ASTM: Developing the web service for anthrax related spatiotemporal characteristics and meteorology study

Shiwei Fan , Ming Xiao , Boyu Sun , Weizhong Zhou , Qingrong Chen , Weimin Lv , Pengfei Zhang , Le Zhang

Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 67 -78.

PDF (4002KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 67 -78. DOI: 10.15302/J-QB-022-0288
RESEARCH ARTICLE
RESEARCH ARTICLE

ASTM: Developing the web service for anthrax related spatiotemporal characteristics and meteorology study

Author information +
History +
PDF (4002KB)

Abstract

Background: Anthrax is a zoonotic infectious disease caused by Bacillus anthracis. Investigating the spatiotemporal characteristics of anthrax and the impact of meteorological factors on the incidence of anthrax is helpful for the prevention and control of anthrax.

Methods: At first, we applied the Granger causality test to explore the spatiotemporal characteristics of anthrax transmission between the counties and cities of Gannan Tibetan Autonomous Prefecture, Gansu Province of China. Then, we constructed three generalized linear models to analyze the impact of meteorological factors on the monthly number of anthrax cases in Gannan Tibetan Autonomous Prefecture. Finally, we developed an easy-to-use online web server that integrates the above functions.

Results: This study developed an online service website (ASTM Anthrax in Gannan, Zhang Lab) for the analysis and visualization of anthrax, which not only can investigate the correlation of anthrax among different regions in Gannan Tibetan Autonomous Prefecture, but also can analyze the correlation between meteorological factors and the number of anthrax cases.

Conclusions: Our study not only explored spatiotemporal characteristics of anthrax transmission, but also analyzed the impact of seven meteorological factors on the monthly number of anthrax cases. Meanwhile, the online service website which integrates the above functions is useful for the prevention and control of anthrax.

Graphical abstract

Keywords

time series analysis / correlation analysis / visualization / web service / data mining

Cite this article

Download citation ▾
Shiwei Fan, Ming Xiao, Boyu Sun, Weizhong Zhou, Qingrong Chen, Weimin Lv, Pengfei Zhang, Le Zhang. ASTM: Developing the web service for anthrax related spatiotemporal characteristics and meteorology study. Quant. Biol., 2022, 10(1): 67-78 DOI:10.15302/J-QB-022-0288

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kamal,S. M., Rashid,A. K., Bakar,M. A. Ahad,M. ( 2011). Anthrax: an update. Asian Pac. J. Trop. Biomed., 1 : 496– 501

[2]

Goel,A. ( 2015). Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases, 3 : 20– 33

[3]

Hueffer,K., Drown,D., Romanovsky,V. ( 2020). Factors contributing to anthrax outbreaks in the circumpolar north. EcoHealth, 17 : 174– 180

[4]

Nderitu,L. M., Gachohi,J., Otieno,F., Mogoa,E. G., Muturi,M., Mwatondo,A., Osoro,E. M., Ngere,I., Munyua,P. M., Oyas,H. . ( 2021). Spatial clustering of livestock Anthrax events associated with agro-ecological zones in Kenya, 1957‒2017. BMC Infect. Dis., 21 : 191

[5]

Lyu,W., Wei,K., Liu,D., Zhou,W., Wang,W. ( 2019). Spatiotemporal clustering of anthrax in Gannan Tibetan Autonomous Prefecture of Gansu, 2011–2017. Dis. Surveill., 34 : 32– 36

[6]

Yu,D., He,J., Zhang,E., Wang,P., Liu,D., Hou,Y., Zhang,H., Wei,K., Gou,F., Zhang,H. . ( 2018). Investigation and source-tracing of an anthrax outbreak in Gansu Province, China. PLoS One, 13 : e0203267

[7]

Li,Y., Yin,W., Hugh-Jones,M., Wang,L., Mu,D., Ren,X., Zeng,L., Chen,Q., Li,W., Wei,J. . ( 2017). Epidemiology of human anthrax in China, 1955−2014. Emerg. Infect. Dis., 23 : 14– 21

[8]

Cao,L. T., Liu,H. H., Li,J., Yin,X. D., Duan,Y. ( 2020). Relationship of meteorological factors and human brucellosis in Hebei Province, China. Sci. Total Environ., 703 : 135491– 135498

[9]

