The methodological challenge in high-throughput profiling and quantifying microRNAs
Mengya Chai, Xueyang Xiong, Huimin Wang, Lida Xu
The methodological challenge in high-throughput profiling and quantifying microRNAs
Background: MicroRNAs (miRNAs) play an essential role in various biological processes and signaling pathways through the regulation of gene expression and genome stability. Recent data indicated that the next-generation sequencing (NGS)-based high-throughput quantification of miRNAs from biofluids provided exciting possibilities for discovering biomarkers of various diseases and might help promote the development of the early diagnosis of cancer. However, the complex process of library construction for sequencing always introduces bias, which may twist the actual expression levels of miRNAs and reach misleading conclusions.
Results: We discussed the deviation issue in each step during constructing miRNA sequencing libraries and suggested many strategies to generate high-quality data by avoiding or minimizing bias. For example, improvement of adapter design (a blocking element away from the ligation end, a randomized fragment adjacent to the ligation junction and UMI) and optimization of ligation conditions (a high concentration of PEG 8000, reasonable incubation temperature and time, and the selection of ligase) in adapter ligation, high-quality input RNA samples, removal of adapter dimer (solid phase reverse immobilization (SPRI) magnetic bead, locked nucleic acid (LNA) oligonucleotide, and Phi29 DNA polymerase), PCR (linear amplification, touch-down PCR), and product purification are essential factors for achieving high-quality sequencing data. Moreover, we described several protocols that exhibit significant advantages using combinatorial optimization and commercially available low-input miRNA library preparation kits.
Conclusions: Overall, our work provides the basis for unbiased high-throughput quantification of miRNAs. These data will help achieve optimal design involving miRNA profiling and provide reliable guidance for clinical diagnosis and treatment by significantly increasing the credibility of potential biomarkers.
Given the central importance of accurate quantification of miRNAs to molecular biology and clinical diagnosis, in this work, we reviewed recent findings on NGS-based quantification methods of miRNAs and discussed the possible deviations of each step. A series of optimization strategies were proposed to avoid or minimize such biases. In addition, combination optimization of various conditions during library preparation and eight commercially available low-input miRNA library preparation kits were described. Our work points out the problems in the existing library preparation process and summarizes possible optimization conditions that can be used for high-throughput profiling and quantifying microRNAs.
microRNA / next-generation sequencing / library preparation / bias
[1] |
Liang, H., Zhang, J., Zen, K., Zhang, C. Y. (2013). Nuclear microRNAs and their unconventional role in regulating non-coding RNAs. Protein Cell, 4: 325–330
CrossRef
Google scholar
|
[2] |
Gurtan, A. M. Sharp, P. (2013). The role of miRNAs in regulating gene expression networks. J. Mol. Biol., 425: 3582–3600
CrossRef
Google scholar
|
[3] |
Bartel, D. (2018). Metazoan MicroRNAs. Cell, 173: 20–51
CrossRef
Google scholar
|
[4] |
Ludwig, N., Leidinger, P., Becker, K., Backes, C., Fehlmann, T., Pallasch, C., Rheinheimer, S., Meder, B., hler, C., Meese, E.
