The progress on the estimation of DNA methylation level and the detection of abnormal methylation

Shicai Fan , Likun Wang , Liang Liang , Xiaohong Cao , Jianxiong Tang , Qi Tian

Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 55 -66.

PDF (1346KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 55 -66. DOI: 10.15302/J-QB-022-0289
REVIEW
REVIEW

The progress on the estimation of DNA methylation level and the detection of abnormal methylation

Author information +
History +
PDF (1346KB)

Abstract

Background: DNA methylation is a key heritable epigenetic modification that plays a crucial role in transcriptional regulation and therefore a broad range of biological processes. The complex patterns of DNA methylation highlight the significance of the profiling the DNA methylation landscape.

Results: In this review, the main high-throughput detection technologies are summarized, and then the three trends of computational estimation of DNA methylation levels were analyzed, especially the expanding of the methylation data with lower coverage. Furthermore, the detection methods of differential methylation patterns for sequencing and array data were presented.

Conclusions: More and more research indicated the great importance of DNA methylation changes across different diseases, such as cancers. Although a lot of enormous progress has been made in understanding the role of DNA methylation, only few methylated genes or functional elements serve as clinically relevant cancer biomarkers. The bottleneck in DNA methylation advances has shifted from data generation to data analysis. Therefore, it is meaningful to develop machine learning models for computational estimation of methylation profiling and identify the potential biomarkers.

Graphical abstract

Keywords

DNA methylation / genome-wide profiling / computational estimation / single-cell methylome / differential methylation detection

Cite this article

Download citation ▾
Shicai Fan, Likun Wang, Liang Liang, Xiaohong Cao, Jianxiong Tang, Qi Tian. The progress on the estimation of DNA methylation level and the detection of abnormal methylation. Quant. Biol., 2022, 10(1): 55-66 DOI:10.15302/J-QB-022-0289

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BirdA. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321 : 209–213

[2]

ReikW. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet., 2 : 21–32

[3]

ReikW., DeanW. (2001). Epigenetic reprogramming in mammalian development. Science, 293 : 1089–1093

[4]

MohandasT., SparkesR. S. ShapiroL. (1981). Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science, 211 : 393–396

[5]

GartlerS. M. RiggsA. (1983). Mammalian X-chromosome inactivation. Annu. Rev. Genet., 17 : 155–190

[6]

ReikW., CollickA., NorrisM. L., BartonS. C. SuraniM. (1987). Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature, 328 : 248–251

[7]

ChenS., YanG., ZhangW., LiJ., JiangR. (2021). RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat. Commun., 12 : 2177

[8]

LiuQ., XiaF., YinQ. (2018). Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinformatics, 34 : 732–738

[9]

BaylinS. B. JonesP. (2011). A decade of exploring the cancer epigenome—biological and translational implications. Nat. Rev. Cancer, 11 : 726–734

[10]

SkvortsovaK., StirzakerC. (2019). The DNA methylation landscape in cancer. Essays Biochem., 63 : 797–811

[11]

FanS. (2016). Methods for genome-wide DNA methylation analysis in human cancer. Brief. Funct. Genomics, 15 : 432–442

[12]

LairdP. (2010). Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11 : 191–203

[13]

BockC. (2012). Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13 : 705–719

[14]

CokusS. J., FengS., ZhangX., ChenZ., MerrimanB., HaudenschildC. D., PradhanS., NelsonS. F., PellegriniM. JacobsenS. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452 : 215–219

[15]

FrisoS., ChoiS. W., DolnikowskiG. G. (2002). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal. Chem., 74 : 4526–4531

[16]

LisantiS., OmarW. A., TomaszewskiB., De PrinsS., JacobsG., KoppenG., MathersJ. C. LangieS. (2013). Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One, 8 : e79044

[17]

ListerR., MalleyR. C., Tonti-FilippiniJ., GregoryB. D., BerryC. C., MillarA. H. EckerJ. (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133 : 523–536

[18]

KellyT. K., LiuY., LayF. D., LiangG., BermanB. P. JonesP. (2012). Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res., 22 : 2497–2506

[19]

