV. K., AttwoodJ., BurgerM., BurtonJ., CoxT. V., DaviesR., DownT. A.
CrossRef
Google scholar
|
[22] |
TianY., MorrisT. J., WebsterA. P., YangZ., BeckS., FeberA. TeschendorffA. (2017). ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33 : 3982–3984
CrossRef
Google scholar
|
[23] |
SmallwoodS. A., LeeH. J., AngermuellerC., KruegerF., SaadehH., PeatJ., AndrewsS. R., StegleO., ReikW. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods, 11 : 817–820
CrossRef
Google scholar
|
[24] |
AngermuellerC., ClarkS. J., LeeH. J., MacaulayI. C., TengM. J., HuT. X., KruegerF., SmallwoodS., PontingC. P., VoetT.
CrossRef
Google scholar
|
[25] |
PottS. (2017). Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife,
CrossRef
Google scholar
|
[26] |
WangY., WangA., LiuZ., ThurmanA. L., PowersL. S., ZouM., ZhaoY., HefelA., LiY., ZabnerJ.
CrossRef
Google scholar
|
[27] |
GuH., RamanA. T., WangX., GaitiF., ChaligneR., MohammadA. W., ArczewskaA., SmithZ. D., LandauD. A., AryeeM. J.
CrossRef
Google scholar
|
[28] |
YongW. S., HsuF. M. ChenP. (2016). Profiling genome-wide DNA methylation. Epigenet Chromatin. 9,
CrossRef
Google scholar
|
[29] |
DirksR. A., StunnenbergH. G. (2016). Genome-wide epigenomic profiling for biomarker discovery. Clin. Epigenetics, 8 : 122
CrossRef
Google scholar
|
[30] |
RauluseviciuteI., RyeM. (2019). DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin. Epigenetics, 11 : 193
CrossRef
Google scholar
|
[31] |
ZuoT., TyckoB., LiuT. M., LinJ. J. HuangT. (2009). Methods in DNA methylation profiling. Epigenomics, 1 : 331–345
CrossRef
Google scholar
|
[32] |
LiS. Tollefsbol T. (2021). DNA methylation methods: Global DNA methylation and methylomic analyses. Methods, 187 : 28–43
CrossRef
Google scholar
|
[33] |
AroraI. TollefsbolT. (2021). Computational methods and next-generation sequencing approaches to analyze epigenetics data: Profiling of methods and applications. Methods, 187 : 92–103
CrossRef
Google scholar
|
[34] |
LiD., ZhangB., XingX. (2015). Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods, 72 : 29–40
CrossRef
Google scholar
|
[35] |
MaunakeaA. K., NagarajanR. P., BilenkyM., BallingerT. J., SouzaC., FouseS. D., JohnsonB. E., HongC., NielsenC., ZhaoY.
CrossRef
Google scholar
|
[36] |
BernsteinB. E., StamatoyannopoulosJ. A., CostelloJ. F., RenB., MilosavljevicA., MeissnerA., KellisM., MarraM. A., BeaudetA. L., EckerJ. R.
CrossRef
Google scholar
|
[37] |
DunhamI., KundajeA., AldredS. F., CollinsP. J., DavisC., DoyleF., EpsteinC. B., FrietzeS., HarrowJ., KaulR.
CrossRef
Google scholar
|
[38] |
MeissnerA., MikkelsenT. S., GuH., WernigM., HannaJ., SivachenkoA., ZhangX., BernsteinB. E., NusbaumC., JaffeD. B.
CrossRef
Google scholar
|
[39] |
RobertsR. J., CarneiroM. O. SchatzM. (2013). The advantages of SMRT sequencing. Genome Biol., 14 : 405
CrossRef
Google scholar
|
[40] |
BibikovaM., BarnesB., TsanC., HoV., KlotzleB., LeJ. M., DelanoD., ZhangL., SchrothG. P., GundersonK. L.