CrossRef
Google scholar
|
[5] |
Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K. Calin, G. (2011). MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol., 8: 467–477
CrossRef
Google scholar
|
[6] |
TissotC.. (2008) Application Note: Analysis of miRNA content in total RNA preparations using the Agilent 2100 bioanalyzer. Agilent Technologies, Santa Clara, CA. Publication number 5989-7870EN, pp. 1‒8
|
[7] |
Jost, D., Nowojewski, A. (2011). Small RNA biology is systems biology. BMB Rep., 44: 11–21
CrossRef
Google scholar
|
[8] |
Ghildiyal, M. Zamore, P. (2009). Small silencing RNAs: an expanding universe. Nat. Rev. Genet., 10: 94–108
CrossRef
Google scholar
|
[9] |
Witwer, K. W. Halushka, M. (2016). Toward the promise of microRNAs — Enhancing reproducibility and rigor in microRNA research. RNA Biol., 13: 1103–1116
CrossRef
Google scholar
|
[10] |
Kim, T. (2013). Non-coding RNAs: functional aspects and diagnostic utility in oncology. Int. J. Mol. Sci., 14: 4934–4968
CrossRef
Google scholar
|
[11] |
Backes, C., Meese, E. (2016). Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol. Diagn. Ther., 20: 509–518
CrossRef
Google scholar
|
[12] |
Kim, Y. (2015). Extracellular microRNAs as biomarkers in human disease. Chonnam Med. J., 51: 51–57
CrossRef
Google scholar
|
[13] |
Ma, Y. (2018). The Challenge of microRNA as a biomarker of epilepsy. Curr. Neuropharmacol, 16: 37–42
|
[14] |
Raabe, C. A., Tang, T. H., Brosius, J. Rozhdestvensky, T. (2014). Biases in small RNA deep sequencing data. Nucleic Acids Res., 42: 1414–1426
CrossRef
Google scholar
|
[15] |
Raghavachari, N., Barb, J., Yang, Y., Liu, P., Woodhouse, K., Levy, D., Donnell, C. J., Munson, P. J. Kato, G. (2012). A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med. Genomics, 5: 28
CrossRef
Google scholar
|
[16] |
Coenen-Stass, A. M. L., Magen, I., Brooks, T., Ben-Dov, I. Z., Greensmith, L., Hornstein, E. (2018). Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol, 15: 1133–1145
|
[17] |
Zhang, Z., Lee, J. E., Riemondy, K., Anderson, E. M. (2013). High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol., 14: R109
CrossRef
Google scholar
|
[18] |
Pirritano, M., Fehlmann, T., Laufer, T., Ludwig, N., Gasparoni, G., Li, Y., Meese, E., Keller, A. (2018). Next generation sequencing analysis of total small noncoding RNAs from low input RNA from dried blood sampling. Anal. Chem., 90: 11791–11796
CrossRef
Google scholar
|
[19] |
Kozomara, A. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 39: D152–D157
CrossRef
Google scholar
|
[20] |
Pritchard, C. C., Cheng, H. H. (2012). MicroRNA profiling: approaches and considerations. Nat. Rev. Genet., 13: 358–369
CrossRef
Google scholar
|
[21] |
Joyce, C. E., Zhou, X., Xia, J., Ryan, C., Thrash, B., Menter, A., Zhang, W. Bowcock, A. (2011). Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum. Mol. Genet., 20: 4025–4040
CrossRef
Google scholar
|
[22] |
Hafner, M., Renwick, N., Brown, M., Holoch, D., Lin, C., Pena, J. T., Nusbaum, J. D., Morozov, P., Ludwig, J.
CrossRef
Google scholar
|
[23] |
Buschmann, D., Haberberger, A., Kirchner, B., Spornraft, M., Riedmaier, I., Schelling, G. Pfaffl, M. (2016). Toward reliable biomarker signatures in the age of liquid biopsies — how to standardize the small RNA-Seq workflow. Nucleic Acids Res., 44: 5995–6018
CrossRef
Google scholar
|
[24] |
Fuchs, R. T., Sun, Z., Zhuang, F. Robb, G. (2015). Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One, 10: e0126049
CrossRef
Google scholar
|
[25] |
van Dijk, E. L., Jaszczyszyn, Y. (2014). Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res., 322: 12–20
CrossRef
Google scholar
|
[26] |
McCormick, K. P., Willmann, M. R. Meyers, B. (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence, 2: 2
CrossRef
Google scholar
|
[27] |
Alon, S., Vigneault, F., Eminaga, S., Christodoulou, D. C., Seidman, J. G., Church, G. M. (2011). Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Res., 21: 1506–1511
CrossRef
Google scholar
|
[28] |
Kim, H., Kim, J., Kim, K., Chang, H., You, K. Kim, V. (2019). Bias-minimized quantification of microRNA reveals widespread alternative processing and 3′ end modification. Nucleic Acids Res., 47: 2630–2640
CrossRef
Google scholar
|
[29] |
Linsen, S. E. V., de Wit, E., Janssens, G., Heater, S., Chapman, L., Parkin, R. K., Fritz, B., Wyman, S. K., de Bruijn, E., Voest, E. E.