WeberM., DaviesJ. J., WittigD., OakeleyE. J., HaaseM., LamW. L. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet., 37 : 853–862

[20]

PidsleyR., ZotenkoE., PetersT. J., LawrenceM. G., RisbridgerG. P., MolloyP., Van DjikS., MuhlhauslerB., StirzakerC. ClarkS. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol., 17 : 208

[21]

EckhardtF., LewinJ., CorteseR., RakyanV. K., AttwoodJ., BurgerM., BurtonJ., CoxT. V., DaviesR., DownT. A. . (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet., 38 : 1378–1385

[22]

TianY., MorrisT. J., WebsterA. P., YangZ., BeckS., FeberA. TeschendorffA. (2017). ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33 : 3982–3984

[23]

SmallwoodS. A., LeeH. J., AngermuellerC., KruegerF., SaadehH., PeatJ., AndrewsS. R., StegleO., ReikW. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods, 11 : 817–820

[24]

AngermuellerC., ClarkS. J., LeeH. J., MacaulayI. C., TengM. J., HuT. X., KruegerF., SmallwoodS., PontingC. P., VoetT. . (2016). Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods, 13 : 229–232

[25]

PottS. (2017). Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife, e23203

[26]

WangY., WangA., LiuZ., ThurmanA. L., PowersL. S., ZouM., ZhaoY., HefelA., LiY., ZabnerJ. . (2019). Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res., 29 : 1329–1342

[27]

GuH., RamanA. T., WangX., GaitiF., ChaligneR., MohammadA. W., ArczewskaA., SmithZ. D., LandauD. A., AryeeM. J. . (2021). Smart-RRBS for single-cell methylome and transcriptome analysis. Nat. Protoc., 16 : 4004–4030

[28]

YongW. S., HsuF. M. ChenP. (2016). Profiling genome-wide DNA methylation. Epigenet Chromatin. 9, 26

[29]

DirksR. A., StunnenbergH. G. (2016). Genome-wide epigenomic profiling for biomarker discovery. Clin. Epigenetics, 8 : 122

[30]

RauluseviciuteI., RyeM. (2019). DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin. Epigenetics, 11 : 193

[31]

ZuoT., TyckoB., LiuT. M., LinJ. J. HuangT. (2009). Methods in DNA methylation profiling. Epigenomics, 1 : 331–345

[32]

LiS. Tollefsbol T. (2021). DNA methylation methods: Global DNA methylation and methylomic analyses. Methods, 187 : 28–43

[33]

AroraI. TollefsbolT. (2021). Computational methods and next-generation sequencing approaches to analyze epigenetics data: Profiling of methods and applications. Methods, 187 : 92–103

[34]

LiD., ZhangB., XingX. (2015). Combining MeDIP-seq and MRE-seq to investigate genome-wide CpG methylation. Methods, 72 : 29–40

[35]

MaunakeaA. K., NagarajanR. P., BilenkyM., BallingerT. J., SouzaC., FouseS. D., JohnsonB. E., HongC., NielsenC., ZhaoY. . (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466 : 253–257

[36]

BernsteinB. E., StamatoyannopoulosJ. A., CostelloJ. F., RenB., MilosavljevicA., MeissnerA., KellisM., MarraM. A., BeaudetA. L., EckerJ. R. . (2010). The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol., 28 : 1045–1048

[37]

DunhamI., KundajeA., AldredS. F., CollinsP. J., DavisC., DoyleF., EpsteinC. B., FrietzeS., HarrowJ., KaulR. . (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489 : 57–74

[38]

MeissnerA., MikkelsenT. S., GuH., WernigM., HannaJ., SivachenkoA., ZhangX., BernsteinB. E., NusbaumC., JaffeD. B. . (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454 : 766–770

[39]

RobertsR. J., CarneiroM. O. SchatzM. (2013). The advantages of SMRT sequencing. Genome Biol., 14 : 405

[40]

BibikovaM., BarnesB., TsanC., HoV., KlotzleB., LeJ. M., DelanoD., ZhangL., SchrothG. P., GundersonK. L. . (2011). High density DNA methylation array with single CpG site resolution. Genomics, 98 : 288–295