Nili,S., Khanjani,N., Bakhtiari,B., Jahani,Y. ( 2021). The effect of meteorological variables on salmonellosis incidence in Kermanshah, West of Iran: a generalized linear model with negative binomial approach. J. Environ. Health Sci. Eng., 19 : 1171– 1177

[10]

Chen,W. Lai,S. Yang,Y., Liu,K., Li,X. Yao,H. Li,Y., Zhou,H., Wang,L. Mu,D. . ( 2016). Mapping the distribution of anthrax in mainland China, 2005–2013. PLoS Negl. Trop. Dis., 10 : e0004708

[11]

Brownlie,T., Bishop,T., Parry,M., Salmon,S. E. Hunnam,J. ( 2020). Predicting the periodic risk of anthrax in livestock in Victoria, Australia, using meteorological data. Int. J. Biometeorol., 64 : 601– 610

[12]

ScottL. M. JanikasM. V. ( 2010) Spatial statistics in arcgis. In: Handbook of Applied Spatial Analysis, pp. 27‒ 41. Springer

[13]

Carlson,C. J., Kracalik,I. T., Ross,N., Alexander,K. A., Hugh-Jones,M. E., Fegan,M., Elkin,B. T., Epp,T., Shury,T. K., Zhang,W. . ( 2019). The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol., 4 : 1337– 1343

[14]

R Core Team. (2021) R: A language and environment for statistical computing. Available from the website of r-project

[15]

Granger,C. ( 1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37 : 424– 438

[16]

GannanTibetan Autonomous Prefecture Statistics Bureau theGannan Investigation Team of National Bureau of Statistics. ( 2021) Gannan statistical yearbook. Available from the website of statistics bureau in Gannan

[17]

WuX., LangL., MaW., SongT., KangM., HeJ., ZhangY., LuL., LinH. LingL. ( 2018) Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Sci. Total Environ., 628–629, 766– 771

[18]

QiF., DingX.. ( 2021) National greenhouse data system.

[19]

World Health Organization. (2021) International statistical classification of diseases and related health problems. Available from the website of World Health Organization

[20]

Dickey,D. A. Fuller,W. ( 1979). Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc., 74 : 427– 431

[21]

Dickey,D. A. Fuller,W. ( 1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49 : 1057– 1072

[22]

Kwiatkowski,D., Phillips,P. C., Schmidt,P. ( 1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?. J. Econom., 54 : 159– 178

[23]

Zhang,L., Fu,C., Li,J., Zhao,Z., Hou,Y., Zhou,W. ( 2019). Discovery of a ruthenium complex for the theranosis of glioma through targeting the mitochondrial DNA with bioinformatic methods. Int. J. Mol. Sci., 20 : 4643– 4658

[24]

Zhang,L., Zhao,J., Bi,H., Yang,X., Zhang,Z., Su,Y., Li,Z., Zhang,L., Sanderson,B. J., Liu,J. . ( 2021). Bioinformatic analysis of chromatin organization and biased expression of duplicated genes between two poplars with a common whole-genome duplication. Hortic. Res., 8 : 62

[25]

Xia,Y., Yang,C., Hu,N., Yang,Z., He,X., Li,T. ( 2017). Exploring the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme patients by a novel survival analysis model. BMC Genomics, 18 : 950

[26]

Li,T., Cheng,Z. ( 2017). Developing a novel parameter estimation method for agent-based model in immune system simulation under the framework of history matching: A case study on influenza a virus infection. Int. J. Mol. Sci., 18 : 2592– 2603

[27]

Gao,H., Yin,Z., Cao,Z. ( 2017). Developing an agent-based drug model to investigate the synergistic effects of drug combinations. Molecules, 22 : 2209– 2221

[28]

Zhang,L., Liu,G., Kong,M., Li,T., Wu,D., Zhou,X., Yang,C., Xia,L., Yang,Z. ( 2021). Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. Bioinformatics, 37 : 1554– 1561

[29]

Zhang,L. ( 2017). Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al. Phys. Life Rev., 20 : 140– 142

[30]

Zhang,L., Qiao,M., Gao,H., Hu,B., Tan,H., Zhou,X. Li,C. ( 2016). Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale, 8 : 14877– 14887

[31]