CrossRef
Google scholar
|
[30] |
Heinicke, F., Zhong, X., Zucknick, M., Breidenbach, J., Sundaram, A. Y. M., Leithaug, M., Dalland, M., Farmer, A., Henderson, J. M.
CrossRef
Google scholar
|
[31] |
Raabe, C. A., Hoe, C. H., Randau, G., Brosius, J., Tang, T. H. Rozhdestvensky, T. (2011). The rocks and shallows of deep RNA sequencing: Examples in the Vibrio cholerae RNome. RNA, 17: 1357–1366
CrossRef
Google scholar
|
[32] |
Zhuang, F., Fuchs, R. T. Robb, G. (2012). Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation. J. Nucleic Acids, 2012: 360358
CrossRef
Google scholar
|
[33] |
Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng., 96: 317–323
CrossRef
Google scholar
|
[34] |
Kim, Y. K., Yeo, J., Kim, B., Ha, M. Kim, V. (2012). Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol. Cell, 46: 893–895
CrossRef
Google scholar
|
[35] |
El-Khoury, V., Pierson, S., Kaoma, T., Bernardin, F. (2016). Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci. Rep., 6: 19529
CrossRef
Google scholar
|
[36] |
Ford, K. L., Anwar, M., Heys, R., Ahmed, E. M., Caputo, M., Game, L., Reeves, B. C., Punjabi, P. P., Angelini, G. D., Petretto, E.
CrossRef
Google scholar
|
[37] |
Taylor, C. J., Satoor, S. N., Ranjan, A. K., Pereira e Cotta, M. V. Joglekar, M. (2012). A protocol for measurement of noncoding RNA in human serum. Exp. Diabetes Res., 2012: 168368
CrossRef
Google scholar
|
[38] |
ez, L. A., Martos, L., Oto, J., Medina, P., (2017). Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation. PLoS One, 12: e0187005
CrossRef
Google scholar
|
[39] |
Gautam, A., Kumar, R., Dimitrov, G., Hoke, A., Hammamieh, R. (2016). Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods. Mol. Biol. Rep., 43: 1165–1178
CrossRef
Google scholar
|
[40] |
Fishman, A., Light, D. Lamm, A. (2018). QsRNA-seq: a method for high-throughput profiling and quantifying small RNAs. Genome Biol., 19: 113
CrossRef
Google scholar
|
[41] |
Wright, K., de Silva, K., Purdie, A. C. Plain, K. (2020). Comparison of methods for miRNA isolation and quantification from ovine plasma. Sci. Rep., 10: 825
CrossRef
Google scholar
|
[42] |
Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., Holoch, D., Lim, C. (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44: 3–12
|
[43] |
BerezikovE.CuppenE.PlasterkR. H.. (2006) Approaches to microRNA discovery. Nature Genetics, 38, Suppl, S2–7
|
[44] |
Romaniuk, E., McLaughlin, L. W., Neilson, T. Romaniuk, P. (1982). The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur. J. Biochem., 125: 639–643
CrossRef
Google scholar
|
[45] |
Zhuang, F., Fuchs, R. T., Sun, Z., Zheng, Y. Robb, G. (2012). Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res., 40: e54