[41]

MoranS., ArribasC. (2016). Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics, 8 : 389–399

[42]

FanS., TangJ., LiN., ZhaoY., AiR., ZhangK., WangM., DuW. (2019). Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers. NPJ Genom. Med., 4 : 2

[43]

GuoH., ZhuP., WuX., LiX., WenL. (2013). Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res., 23 : 2126–2135

[44]

FarlikM., SheffieldN. C., NuzzoA., DatlingerP., neggerA., KlughammerJ. (2015). Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep., 10 : 1386–1397

[45]

ZhuP., GuoH., RenY., HouY., DongJ., LiR., LianY., FanX., HuB., GaoY. . (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet., 50 : 12–19

[46]

GuoH., ZhuP., YanL., LiR., HuB., LianY., YanJ., RenX., LinS., LiJ. . (2014). The DNA methylation landscape of human early embryos. Nature, 511 : 606–610

[47]

HanL., WuH. J., ZhuH., KimK. Y., MarjaniS. L., RiesterM., EuskirchenG., ZiX., YangJ., HanJ. . (2017). Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res., 45 : e77

[48]

ChenP. Y., CokusS. J. (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics, 11 : 203

[49]

GuoW., FizievP., YanW., CokusS., SunX., ZhangM. Q., ChenP. Y. (2013). BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14 : 774

[50]

HuangK. Y. Y., HuangY. J. ChenP. (2018). BS-Seeker3: ultrafast pipeline for bisulfite sequencing. BMC Bioinformatics, 19 : 111

[51]

ByunH. M., SiegmundK. D., PanF., WeisenbergerD. J., KanelG., LairdP. W. YangA. (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet., 18 : 4808–4817

[52]

CaliskanM., CusanovichD. A., OberC. (2012). The effects of EBV transformation on gene expression levels and methylation profiles. Hum. Mol. Genet., 20 : 1643–1652

[53]

ZouL. S., ErdosM. R., TaylorD. L., ChinesP. S., VarshneyA., ParkerS. C. J., CollinsF. S., DidionJ. P. InstM. G. (2018). BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues. BMC Genomics, 19 : 390

[54]

ZhangW., SpectorT. D., DeloukasP., BellJ. T. EngelhardtB. (2015). Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol., 16 : 14

[55]

FangF., FanS., ZhangX. ZhangM. (2006). Predicting methylation status of CpG islands in the human brain. Bioinformatics, 22 : 2204–2209

[56]

MaB., WilkerE. H., Willis-OwenS. A. G., ByunH. M., WongK. C. C., MottaV., BaccarelliA. A., SchwartzJ., CooksonW. O. C. M., KhabbazK. . (2014). Predicting DNA methylation level across human tissues. Nucleic Acids Res., 42 : 3515–3528

[57]

PavlovicM., RayP., PavlovicK., KotamartiA., ChenM. ZhangM. (2017). DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes. Bioinformatics, 33 : 2986–2994

[58]

MaB., AllardC., BouchardL., PerronP., MittlemanM. A., HivertM. F. (2019). Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics, 14 : 405–420

[59]

TianQ., ZouJ., TangJ., FangY., YuZ. (2019). MRCNN: a deep learning model for regression of genome-wide DNA methylation. BMC Genomics, 20 : 192

[60]

FanS., HuangK., AiR., WangM. (2016). Predicting CpG methylation levels by integrating Infinium HumanMethylation450 BeadChip array data. Genomics, 107 : 132–137

[61]

FanS., LiC., AiR., WangM., FiresteinG. S. (2016). Computationally expanding infinium HumanMethylation450 BeadChip array data to reveal distinct DNA methylation patterns of rheumatoid arthritis. Bioinformatics, 32 : 1773–1778

[62]

ZhengY., JoyceB. T., LiuL., ZhangZ., KibbeW. A., ZhangW. (2017). Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res., 45 : 8697–8711

[63]

