Applications of image analysis in plant chromosome and chromatin structure study
Nobuko Ohmido, Astari Dwiranti, Seiji Kato, Kiichi Fukui
Applications of image analysis in plant chromosome and chromatin structure study
Background: The use of image analysis to understand the structure of chromosome and chromatin is critical to the study of genetic evolution and diversification. Furthermore, a detailed chromosome map and the structure of chromatin in the nucleus may contribute to the plant breeding and the study of fundamental biology and genetics in organisms.
Results: In plants with a fully annotated genome project, such as the Leguminosae species, the integration of genetic information, including DNA sequence data, a linkage map, and the cytological quantitative chromosome map could further improve their genetic value. The numerical parameters of chromocenters in 3D can provide useful genetic information for phylogenetic studies of plant diversity and heterochromatic markers whose epigenetic changes may explain the developmental and environmental changes in the plant genome. Extended DNA fibers combined with fluorescence in situ hybridization revealed the highest spatial resolution of the obtained genome structure. Moreover, image analysis at the nano-scale level using a helium ion microscope revealed the surface structure of chromatin, which consists of chromatin fibers compacted into plant chromosomes.
Conclusions: The studies described in this review sought to measure and evaluate chromosome and chromatin using the image analysis method, which may reduce measurement time and improve resolution. Further, we discussed the development of an effective image analysis to evaluate the structure of chromosome and chromatin. An effective application study of cell biology and the genetics of plants using image analysis methods is expected to be a major propeller in the development of new applications.
This review focuses on the development of imaging analysis for the integration chromosome map using chromosome image analyzing system (CHIAS) and fluorescence in situ hybridization (FISH) in important crops, e.g., rice and beans. 3D chromatin structures of chromocenters (CCs) in nuclei and extended DNA fibers (EDFs) for the measurement of DNA repeats and gene sizes are informative for plant genetics. Nano scale imaging using the helium ion microscope (HIM) represents new information about chromatin condensation. We demonstrated how imaging applications subjected to plant chromosomes and chromatin are effective in fundamental biology and genetics in plants.
CHIAS / chromosome / chromatin / extended DNA fiber / helium ion microscopy / nucleus / plants
[1] |
Sumner,A. T., Evans,H. J. Buckland,R. ( 1971). New technique for distinguishing between human chromosomes. Nat. New Biol., 232 : 31– 32
CrossRef
Google scholar
|
[2] |
Caspersson,T., Lomakka,G. ( 1972). Computerized chromosome identification by aid of the quinacrine mustard fluorescence technique. Hereditas, 67 : 103– 110
CrossRef
Google scholar
|
[3] |
Zahed,L., Murer-Orlando,M. ( 1989). The application of automated metaphase scanning to direct preparations of chorionic villi. Prenat. Diagn., 9 : 7– 17
CrossRef
Google scholar
|
[4] |
Pellicer,J. Leitch,I. ( 2020). The Plant DNA C-values database (release 7. 1): an updated online repository of plant genome size data for comparative studies. New Phytol., 226 : 301– 305
CrossRef
Google scholar
|
[5] |
Fukui,K. ( 1986). Standardization of karyotyping plant chromosomes by a newly developed chromosome image analyzing system (CHIAS). Theor. Appl. Genet., 72 : 27– 32
CrossRef
Google scholar
|
[6] |
Kakeda,K., Fukui,K. ( 1991). Heterochromatic differentiation in barley chromosomes revealed by C- and N-banding techniques. Theor. Appl. Genet., 81 : 144– 150
CrossRef
Google scholar
|
[7] |
KatoS., HiroseT., AkiyamaY., neillC. M.. ( 1997) Manual on the chromosome image analyzing system III, CHIAS III. Res. Report Hokuriku Natl. Agr. Exp. Stn., 1– 76
|
[8] |
Nakayama,S. ( 1997). Quantitative chromosome mapping of small plant chromosomes by improved imaging on CHIAS II. Genes Genet. Syst., 72 : 35– 40
CrossRef
Google scholar
|
[9] |
Iijima,K., Kakeda,K. ( 1991). Identification and characterization of somatic rice chromosomes by imaging methods. Theor. Appl. Genet., 81 : 597– 605
CrossRef
Google scholar
|
[10] |
Fukui,K., Nakayama,S., Ohmido,N., Yoshiaki,H. ( 1998). Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes. Theor. Appl. Genet., 96 : 325– 330
CrossRef
Google scholar
|
[11] |
Fukui,K. ( 1991). Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet., 81 : 589– 596
CrossRef
Google scholar
|
[12] |
Ito,M., Ohmido,N., Akiyama,Y. ( 2000). Quantitative chromosome map of Arabidopsis thaliana L. by imaging methods. Cytologia (Tokyo), 65 : 325– 331
CrossRef
Google scholar
|
[13] |
Langer,P. R., Waldrop,A. A. Ward,D. ( 1981). Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA, 78 : 6633– 6637
CrossRef
Google scholar
|
[14] |
Kato,S., Ohmido,N. ( 2009). Image analysis of small plant chromosomes by using an improved system, CHIAS IV. Chromosome Sci., 12 : 43– 50
|
[15] |
Choi,H. K., Mun,J. H., Kim,D. J., Zhu,H., Baek,J. M., Mudge,J., Roe,B., Ellis,N., Doyle,J., Kiss,G. B.