CrossRef
Google scholar
|
[46] |
Jayaprakash, A. D., Jabado, O., Brown, B. D. (2011). Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res., 39: e141
CrossRef
Google scholar
|
[47] |
Song, Y., Liu, K. J. Wang, T. (2014). Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One, 9: e94619
CrossRef
Google scholar
|
[48] |
Sorefan, K., Pais, H., Hall, A. E., Kozomara, A., Griffiths-Jones, S., Moulton, V. (2012). Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence, 3: 4
CrossRef
Google scholar
|
[49] |
Jackson, T. J., Spriggs, R. V., Burgoyne, N. J., Jones, C. Willis, A. (2014). Evaluating bias-reducing protocols for RNA sequencing library preparation. BMC Genomics, 15: 569
CrossRef
Google scholar
|
[50] |
n-Soler, S., Vo, J. M., Hogans, R. E., Dallas, A., Johnston, B. H. Kazakov, S. (2018). Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol., 19: 105
CrossRef
Google scholar
|
[51] |
Liu, X., Zheng, Q., Vrettos, N., Maragkakis, M., Alexiou, P., Gregory, B. D. (2014). A MicroRNA precursor surveillance system in quality control of microRNA synthesis. Mol. Cell., 55: 868–879
|
[52] |
Lee, C., Harris, R. A., Wall, J. K., Mayfield, R. D. Wilke, C. (2013). RNaseIII and T4 polynucleotide kinase sequence biases and solutions during RNA-seq library construction. Biol. Direct, 8: 16
CrossRef
Google scholar
|
[53] |
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. Weissman, J. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324: 218–223
CrossRef
Google scholar
|
[54] |
Nguyen, Q., Aguado, J., Iannelli, F., Suzuki, A. M., Rossiello, F., Adda di Fagagna, F. (2018). Target-enrichment sequencing for detailed characterization of small RNAs. Nat. Protoc., 13: 768–786
|
[55] |
Hagemann-Jensen, M., Abdullayev, I., Sandberg, R. Faridani, O. (2018). Small-seq for single-cell small-RNA sequencing. Nat. Protoc., 13: 2407–2424
CrossRef
Google scholar
|
[56] |
Sun, G., Wu, X., Wang, J., Li, H., Li, X., Gao, H., Rossi, J. (2011). A bias-reducing strategy in profiling small RNAs using Solexa. RNA, 17: 2256–2262
CrossRef
Google scholar
|
[57] |
Dard-Dascot, C., Naquin, D., Aubenton-Carafa, Y., Alix, K., Thermes, C. (2018). Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics, 19: 118
CrossRef
Google scholar
|
[58] |
Xu, P., Billmeier, M., Mohorianu, I., Green, D., Fraser, W. D. (2015). An improved protocol for small RNA library construction using high definition adapters. Methods Next Generat. Sequenc., 2: 1–10
CrossRef
Google scholar
|
[59] |
Giraldez, M. D., Spengler, R. M., Etheridge, A., Godoy, P. M., Barczak, A. J., Srinivasan, S., De Hoff, P. L., Tanriverdi, K., Courtright, A., Lu, S.