Gao,J., Liu,P., Liu,G. ( 2021). Robust needle localization and enhancement algorithm for ultrasound by deep learning and beam steering methods. J. Comput. Sci. Technol., 36 : 334– 346

[32]

Zhang,L., Lv,J., Xiao,M., Yang,L. ( 2021). Exploring the underlying mechanism of action of a traditional chinese medicine formula, youdujing ointment, for cervical cancer treatment. Quant. Biol., 9 : 292– 303

[33]

Wu,W., Song,L., Yang,Y., Wang,J., Liu,H. ( 2020). Exploring the dynamics and interplay of human papillomavirus and cervical tumorigenesis by integrating biological data into a mathematical model. BMC Bioinformatics, 21 : 152

[34]

Lei,W., Zeng,H., Feng,H., Ru,X., Li,Q., Xiao,M., Zheng,H., Chen,Y. ( 2020). Development of an early prediction model for subarachnoid hemorrhage with genetic and signaling pathway analysis. Front. Genet., 11 : 391– 400

[35]

Zhang,L., Zheng,C., Li,T., Xing,L., Zeng,H., Li,T., Yang,H., Cao,J., Chen,B. ( 2017). Building up a robust risk mathematical platform to predict colorectal cancer. Complexity, 2017 : 8917258

[36]

Zhang,L., Xiao,M., Zhou,J. ( 2018). Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics, 34 : 3624– 3630

[37]

Zhang,L., Liu,Y., Wang,M., Wu,Z., Li,N., Zhang,J. ( 2017). EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol., 9 : 477– 488

[38]

You,Y., Ru,X., Lei,W., Li,T., Xiao,M., Zheng,H., Chen,Y. ( 2020). Developing the novel bioinformatics algorithms to systematically investigate the connections among survival time, key genes and proteins for Glioblastoma multiforme. BMC Bioinformatics, 21 : 383

[39]

Zhang,L., Bai,W., Yuan,N. ( 2019). Comprehensively benchmarking applications for detecting copy number variation. PLOS Comput. Biol., 15 : e1007069

[40]

Lopez,L. ( 2017). Testing for granger causality in panel data. Stata J., 17 : 972– 984

[41]

Anderson,G. B., Bell,M. L. Peng,R. ( 2013). Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect., 121 : 1111– 1119

[42]

Yin,Q. ( 2018). A better indicator to measure the effects of meteorological factors on cardiovascular mortality: heat index. Environ. Sci. Pollut. Res. Int., 25 : 22842– 22849

[43]

National Weather SERVICE. (2021) Heat index. Available from the website of National Weather Service

[44]

Willmott,C. J. ( 2005). Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Clim. Res., 30 : 79– 82

[45]

Cavanaugh,J. E. Neath,A. ( 2019). The akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat., 11 : e1460

[46]

Zhang,L., Zhang,L., Guo,Y., Xiao,M., Feng,L., Yang,C., Wang,G. ( 2021). MCDB: A comprehensive curated mitotic catastrophe database for retrieval, protein sequence alignment, and target prediction. Acta Pharm. Sin. B, 11 : 3092– 3104

[47]

Xiao,M., Liu,G., Xie,J., Dai,Z., Wei,Z., Ren,Z., Yu,J. ( 2021). 2019ncovas: Developing the web service for epidemic transmission prediction, genome analysis, and psychological stress assessment for 2019-ncov. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 18 : 1250– 1261

[48]

Xiao,M., Yang,X., Yu,J. ( 2020). CGIDLA: Developing the web server for CpG island related density and laups (lineage-associated underrepresented permutations) study. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 17 : 2148– 2154

[49]

Zhang,L., Dai,Z., Yu,J. ( 2021). CpG-island-based annotation and analysis of human housekeeping genes. Brief. Bioinform., 22 : 515– 525

[50]

Red Hat Enterprise Linux. (2018) Centos linux. Available from the website of The CentOS Project

[51]

F5 incorporation. (2021) Nginx 1.18. Available from the website of NGINX

[52]

Bootstrap Team. (2021) Bootstrap 4.4.1.

[53]

Facebook Inc. (2021) React 17.0.1.

RIGHTS & PERMISSIONS

The Authors (2022). Published by Higher Education Press.

AI Summary AI Mindmap
PDF (4002KB)

2018

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/