CrossRef
Google scholar
|
[41] |
MoranS., ArribasC. (2016). Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics, 8 : 389–399
CrossRef
Google scholar
|
[42] |
FanS., TangJ., LiN., ZhaoY., AiR., ZhangK., WangM., DuW. (2019). Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. NPJ Genom. Med., 4 : 2
CrossRef
Google scholar
|
[43] |
GuoH., ZhuP., WuX., LiX., WenL. (2013). Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res., 23 : 2126–2135
CrossRef
Google scholar
|
[44] |
FarlikM., SheffieldN. C., NuzzoA., DatlingerP., neggerA., KlughammerJ. (2015). Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep., 10 : 1386–1397
CrossRef
Google scholar
|
[45] |
ZhuP., GuoH., RenY., HouY., DongJ., LiR., LianY., FanX., HuB., GaoY.
CrossRef
Google scholar
|
[46] |
GuoH., ZhuP., YanL., LiR., HuB., LianY., YanJ., RenX., LinS., LiJ.
CrossRef
Google scholar
|
[47] |
HanL., WuH. J., ZhuH., KimK. Y., MarjaniS. L., RiesterM., EuskirchenG., ZiX., YangJ., HanJ.
CrossRef
Google scholar
|
[48] |
ChenP. Y., CokusS. J. (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics, 11 : 203
CrossRef
Google scholar
|
[49] |
GuoW., FizievP., YanW., CokusS., SunX., ZhangM. Q., ChenP. Y. (2013). BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14 : 774
CrossRef
Google scholar
|
[50] |
HuangK. Y. Y., HuangY. J. ChenP. (2018). BS-Seeker3: ultrafast pipeline for bisulfite sequencing. BMC Bioinformatics, 19 : 111
CrossRef
Google scholar
|
[51] |
ByunH. M., SiegmundK. D., PanF., WeisenbergerD. J., KanelG., LairdP. W. YangA. (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet., 18 : 4808–4817
CrossRef
Google scholar
|
[52] |
CaliskanM., CusanovichD. A., OberC. (2012). The effects of EBV transformation on gene expression levels and methylation profiles. Hum. Mol. Genet., 20 : 1643–1652
CrossRef
Google scholar
|
[53] |
ZouL. S., ErdosM. R., TaylorD. L., ChinesP. S., VarshneyA., ParkerS. C. J., CollinsF. S., DidionJ. P. InstM. G. (2018). BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues. BMC Genomics, 19 : 390
CrossRef
Google scholar
|
[54] |
ZhangW., SpectorT. D., DeloukasP., BellJ. T. EngelhardtB. (2015). Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol., 16 : 14
CrossRef
Google scholar
|
[55] |
FangF., FanS., ZhangX. ZhangM. (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics, 22 : 2204–2209
CrossRef
Google scholar
|
[56] |
MaB., WilkerE. H., Willis-OwenS. A. G., ByunH. M., WongK. C. C., MottaV., BaccarelliA. A., SchwartzJ., CooksonW. O. C. M., KhabbazK.
CrossRef
Google scholar
|
[57] |
PavlovicM., RayP., PavlovicK., KotamartiA., ChenM. ZhangM. (2017). DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes. Bioinformatics, 33 : 2986–2994
CrossRef
Google scholar
|
[58] |
MaB., AllardC., BouchardL., PerronP., MittlemanM. A., HivertM. F. (2019). Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics, 14 : 405–420
CrossRef
Google scholar
|
[59] |
TianQ., ZouJ., TangJ., FangY., YuZ. (2019). MRCNN: a deep learning model for regression of genome-wide DNA methylation. BMC Genomics, 20 : 192
CrossRef
Google scholar
|
[60] |
FanS., HuangK., AiR., WangM. (2016). Predicting CpG methylation levels by integrating Infinium HumanMethylation450 BeadChip array data. Genomics, 107 : 132–137
CrossRef
Google scholar
|
[61] |
FanS., LiC., AiR., WangM., FiresteinG. S. (2016). Computationally expanding infinium HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis. Bioinformatics, 32 : 1773–1778
CrossRef
Google scholar
|
[62] |
ZhengY., JoyceB. T., LiuL., ZhangZ., KibbeW. A., ZhangW. (2017). Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res., 45 : 8697–8711
CrossRef
Google scholar
|
[63] |
LiG., RaffieldL., LogueM., MillerM. W., SantosH. P., SheaT. M., FryR. C. (2020). CUE: CpG imputation ensemble for DNA methylation levels across the human methylation450 (hm450) and epic (hm850) beadchip platforms. Epigenetics, 16 : 851–861
CrossRef
Google scholar
|
[64] |
TangJ., ZouJ., ZhangX., FanM., TianQ., FuS., GaoS. (2020). PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics, 21 : 364
CrossRef
Google scholar
|
[65] |
YuF., XuC., DengH. W. (2020). A novel computational strategy for DNA methylation imputation using mixture regression model (MRM). BMC Bioinformatics, 21 : 552
CrossRef
Google scholar
|
[66] |
AngermuellerC., LeeH. J., ReikW. (2017). DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18 : 67
CrossRef
Google scholar
|
[67] |
JiangL., WangC., TangJ. (2019). LightCpG: a multi-view CpG sites detection on single-cell whole genome sequence data. BMC Genomics, 20 : 306
CrossRef
Google scholar
|
[68] |
KapouraniC. A. (2019). Melissa: Bayesian clustering and imputation of single-cell methylomes. Genome Biol., 20 : 61
CrossRef
Google scholar
|
[69] |
P E de SouzaC., AndronescuM., MasudT., KabeerF., BieleJ., LaksE., LaiD., YeP., BrimhallJ., WangB.