CrossRef
Google scholar
|
[16] |
Doyle,J. J. Luckow,M. ( 2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol., 131 : 900– 910
CrossRef
Google scholar
|
[17] |
Jiang,Q. Gresshoff,P. ( 1997). Classical and molecular genetics of the model legume Lotus japonicus. Mol. Plant Microbe Interact., 10 : 59– 68
CrossRef
Google scholar
|
[18] |
Udvardi,M. K., Tabata,S., Parniske,M. ( 2005). Lotus japonicus: legume research in the fast lane. Trends Plant Sci., 10 : 222– 228
CrossRef
Google scholar
|
[19] |
Sato,S., Nakamura,Y., Kaneko,T., Asamizu,E., Kato,T., Nakao,M., Sasamoto,S., Watanabe,A., Ono,A., Kawashima,K.
CrossRef
Google scholar
|
[20] |
Ohmido,N., Ishimaru,A., Kato,S., Sato,S., Tabata,S. ( 2010). Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosome Res., 18 : 287– 299
CrossRef
Google scholar
|
[21] |
Kataoka,R., Hara,M., Kato,S., Isobe,S., Sato,S., Tabata,S. ( 2012). Integration of linkage and chromosome maps of red clover (Trifolium pratense L. ). Cytogenet. Genome Res., 137 : 60– 69
CrossRef
Google scholar
|
[22] |
Sato,S., Isobe,S., Asamizu,E., Ohmido,N., Kataoka,R., Nakamura,Y., Kaneko,T., Sakurai,N., Okumura,K., Klimenko,I.
CrossRef
Google scholar
|
[23] |
Dolezel,J. ( 2005). Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot., 95 : 99– 110
CrossRef
Google scholar
|
[24] |
Avivi,L. ( 1980). Arrangement of chromosomes in the interphase nucleus of plants. Hum. Genet., 55 : 281– 295
CrossRef
Google scholar
|
[25] |
Wako,T. ( 2003). Quantitative analysis of nuclear chromocenter in Spiranthes sinensis (Pers. ) Ames. Bioimages, 11 : 97– 103
|
[26] |
Ohmido,N. ( 1997). Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol., 35 : 963– 968
CrossRef
Google scholar
|
[27] |
Dong,F. ( 1998). Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res., 6 : 551– 558
CrossRef
Google scholar
|
[28] |
Shaw,P. J., Abranches,R., Paula Santos,A., Beven,A. F., Stoger,E., Wegel,E. ( 2002). The architecture of interphase chromosomes and nucleolar transcription sites in plants. J. Struct. Biol., 140 : 31– 38
CrossRef
Google scholar
|
[29] |
Prieto,P., Shaw,P. ( 2004). Homologue recognition during meiosis is associated with a change in chromatin conformation. Nat. Cell Biol., 6 : 906– 908
CrossRef
Google scholar
|
[30] |
Fujimoto,S., Ito,M., Matsunaga,S. ( 2005). An upper limit of the ratio of DNA volume to nuclear volume exists in plants. Genes Genet. Syst., 80 : 345– 350
CrossRef
Google scholar
|
[31] |
Schubert,I. ( 2011). Organization and dynamics of plant interphase chromosomes. Trends Plant Sci., 16 : 273– 281
CrossRef
Google scholar
|
[32] |
Nagl,W. ( 1979). Ultrastructure; condensed chromatin in plants is species-specific (karyotypical) but not tissue-specific (functional). Protoplasma, 100 : 53– 71
CrossRef
Google scholar
|
[33] |
Tanaka,R. ( 1971). Types of resting nuclei in Orchidaceae. Not. Mag., 84 : 118– 122
|
[34] |
IshidaM., FrankP., DoiK.. ( 1983) High quality digital radiographic images: improved detection of low-contrast objects and preliminary clinical studies. Radiographics, 3, 325– 328
|
[35] |
FukuiK., TsujimotoH.. ( 1988) Imaging techniques for wheat karyotyping. In: Proc. 7th. Intl. Wheat Genet. Symp., pp. 275– 280
|
[36] |
Kikuchi,S., Tanaka,H., Wako,T. ( 2007). Centromere separation and association in the nuclei of an interspecific hybrid between Torenia fournieri and T. baillonii (Scrophulariaceae) during mitosis and meiosis. Genes Genet. Syst., 82 : 369– 375
CrossRef
Google scholar
|
[37] |
Poulet,A., Arganda-Carreras,I., Legland,D., Probst,A. V., Andrey,P. ( 2015). NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei. Bioinformatics, 31 : 1144– 1146
CrossRef
Google scholar
|
[38] |
Dubos,T., Poulet,A., Gonthier-Gueret,C., Mougeot,G., Vanrobays,E., Li,Y., Tutois,S., Pery,E., Chausse,F., Probst,A. V.