LiG., RaffieldL., LogueM., MillerM. W., SantosH. P., SheaT. M., FryR. C. (2020). CUE: CpG imputation ensemble for DNA methylation levels across the human methylation450 (hm450) and epic (hm850) beadchip platforms. Epigenetics, 16 : 851–861

[64]

TangJ., ZouJ., ZhangX., FanM., TianQ., FuS., GaoS. (2020). PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics, 21 : 364

[65]

YuF., XuC., DengH. W. (2020). A novel computational strategy for DNA methylation imputation using mixture regression model (MRM). BMC Bioinformatics, 21 : 552

[66]

AngermuellerC., LeeH. J., ReikW. (2017). DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18 : 67

[67]

JiangL., WangC., TangJ. (2019). LightCpG: a multi-view CpG sites detection on single-cell whole genome sequence data. BMC Genomics, 20 : 306

[68]

KapouraniC. A. (2019). Melissa: Bayesian clustering and imputation of single-cell methylomes. Genome Biol., 20 : 61

[69]

P E de SouzaC., AndronescuM., MasudT., KabeerF., BieleJ., LaksE., LaiD., YeP., BrimhallJ., WangB. . (2020). Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data. PLOS Comput. Biol., 16 : e1008270

[70]

TangJ., ZouJ., FanM., TianQ., ZhangJ. (2021). CaMelia: imputation in single-cell methylomes based on local similarities between cells. Bioinformatics, 37 : btab029

[71]

SuJ., YanH., WeiY., LiuH., LiuH., WangF., LvJ., WuQ. (2013). CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res., 41 : e4

[72]

ParkY., FigueroaM. E., RozekL. S. SartorM. (2014). MethylSig: a whole genome DNA methylation analysis pipeline. Bioinformatics, 30 : 2414–2422

[73]

ZhangB., ZhouY., LinN., LowdonR. F., HongC., NagarajanR. P., ChengJ. B., LiD., StevensM., LeeH. J. . (2013). Functional DNA methylation differences between tissues, cell types, and across individuals discovered using the M&M algorithm. Genome Res., 23 : 1522–1540

[74]

KorthauerK., ChakrabortyS., BenjaminiY. IrizarryR. (2019). Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing. Biostatistics, 20 : 367–383

[75]

WuD., GuJ. Zhang M. (2013). FastDMA: an infinium humanmethylation450 beadchip analyzer. PLoS One, 8 : e74275

[76]

ShenL., ZhuJ., Robert LiS. Y. (2017). Detect differentially methylated regions using non-homogeneous hidden Markov model for methylation array data. Bioinformatics, 33 : 3701–3708

[77]

ZhangY., LiuH., LvJ., XiaoX., ZhuJ., LiuX., SuJ., LiX., WuQ., WangF. . (2011). QDMR: a quantitative method for identification of differentially methylated regions by entropy. Nucleic Acids Res., 39 : e58

[78]

LeeW. MorrisJ. (2016). Identification of differentially methylated loci using wavelet-based functional mixed models. Bioinformatics, 32 : 664–672

[79]

DenaultW.. R. P. and Jugessur, A. (2021) Detecting differentially methylated regions using a fast wavelet-based approach to functional association analysis. BMC Bioinformatics, BMC Bioinformatics. 22, 61. doi: 10.1186/s12859–021-03979-y

[80]

WuH., XuT., FengH., ChenL., LiB., YaoB., QinZ., JinP. ConneelyK. (2015). Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res., 43 : e141

[81]

AkalinA., KormakssonM., LiS., Garrett-BakelmanF. E., FigueroaM. E., MelnickA. MasonC. (2012). methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol., 13 : R87

[82]

FengH. (2019). Differential methylation analysis for bisulfite sequencing using DSS. Quant. Biol., 7 : 327–334

[83]

NishiyamaA. (2021). Navigating the DNA methylation landscape of cancer. Trends Genet., 37 : 1012–1027

[84]

FeinbergA. P., KoldobskiyM. A. (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet., 17 : 284–299

[85]

HanahanD. WeinbergR. (2011). Hallmarks of cancer: the next generation. Cell, 144 : 646–674

[86]