CrossRef
Google scholar
|
[70] |
TangJ., ZouJ., FanM., TianQ., ZhangJ. (2021). CaMelia: imputation in single-cell methylomes based on local similarities between cells. Bioinformatics, 37 : btab029
CrossRef
Google scholar
|
[71] |
SuJ., YanH., WeiY., LiuH., LiuH., WangF., LvJ., WuQ. (2013). CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res., 41 : e4
CrossRef
Google scholar
|
[72] |
ParkY., FigueroaM. E., RozekL. S. SartorM. (2014). MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics, 30 : 2414–2422
CrossRef
Google scholar
|
[73] |
ZhangB., ZhouY., LinN., LowdonR. F., HongC., NagarajanR. P., ChengJ. B., LiD., StevensM., LeeH. J.
CrossRef
Google scholar
|
[74] |
KorthauerK., ChakrabortyS., BenjaminiY. IrizarryR. (2019). Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing. Biostatistics, 20 : 367–383
CrossRef
Google scholar
|
[75] |
WuD., GuJ. Zhang M. (2013). FastDMA: an infinium humanmethylation450 beadchip analyzer. PLoS One, 8 : e74275
CrossRef
Google scholar
|
[76] |
ShenL., ZhuJ., Robert LiS. Y. (2017). Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Bioinformatics, 33 : 3701–3708
CrossRef
Google scholar
|
[77] |
ZhangY., LiuH., LvJ., XiaoX., ZhuJ., LiuX., SuJ., LiX., WuQ., WangF.
CrossRef
Google scholar
|
[78] |
LeeW. MorrisJ. (2016). Identification of differentially methylated loci using wavelet-based functional mixed models. Bioinformatics, 32 : 664–672
CrossRef
Google scholar
|
[79] |
DenaultW.. R. P. and Jugessur, A. (2021) Detecting differentially methylated regions using a fast wavelet-based approach to functional association analysis. BMC Bioinformatics, BMC Bioinformatics. 22, 61. doi: 10.1186/s12859–021-03979-y
|
[80] |
WuH., XuT., FengH., ChenL., LiB., YaoB., QinZ., JinP. ConneelyK. (2015). Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res., 43 : e141
CrossRef
Google scholar
|
[81] |
AkalinA., KormakssonM., LiS., Garrett-BakelmanF. E., FigueroaM. E., MelnickA. MasonC. (2012). methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13 : R87
CrossRef
Google scholar
|
[82] |
FengH. (2019). Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol., 7 : 327–334
CrossRef
Google scholar
|
[83] |
NishiyamaA. (2021). Navigating the DNA methylation landscape of cancer. Trends Genet., 37 : 1012–1027
CrossRef
Google scholar
|
[84] |
FeinbergA. P., KoldobskiyM. A. (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet., 17 : 284–299
CrossRef
Google scholar
|
[85] |
HanahanD. WeinbergR. (2011). Hallmarks of cancer: the next generation. Cell, 144 : 646–674
CrossRef
Google scholar
|
[86] |
McDonaldO. G., LiX., SaundersT., TryggvadottirR., MentchS. J., WarmoesM. O., WordA. E., CarrerA., SalzT. H., NatsumeS.