CrossRef
Google scholar
|
[39] |
Fransz,P., De Jong,J. H., Lysak,M., Castiglione,M. R. ( 2002). Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl. Acad. Sci. USA, 99 : 14584– 14589
CrossRef
Google scholar
|
[40] |
Yan,S., Zhang,Q., Li,Y., Huang,Y., Zhao,L., Tan,J., He,S. ( 2014). Comparison of chromatin epigenetic modification patterns among root meristem, elongation and maturation zones in maize (Zea mays L. ). Cytogenet. Genome Res., 143 : 179– 188
CrossRef
Google scholar
|
[41] |
MatsunagaS., NobukoO.. ( 2006) Tabacco NY-2 cells: from cellular dynamics to omics. In: Biotechnology in Agriculture and Forestry, Nagata, T., Matsuoka, K. and Inze, D. (eds.). Springer-Verlag Berlin Heidelberg, Vol. 8, pp. 51– 63
|
[42] |
Kurihara,D., Matsunaga,S., Omura,T., Higashiyama,T. ( 2011). Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase. BMC Plant Biol., 11 : 73
CrossRef
Google scholar
|
[43] |
Soppe,W. J., Jasencakova,Z., Houben,A., Kakutani,T., Meister,A., Huang,M. S., Jacobsen,S. E., Schubert,I. Fransz,P. ( 2002). DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J., 21 : 6549– 6559
CrossRef
Google scholar
|
[44] |
van Zanten,M., Koini,M. A., Geyer,R., Liu,Y., Brambilla,V., Bartels,D., Koornneef,M., Fransz,P. Soppe,W. ( 2011). Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc. Natl. Acad. Sci. USA, 108 : 20219– 20224
CrossRef
Google scholar
|
[45] |
Braszewska-Zalewska,A. ( 2013). Epigenetic modifications of nuclei differ between root meristematic tissues of Hordeum vulgare. Plant Signal Behav.,
CrossRef
Google scholar
|
[46] |
Braszewska-Zalewska,A. J., Wolny,E. A., Smialek,L. ( 2013). Tissue-specific epigenetic modifications in root apical meristem cells of Hordeum vulgare. PLoS One, 8 : e69204
CrossRef
Google scholar
|
[47] |
Tessadori,F., van Zanten,M., Pavlova,P., Clifton,R., Pontvianne,F., Snoek,L. B., Millenaar,F. F., Schulkes,R. K., van Driel,R., Voesenek,L. A.
