ASTM: Developing the web service for anthrax related spatiotemporal characteristics and meteorology study
Shiwei Fan, Ming Xiao, Boyu Sun, Weizhong Zhou, Qingrong Chen, Weimin Lv, Pengfei Zhang, Le Zhang
ASTM: Developing the web service for anthrax related spatiotemporal characteristics and meteorology study
Background: Anthrax is a zoonotic infectious disease caused by Bacillus anthracis. Investigating the spatiotemporal characteristics of anthrax and the impact of meteorological factors on the incidence of anthrax is helpful for the prevention and control of anthrax.
Methods: At first, we applied the Granger causality test to explore the spatiotemporal characteristics of anthrax transmission between the counties and cities of Gannan Tibetan Autonomous Prefecture, Gansu Province of China. Then, we constructed three generalized linear models to analyze the impact of meteorological factors on the monthly number of anthrax cases in Gannan Tibetan Autonomous Prefecture. Finally, we developed an easy-to-use online web server that integrates the above functions.
Results: This study developed an online service website (ASTM Anthrax in Gannan, Zhang Lab) for the analysis and visualization of anthrax, which not only can investigate the correlation of anthrax among different regions in Gannan Tibetan Autonomous Prefecture, but also can analyze the correlation between meteorological factors and the number of anthrax cases.
Conclusions: Our study not only explored spatiotemporal characteristics of anthrax transmission, but also analyzed the impact of seven meteorological factors on the monthly number of anthrax cases. Meanwhile, the online service website which integrates the above functions is useful for the prevention and control of anthrax.
We tried to use the anthrax cases and meteorological data of Gannan Tibetan Autonomous Prefecture, Gansu Province, from 2005 to 2019 to investigate the spatiotemporal characteristics of anthrax incidence and its relationship with the meteorological factors. In addition, we developed a visualization platform for data sharing and analysis. Finally, our study can provide references for the prevention and control of anthrax for China and other countries.
time series analysis / correlation analysis / visualization / web service / data mining
[1] |
Kamal,S. M., Rashid,A. K., Bakar,M. A. Ahad,M. ( 2011). Anthrax: an update. Asian Pac. J. Trop. Biomed., 1 : 496– 501
CrossRef
Google scholar
|
[2] |
Goel,A. ( 2015). Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases, 3 : 20– 33
CrossRef
Google scholar
|
[3] |
Hueffer,K., Drown,D., Romanovsky,V. ( 2020). Factors contributing to anthrax outbreaks in the circumpolar north. EcoHealth, 17 : 174– 180
CrossRef
Google scholar
|
[4] |
Nderitu,L. M., Gachohi,J., Otieno,F., Mogoa,E. G., Muturi,M., Mwatondo,A., Osoro,E. M., Ngere,I., Munyua,P. M., Oyas,H.
CrossRef
Google scholar
|
[5] |
Lyu,W., Wei,K., Liu,D., Zhou,W., Wang,W. ( 2019). Spatiotemporal clustering of anthrax in Gannan Tibetan Autonomous Prefecture of Gansu, 2011–2017. Dis. Surveill., 34 : 32– 36
|
[6] |
Yu,D., He,J., Zhang,E., Wang,P., Liu,D., Hou,Y., Zhang,H., Wei,K., Gou,F., Zhang,H.
CrossRef
Google scholar
|
[7] |
Li,Y., Yin,W., Hugh-Jones,M., Wang,L., Mu,D., Ren,X., Zeng,L., Chen,Q., Li,W., Wei,J.
CrossRef
Google scholar
|
[8] |
Cao,L. T., Liu,H. H., Li,J., Yin,X. D., Duan,Y. ( 2020). Relationship of meteorological factors and human brucellosis in Hebei Province, China. Sci. Total Environ., 703 : 135491– 135498
CrossRef
Google scholar
|
[9] |
Nili,S., Khanjani,N., Bakhtiari,B., Jahani,Y. ( 2021). The effect of meteorological variables on salmonellosis incidence in Kermanshah, West of Iran: a generalized linear model with negative binomial approach. J. Environ. Health Sci. Eng., 19 : 1171– 1177
CrossRef
Google scholar
|
[10] |
Chen,W. Lai,S. Yang,Y., Liu,K., Li,X. Yao,H. Li,Y., Zhou,H., Wang,L. Mu,D.