CrossRef
Google scholar
|
[87] |
GlossopJ. R., NixonN. B., EmesR. D., SimJ., PackhamJ. C., MatteyD. L., FarrellW. E. FryerA. (2017). DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. Epigenomics, 9 : 419–428
CrossRef
Google scholar
|
[88] |
SunZ. H., LiuY. H., LiuJ. D., XuD. D., LiX. F., MengX. M., MaT. T., HuangC. (2017). Mecp2 regulates ptch1 expression through DNA methylation in rheumatoid arthritis. Inflammation, 40 : 1497–1508
CrossRef
Google scholar
|
[89] |
AiR., HammakerD., BoyleD. L., MorganR., WalshA. M., FanS., FiresteinG. S. (2016). Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun., 7 : 11849
CrossRef
Google scholar
|
[90] |
AiR., LaragioneT., HammakerD., BoyleD. L., WildbergA., MaeshimaK., PalescandoloE., KrishnaV., PocalykoD., WhitakerJ. W.
CrossRef
Google scholar
|
[91] |
BraunK. V. E., DhanaK., de VriesP. S., VoortmanT., van MeursJ. B. J., UitterlindenA. G., HofmanA., HuF. B., FrancoO. H. (2017). Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics, 9 : 15
CrossRef
Google scholar
|
[92] |
LiuZ., LiX., ZhangJ. T., CaiY. J., ChengT. L., ChengC., WangY., ZhangC. C., NieY. H., ChenZ. F.
CrossRef
Google scholar
|
[93] |
EryilmazI. E., CecenerG., ErerS., EgeliU., TuncaB., ZarifogluM., ElibolB., Bora TokcaerA., SakaE., DemirkiranM.
CrossRef
Google scholar
|
[94] |
HorvathS. (2013). DNA methylation age of human tissues and cell types. Genome Biol., 14 : R115
CrossRef
Google scholar
|
[95] |
PajaresM. J., Palanca-BallesterC., UrtasunR., Alemany-CosmeE., LahozA. (2021). Methods for analysis of specific DNA methylation status. Methods, 187 : 3–12
CrossRef
Google scholar
|
[96] |
MallikS. (2017). Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. Quant. Biol., 5 : 302–327
CrossRef
Google scholar
|
[97] |
van den HelderR., WeverB. M. M., van TrommelN. E., van SplunterA. P., MomC. H., KasiusJ. C., BleekerM. C. G. SteenbergenR. D. (2020). Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin. Epigenetics, 12 : 165
CrossRef
Google scholar
|
[98] |
WentzensenN., Bakkum-GamezJ. N., KillianJ. K., SampsonJ., GuidoR., GlassA., AdamsL., LuhnP., BrintonL. A., RushB.
CrossRef
Google scholar
|
[99] |
MaoY. K., LiuZ. B. (2020). Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol. Lett., 20 : 1619–1628
CrossRef
Google scholar
|
[100] |
ZhaoJ., WangL., KongD., HuG. (2020). Construction of novel DNA methylation-based prognostic model to predict survival in glioblastoma. J. Comput. Biol., 27 : 718–728
CrossRef
Google scholar
|
[101] |
HaradaH., MiyamotoK., YamashitaY., NakanoK., TaniyamaK., MiyataY., OhdanH. (2013). Methylation of breast cancer susceptibility gene 1 (BRCA1) predicts recurrence in patients with curatively resected stage I non-small cell lung cancer. Cancer, 119 : 792–798
CrossRef
Google scholar
|
[102] |
GrawS., ChappellK., WashamC. L., GiesA., BirdJ., RobesonM. S. ByrumS. (2021). Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics, 17 : 170–185
CrossRef
Google scholar
|
[103] |
CaoS., ZhaoY., WuY., SongT., BurairA. (2017). Transcription regulation by DNA methylation under stressful conditions in human cancer. Quant. Biol., 5 : 328–337
CrossRef
Google scholar
|
[104] |
ReelP. S., ReelS., PearsonE., TruccoE. (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 49 : 107739
CrossRef
Google scholar
|
[105] |
MaT. (2019). Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). BMC Genomics, 20 : 944
CrossRef
Google scholar
|
[106] |
RappoportN. (2018). Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res., 46 : 10546–10562
CrossRef
Google scholar
|
/
〈 | 〉 |