CrossRef
Google scholar
|
[48] |
Polosoro,A., Enggarini,W. ( 2019). Global epigenetic changes of histone modification under environmental stresses in rice root. Chromosome Res., 27 : 287– 298
CrossRef
Google scholar
|
[49] |
Pooley,A. S., Pardon,J. F. Richards,B. ( 1974). The relation between the unit thread of chromosomes and isolated nucleohistone. J. Mol. Biol., 85 : 533– 549
CrossRef
Google scholar
|
[50] |
Skinner,L. G. Ockey,C. ( 1971). Isolation, fractionation and biochemical analysis of the metaphase chromosomes of Microtus agrestis. Chromosoma, 35 : 125– 142
CrossRef
Google scholar
|
[51] |
Huberman,J. A. ( 1966). Isolation of metaphase chromosomes from HeLa cells. J. Cell Biol., 31 : 95– 105
CrossRef
Google scholar
|
[52] |
Segal,E., Fondufe-Mittendorf,Y., Chen,L., Field,Y., Moore,I. K., Wang,J. P. ( 2006). A genomic code for nucleosome positioning. Nature, 442 : 772– 778
CrossRef
Google scholar
|
[53] |
Baldi,S., Korber,P. Becker,P. ( 2020). Beads on a string-nucleosome array arrangements and folding of the chromatin fiber. Nat. Struct. Mol. Biol., 27 : 109– 118
CrossRef
Google scholar
|
[54] |
Hans de Jong,J., Fransz,P. ( 1999). High resolution FISH in plants−techniques and applications. Trends Plant Sci., 4 : 258– 263
CrossRef
Google scholar
|
[55] |
Schubert,V. ( 2017). Super-resolution microscopy−applications in plant cell research. Front Plant Sci, 8 : 531
CrossRef
Google scholar
|
[56] |
Weisshart,K., Houben,A. ( 2020). Prospects and limitations of expansion microscopy in chromatin ultrastructure determination. Chromosome Res., 28 : 355– 368
CrossRef
Google scholar
|
[57] |
Fransz,P. F., Alonso-Blanco,C., Liharska,T. B., Peeters,A. J. M., Zabel,P. Jong,J. ( 1996). High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J., 9 : 421– 430
CrossRef
Google scholar
|
[58] |
Ohmido,N., Kijima,K., Ashikawa,I., de Jong,J. H. ( 2001). Visualization of the terminal structure of rice chromosomes 6 and 12 with multicolor FISH to chromosomes and extended DNA fibers. Plant Mol. Biol., 47 : 413– 421
CrossRef
Google scholar
|
[59] |
Szinay,D., Chang,S. B., Khrustaleva,L., Peters,S., Schijlen,E., Bai,Y., Stiekema,W. J., van Ham,R. C., de Jong,H. Klein Lankhorst,R. ( 2008). High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J., 56 : 627– 637
CrossRef
Google scholar
|
[60] |
Dechyeva,D. ( 2006). Molecular organization of terminal repetitive DNA in Beta species. Chromosome Res., 14 : 881– 897
CrossRef
Google scholar
|
[61] |
Jackson,S. A., Wang,M. L., Goodman,H. M. ( 1998). Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome, 41 : 566– 572
CrossRef
Google scholar
|
[62] |
Jiang,J. Gill,B. ( 2006). Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 49 : 1057– 1068
CrossRef
Google scholar
|
[63] |
Ohmido,N., Wako,T., Kato,S. ( 2016). Image analysis of DNA fiber and nucleus in plants. Methods Mol. Biol., 1469 : 171– 180
CrossRef
Google scholar
|
[64] |
Abramhoff,M. D., Magelhaes,P. J. Ram,S. ( 2004). Image processing with ImageJ. Biophoton. Int., 11 : 36– 42
|
[65] |
Stupar,R. M., Lilly,J. W., Town,C. D., Cheng,Z., Kaul,S., Buell,C. R. ( 2001). Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc. Natl. Acad. Sci. USA, 98 : 5099– 5103
CrossRef
Google scholar
|
[66] |
Koo,D. H., Singh,B., Jiang,J., Friebe,B., Gill,B. S., Chastain,P. D., Manne,U., Tiwari,H. K. Singh,K. ( 2018). Single molecule mtDNA fiber FISH for analyzing numtogenesis. Anal. Biochem., 552 : 45– 49
CrossRef
Google scholar
|
[67] |
McGhee,J. D., Nickol,J. M., Felsenfeld,G. Rau,D. ( 1983). Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell, 33 : 831– 841
CrossRef
Google scholar
|
[68] |
Joens,M. S., Huynh,C., Kasuboski,J. M., Ferranti,D., Sigal,Y. J., Zeitvogel,F., Obst,M., Burkhardt,C. J., Curran,K. P., Chalasani,S. H.