CrossRef
Google scholar
|
[60] |
Baran-Gale, J., Kurtz, C. L., Erdos, M. R., Sison, C., Young, A., Fannin, E. E., Chines, P. S. (2015). Addressing bias in small RNA library preparation for sequencing: A new protocol recovers microRNAs that evade capture by current methods. Front. Genet., 6: 352
CrossRef
Google scholar
|
[61] |
Billmeier, M. (2017). Small RNA profiling by next-generation sequencing using high-definition adapters. Methods Mol. Biol., 1580: 45–57
CrossRef
Google scholar
|
[62] |
Zhelkovsky, A. M. McReynolds, L. (2011). Simple and efficient synthesis of 5′ pre-adenylated DNA using thermostable RNA ligase. Nucleic Acids Res., 39: e117
CrossRef
Google scholar
|
[63] |
Kivioja, T., rautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S. (2011). Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods, 9: 72–74
CrossRef
Google scholar
|
[64] |
Viollet, S., Fuchs, R. T., Munafo, D. B., Zhuang, F. Robb, G. (2011). T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol., 11: 72
CrossRef
Google scholar
|
[65] |
Harrison, B. Zimmerman, S. (1984). Polymer-stimulated ligation: enhanced ligation of oligo- and polynucleotides by T4 RNA ligase in polymer solutions. Nucleic Acids Res., 12: 8235–8251
CrossRef
Google scholar
|
[66] |
Shore, S., Henderson, J. M., Lebedev, A., Salcedo, M. P., Zon, G., McCaffrey, A. P., Paul, N. Hogrefe, R. (2016). Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS One, 11: e0167009
CrossRef
Google scholar
|
[67] |
Kwok, C. K., Ding, Y., Sherlock, M. E. M., Assmann, S. M. Bevilacqua, P. (2013). A hybridization-based approach for quantitative and low-bias single-stranded DNA ligation. Anal. Biochem., 435: 181–186
CrossRef
Google scholar
|
[68] |
Lama, L., Cobo, J., Buenaventura, D. (2019). Small RNA-seq: The RNA 5′-end adapter ligation problem and how to circumvent it. J. Biol. Methods, 6: e108
CrossRef
Google scholar
|
[69] |
Vigneault, F., Ter-Ovanesyan, D., Alon, S., Eminaga, S., Seidman, J. G., Eisenberg, E. (2012). High-throughput multiplex sequencing of miRNA. Curr. Protoc. Hum. Genet.,
|
[70] |
Summer, H., mer, R. (2009). Denaturing urea polyacrylamide gel electrophoresis (urea PAGE). J. Vis. Exp., 29: 1485
|
[71] |
Lundin, S., Lundeberg, J. Nitabach, M. (2011). Large scale library generation for high throughput sequencing. PLoS One, 6: e19119
CrossRef
Google scholar
|
[72] |
Lundin, S., Stranneheim, H., Pettersson, E., Klevebring, D., Lundeberg, J. Schnur, J. (2010). Increased throughput by parallelization of library preparation for massive sequencing. PLoS One, 5: e10029
CrossRef
Google scholar
|
[73] |
Kawano, M., Kawazu, C., Lizio, M., Kawaji, H., Carninci, P., Suzuki, H. (2010). Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. Biotechniques, 49: 751–755
CrossRef
Google scholar
|
[74] |
Blanco, L. (1996). Relating structure to function in phi29 DNA polymerase. J. Biol. Chem., 271: 8509–8512
CrossRef
Google scholar
|
[75] |
Garmendia, C., Bernad, A., Esteban, J. A., Blanco, L. (1992). The bacteriophage phi 29 DNA polymerase, a proofreading enzyme. J. Biol. Chem., 267: 2594–2599
CrossRef
Google scholar
|
[76] |
Lagunavicius, A., Kiveryte, Z., Zimbaite-Ruskuliene, V., Radzvilavicius, T. (2008). Duality of polynucleotide substrates for Phi29 DNA polymerase: 3′→5′ RNase activity of the enzyme. RNA, 14: 503–513
CrossRef
Google scholar
|
[77] |
Li, X. Y., Du, Y. C., Zhang, Y. P. Kong, D. (2017). Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Sci. Rep., 7: 6263
CrossRef
Google scholar
|
[78] |
Krzywkowski, T., hnemund, M., Wu, D. (2018). Limited reverse transcriptase activity of phi29 DNA polymerase. 46,
|
[79] |
Wright, C., Rajpurohit, A., Burke, E. E., Williams, C., Collado-Torres, L., Kimos, M., Brandon, N. J., Cross, A. J., Jaffe, A. E., Weinberger, D. R.