McDonaldO. G., LiX., SaundersT., TryggvadottirR., MentchS. J., WarmoesM. O., WordA. E., CarrerA., SalzT. H., NatsumeS. . (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet., 49 : 367–376

[87]

GlossopJ. R., NixonN. B., EmesR. D., SimJ., PackhamJ. C., MatteyD. L., FarrellW. E. FryerA. (2017). DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. Epigenomics, 9 : 419–428

[88]

SunZ. H., LiuY. H., LiuJ. D., XuD. D., LiX. F., MengX. M., MaT. T., HuangC. (2017). Mecp2 regulates ptch1 expression through DNA methylation in rheumatoid arthritis. Inflammation, 40 : 1497–1508

[89]

AiR., HammakerD., BoyleD. L., MorganR., WalshA. M., FanS., FiresteinG. S. (2016). Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun., 7 : 11849

[90]

AiR., LaragioneT., HammakerD., BoyleD. L., WildbergA., MaeshimaK., PalescandoloE., KrishnaV., PocalykoD., WhitakerJ. W. . (2018). Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun., 9 : 1921

[91]

BraunK. V. E., DhanaK., de VriesP. S., VoortmanT., van MeursJ. B. J., UitterlindenA. G., HofmanA., HuF. B., FrancoO. H. (2017). Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin. Epigenetics, 9 : 15

[92]

LiuZ., LiX., ZhangJ. T., CaiY. J., ChengT. L., ChengC., WangY., ZhangC. C., NieY. H., ChenZ. F. . (2016). Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature, 530 : 98–102

[93]

EryilmazI. E., CecenerG., ErerS., EgeliU., TuncaB., ZarifogluM., ElibolB., Bora TokcaerA., SakaE., DemirkiranM. . (2017). Epigenetic approach to early-onset Parkinson’s disease: low methylation status of SNCA and PARK2 promoter regions. Neurol. Res., 39 : 965–972

[94]

HorvathS. (2013). DNA methylation age of human tissues and cell types. Genome Biol., 14 : R115

[95]

PajaresM. J., Palanca-BallesterC., UrtasunR., Alemany-CosmeE., LahozA. (2021). Methods for analysis of specific DNA methylation status. Methods, 187 : 3–12

[96]

MallikS. (2017). Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. Quant. Biol., 5 : 302–327

[97]

van den HelderR., WeverB. M. M., van TrommelN. E., van SplunterA. P., MomC. H., KasiusJ. C., BleekerM. C. G. SteenbergenR. D. (2020). Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin. Epigenetics, 12 : 165

[98]

WentzensenN., Bakkum-GamezJ. N., KillianJ. K., SampsonJ., GuidoR., GlassA., AdamsL., LuhnP., BrintonL. A., RushB. . (2014). Discovery and validation of methylation markers for endometrial cancer. Int. J. Cancer, 135 : 1860–1868

[99]

MaoY. K., LiuZ. B. (2020). Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol. Lett., 20 : 1619–1628

[100]

ZhaoJ., WangL., KongD., HuG. (2020). Construction of novel DNA methylation-based prognostic model to predict survival in glioblastoma. J. Comput. Biol., 27 : 718–728

[101]

HaradaH., MiyamotoK., YamashitaY., NakanoK., TaniyamaK., MiyataY., OhdanH. (2013). Methylation of breast cancer susceptibility gene 1 (BRCA1) predicts recurrence in patients with curatively resected stage I non-small cell lung cancer. Cancer, 119 : 792–798

[102]

GrawS., ChappellK., WashamC. L., GiesA., BirdJ., RobesonM. S. ByrumS. (2021). Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics, 17 : 170–185

[103]

CaoS., ZhaoY., WuY., SongT., BurairA. (2017). Transcription regulation by DNA methylation under stressful conditions in human cancer. Quant. Biol., 5 : 328–337

[104]

ReelP. S., ReelS., PearsonE., TruccoE. (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 49 : 107739

[105]

MaT. (2019). Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE). BMC Genomics, 20 : 944

[106]

RappoportN. (2018). Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res., 46 : 10546–10562

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Higher Education Press.

AI Summary AI Mindmap
PDF (1346KB)

2559

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/