CrossRef
Google scholar
|
[69] |
Dwiranti,A., Hamano,T., Takata,H., Nagano,S., Guo,H., Onishi,K., Wako,T., Uchiyama,S. ( 2014). The effect of magnesium ions on chromosome structure as observed by helium ion microscopy. Microsc. Microanal., 20 : 184– 188
CrossRef
Google scholar
|
[70] |
Sartsanga,C., Phengchat,R., Fukui,K., Wako,T. ( 2021). Surface structures consisting of chromatin fibers in isolated barley (Hordeum vulgare) chromosomes revealed by helium ion microscopy. Chromosome Res., 29 : 81– 94
CrossRef
Google scholar
|
[71] |
Wako,T., Yoshida,A., Kato,J., Otsuka,Y., Ogawa,S., Kaneyoshi,K., Takata,H. ( 2020). Human metaphase chromosome consists of randomly arranged chromatin fibres with up to 30-nm diameter. Sci. Rep., 10 : 8948
CrossRef
Google scholar
|
[72] |
Legland,D., Arganda-Carreras,I. ( 2016). MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics, 32 : 3532– 3534
CrossRef
Google scholar
|
[73] |
Steger,C. ( 1998). An unbiased detector of curvilinear structures. IEEE PAMI, 20 : 113– 125
CrossRef
Google scholar
|
[74] |
Poirier,M. G. Marko,J. ( 2002). Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc. Natl. Acad. Sci. USA, 99 : 15393– 15397
CrossRef
Google scholar
|
[75] |
Engelhardt,M. ( 2004). Condensation of chromatin in situ by cation-dependent charge shielding and aggregation. Biochem. Biophys. Res. Commun., 324 : 1210– 1214
CrossRef
Google scholar
|
[76] |
Strick,R., Strissel,P. L., Gavrilov,K. ( 2001). Cation-chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J. Cell Biol., 155 : 899– 910
CrossRef
Google scholar
|
[77] |
Dwiranti,A., Takata,H. ( 2019). Reversible changes of chromosome structure upon different concentrations of divalent cations. Microsc. Microanal., 25 : 817– 821
CrossRef
Google scholar
|
[78] |
Phengchat,R., Takata,H., Morii,K., Inada,N., Murakoshi,H., Uchiyama,S. ( 2016). Calcium ions function as a booster of chromosome condensation. Sci. Rep., 6 : 38281
CrossRef
Google scholar
|
[79] |
Dong,Y., Xie,M., Jiang,Y., Xiao,N., Du,X., Zhang,W., Tosser-Klopp,G., Wang,J., Yang,S., Liang,J.
CrossRef
Google scholar
|
[80] |
Zhou,S., Bechner,M. C., Place,M., Churas,C. P., Pape,L., Leong,S. A., Runnheim,R., Forrest,D. K., Goldstein,S., Livny,M.
CrossRef
Google scholar
|
[81] |
Young,N. D., Oldroyd,G. E., Geurts,R., Cannon,S. B., Udvardi,M. K., Benedito,V. A., Mayer,K. F., Gouzy,J., Schoof,H.
CrossRef
Google scholar
|
[82] |
Zhou,S., Wei,F., Nguyen,J., Bechner,M., Potamousis,K., Goldstein,S., Pape,L., Mehan,M. R., Churas,C., Pasternak,S.
CrossRef
Google scholar
|
[83] |
Shearer,L. A., Anderson,L. K., de Jong,H., Smit,S., Goicoechea,J. L., Roe,B. A., Hua,A., Giovannoni,J. J. Stack,S. ( 2014). Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 (Bethesda), 4 : 1395– 1405
CrossRef
Google scholar
|
[84] |
Lou,Q., Iovene,M., Spooner,D. M., Buell,C. R. ( 2010). Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma, 119 : 435– 442
CrossRef
Google scholar
|
[85] |
Jiang,J. ( 2019). Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res., 27 : 153– 165
CrossRef
Google scholar
|
[86] |
Ishii,T., Schubert,V., Khosravi,S., Dreissig,S., Metje-Sprink,J., Sprink,T., Fuchs,J., Meister,A. ( 2019). RNA-guided endonuclease−in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. New Phytol., 222 : 1652– 1661
CrossRef
Google scholar
|
[87] |
Nagaki,K. ( 2020). Decrosslinking enables visualization of RNA-guided endonuclease—in situ labeling signals for DNA sequences in plant tissues. J. Exp. Bot., 71 : 1792– 1800
CrossRef
Google scholar
|
FISH | Fluorescence in situ hybridization |
CCs | Chromocenters |
CHIAS | Chromosome image analyzing system |
HIM | Helium ion microscopy |
CP | Condensation pattern |
EDFs | Extended DNA fibers |
mtDNA | Mitochondrial DNA |
SE | Secondary electrons |
/
〈 | 〉 |