CrossRef
Google scholar
|
[11] |
Brownlie,T., Bishop,T., Parry,M., Salmon,S. E. Hunnam,J. ( 2020). Predicting the periodic risk of anthrax in livestock in Victoria, Australia, using meteorological data. Int. J. Biometeorol., 64 : 601– 610
CrossRef
Google scholar
|
[12] |
ScottL. M. JanikasM. V. ( 2010) Spatial statistics in arcgis. In: Handbook of Applied Spatial Analysis, pp. 27‒ 41. Springer
|
[13] |
Carlson,C. J., Kracalik,I. T., Ross,N., Alexander,K. A., Hugh-Jones,M. E., Fegan,M., Elkin,B. T., Epp,T., Shury,T. K., Zhang,W.
CrossRef
Google scholar
|
[14] |
R Core Team. (2021) R: A language and environment for statistical computing. Available from the website of r-project
|
[15] |
Granger,C. ( 1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37 : 424– 438
CrossRef
Google scholar
|
[16] |
GannanTibetan Autonomous Prefecture Statistics Bureau theGannan Investigation Team of National Bureau of Statistics. ( 2021) Gannan statistical yearbook. Available from the website of statistics bureau in Gannan
|
[17] |
WuX., LangL., MaW., SongT., KangM., HeJ., ZhangY., LuL., LinH. LingL. ( 2018) Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Sci. Total Environ., 628–629, 766– 771
|
[18] |
QiF., DingX.. ( 2021) National greenhouse data system.
|
[19] |
World Health Organization. (2021) International statistical classification of diseases and related health problems. Available from the website of World Health Organization
|
[20] |
Dickey,D. A. Fuller,W. ( 1979). Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc., 74 : 427– 431
|
[21] |
Dickey,D. A. Fuller,W. ( 1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49 : 1057– 1072
CrossRef
Google scholar
|
[22] |
Kwiatkowski,D., Phillips,P. C., Schmidt,P. ( 1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. J. Econom., 54 : 159– 178
CrossRef
Google scholar
|
[23] |
Zhang,L., Fu,C., Li,J., Zhao,Z., Hou,Y., Zhou,W. ( 2019). Discovery of a ruthenium complex for the theranosis of glioma through targeting the mitochondrial DNA with bioinformatic methods. Int. J. Mol. Sci., 20 : 4643– 4658
CrossRef
Google scholar
|
[24] |
Zhang,L., Zhao,J., Bi,H., Yang,X., Zhang,Z., Su,Y., Li,Z., Zhang,L., Sanderson,B. J., Liu,J.
CrossRef
Google scholar
|
[25] |
Xia,Y., Yang,C., Hu,N., Yang,Z., He,X., Li,T. ( 2017). Exploring the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme patients by a novel survival analysis model. BMC Genomics, 18 : 950
CrossRef
Google scholar
|
[26] |
Li,T., Cheng,Z. ( 2017). Developing a novel parameter estimation method for agent-based model in immune system simulation under the framework of history matching: A case study on influenza a virus infection. Int. J. Mol. Sci., 18 : 2592– 2603
CrossRef
Google scholar
|
[27] |
Gao,H., Yin,Z., Cao,Z. ( 2017). Developing an agent-based drug model to investigate the synergistic effects of drug combinations. Molecules, 22 : 2209– 2221
CrossRef
Google scholar
|
[28] |
Zhang,L., Liu,G., Kong,M., Li,T., Wu,D., Zhou,X., Yang,C., Xia,L., Yang,Z. ( 2021). Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. Bioinformatics, 37 : 1554– 1561
CrossRef
Google scholar
|
[29] |
Zhang,L. ( 2017). Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al. Phys. Life Rev., 20 : 140– 142
CrossRef
Google scholar
|
[30] |
Zhang,L., Qiao,M., Gao,H., Hu,B., Tan,H., Zhou,X. Li,C. ( 2016). Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale, 8 : 14877– 14887
CrossRef
Google scholar
|
[31] |
Gao,J., Liu,P., Liu,G. ( 2021). Robust needle localization and enhancement algorithm for ultrasound by deep learning and beam steering methods. J. Comput. Sci. Technol., 36 : 334– 346
CrossRef
Google scholar
|
[32] |