CrossRef
Google scholar
|
[80] |
Dabney, J. (2012). Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques, 52: 87–94
CrossRef
Google scholar
|
[81] |
Sendler, E., Johnson, G. D. Krawetz, S. (2011). Local and global factors affecting RNA sequencing analysis. Anal. Biochem., 419: 317–322
CrossRef
Google scholar
|
[82] |
Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., Howard, E., Shendure, J. Turner, D. (2010). Target-enrichment strategies for next-generation sequencing. Nat. Methods, 7: 111–118
CrossRef
Google scholar
|
[83] |
Sam, L. T., Lipson, D., Raz, T., Cao, X., Thompson, J., Milos, P. M., Robinson, D., Chinnaiyan, A. M., Kumar-Sinha, C. Maher, C. (2011). A comparison of single molecule and amplification based sequencing of cancer transcriptomes. PLoS One, 6: e17305
CrossRef
Google scholar
|
[84] |
Head, S. R., Komori, H. K., LaMere, S. A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D. R. (2014). Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 56: 61–77
CrossRef
Google scholar
|
[85] |
Aird, D., Ross, M. G., Chen, W. S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D. B., Nusbaum, C. (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol., 12: R18
CrossRef
Google scholar
|
[86] |
Hong, J. (2017). Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing. Biotechniques, 63: 221–226
CrossRef
Google scholar
|
[87] |
Fu, Y., Wu, P. H., Beane, T., Zamore, P. D. (2018). Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics, 19: 531
CrossRef
Google scholar
|
[88] |
Okino, S. T., Kong, M., Sarras, H. (2015). Evaluation of bias associated with high-multiplex, target-specific pre-amplification. Biomol Detect. Quantif., 6: 13–21
CrossRef
Google scholar
|
[89] |
Moldovan, L., Batte, K. E., Trgovcich, J., Wisler, J., Marsh, C. B. (2014). Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell. Mol. Med., 18: 371–390
CrossRef
Google scholar
|
[90] |
Grisedale, K. (2014). Linear amplification of target prior to PCR for improved low template DNA results. Biotechniques, 56: 145–147
CrossRef
Google scholar
|
[91] |
Lee, J., Heo, S. (2019). Applying a linear amplification strategy to recombinase polymerase amplification for uniform DNA library amplification. ACS Omega, 4: 19953–19958
CrossRef
Google scholar
|
[92] |
Larsen, H. H., Masur, H., Kovacs, J. A., Gill, V. J., Silcott, V. A., Kogulan, P., Maenza, J., Smith, M., Lucey, D. R. Fischer, S. (2002). Development and evaluation of a quantitative, touch-down, real-time PCR assay for diagnosing Pneumocystis carinii pneumonia. J. Clin. Microbiol., 40: 490–494
CrossRef
Google scholar
|
[93] |
Chen, N., Wang, W. M. Wang, H. (2016). An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods. Sci. Rep., 6: 19420
CrossRef
Google scholar
|
[94] |
Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J. Pallen, M. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol., 30: 434–439
CrossRef
Google scholar
|
[95] |
Fishman, A. (2019). QsRNA-seq: A protocol for generating libraries for high-throughput sequencing of small RNAs. Bio Protoc., 9: e3179
CrossRef
Google scholar
|
[96] |
Wong, R. K. Y., Macmahon, M., Woodside, J. V. Simpson, D. (2019). A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics. 20,
|
[97] |
Herbert, Z. T., Thimmapuram, J., Xie, S., Kershner, J. P., Kolling, F. W., Ringelberg, C. S., LeClerc, A., Alekseyev, Y. O., Fan, J., Podnar, J. W.
CrossRef
Google scholar
|
[98] |
Pine, P. S., Lund, S. P., Parsons, J. R., Vang, L. K., Mahabal, A. A., Cinquini, L., Kelly, S. C., Kincaid, H., Crichton, D. J., Spira, A.
CrossRef
Google scholar
|
[99] |
Yeri, A., Courtright, A., Danielson, K., Hutchins, E., Alsop, E., Carlson, E., Hsieh, M., Ziegler, O., Das, A., Shah, R. V.
CrossRef
Google scholar
|
[100] |
Huang, X., Yuan, T., Tschannen, M., Sun, Z., Jacob, H., Du, M., Liang, M., Dittmar, R. L., Liu, Y., Liang, M.
CrossRef
Google scholar
|
/
〈 | 〉 |