Zhang,L., Lv,J., Xiao,M., Yang,L. ( 2021). Exploring the underlying mechanism of action of a traditional chinese medicine formula, youdujing ointment, for cervical cancer treatment. Quant. Biol., 9 : 292– 303
CrossRef
Google scholar
|
[33] |
Wu,W., Song,L., Yang,Y., Wang,J., Liu,H. ( 2020). Exploring the dynamics and interplay of human papillomavirus and cervical tumorigenesis by integrating biological data into a mathematical model. BMC Bioinformatics, 21 : 152
CrossRef
Google scholar
|
[34] |
Lei,W., Zeng,H., Feng,H., Ru,X., Li,Q., Xiao,M., Zheng,H., Chen,Y. ( 2020). Development of an early prediction model for subarachnoid hemorrhage with genetic and signaling pathway analysis. Front. Genet., 11 : 391– 400
CrossRef
Google scholar
|
[35] |
Zhang,L., Zheng,C., Li,T., Xing,L., Zeng,H., Li,T., Yang,H., Cao,J., Chen,B. ( 2017). Building up a robust risk mathematical platform to predict colorectal cancer. Complexity, 2017 : 8917258
CrossRef
Google scholar
|
[36] |
Zhang,L., Xiao,M., Zhou,J. ( 2018). Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics, 34 : 3624– 3630
CrossRef
Google scholar
|
[37] |
Zhang,L., Liu,Y., Wang,M., Wu,Z., Li,N., Zhang,J. ( 2017). EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol., 9 : 477– 488
CrossRef
Google scholar
|
[38] |
You,Y., Ru,X., Lei,W., Li,T., Xiao,M., Zheng,H., Chen,Y. ( 2020). Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics, 21 : 383
CrossRef
Google scholar
|
[39] |
Zhang,L., Bai,W., Yuan,N. ( 2019). Comprehensively benchmarking applications for detecting copy number variation. PLOS Comput. Biol., 15 : e1007069
CrossRef
Google scholar
|
[40] |
Lopez,L. ( 2017). Testing for granger causality in panel data. Stata J., 17 : 972– 984
CrossRef
Google scholar
|
[41] |
Anderson,G. B., Bell,M. L. Peng,R. ( 2013). Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect., 121 : 1111– 1119
CrossRef
Google scholar
|
[42] |
Yin,Q. ( 2018). A better indicator to measure the effects of meteorological factors on cardiovascular mortality: heat index. Environ. Sci. Pollut. Res. Int., 25 : 22842– 22849
CrossRef
Google scholar
|
[43] |
National Weather SERVICE. (2021) Heat index. Available from the website of National Weather Service
|
[44] |
Willmott,C. J. ( 2005). Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Clim. Res., 30 : 79– 82
CrossRef
Google scholar
|
[45] |
Cavanaugh,J. E. Neath,A. ( 2019). The akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat., 11 : e1460
CrossRef
Google scholar
|
[46] |
Zhang,L., Zhang,L., Guo,Y., Xiao,M., Feng,L., Yang,C., Wang,G. ( 2021). MCDB: A comprehensive curated mitotic catastrophe database for retrieval, protein sequence alignment, and target prediction. Acta Pharm. Sin. B, 11 : 3092– 3104
CrossRef
Google scholar
|
[47] |
Xiao,M., Liu,G., Xie,J., Dai,Z., Wei,Z., Ren,Z., Yu,J. ( 2021). 2019ncovas: Developing the web service for epidemic transmission prediction, genome analysis, and psychological stress assessment for 2019-ncov. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18 : 1250– 1261
CrossRef
Google scholar
|
[48] |
Xiao,M., Yang,X., Yu,J. ( 2020). CGIDLA: Developing the web server for CpG island related density and laups (lineage-associated underrepresented permutations) study. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 17 : 2148– 2154
CrossRef
Google scholar
|
[49] |
Zhang,L., Dai,Z., Yu,J. ( 2021). CpG-island-based annotation and analysis of human housekeeping genes. Brief. Bioinform., 22 : 515– 525
CrossRef
Google scholar
|
[50] |
Red Hat Enterprise Linux. (2018) Centos linux. Available from the website of The CentOS Project
|
[51] |
F5 incorporation. (2021) Nginx 1.18. Available from the website of NGINX
|
[52] |
Bootstrap Team. (2021) Bootstrap 4.4.1.
|
[53] |
Facebook Inc. (2021) React 17.0.1.
|
/
〈 | 〉 |