The methodological challenge in high-throughput profiling and quantifying microRNAs

Mengya Chai, Xueyang Xiong, Huimin Wang, Lida Xu

PDF(1227 KB)
PDF(1227 KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (4) : 321-332. DOI: 10.15302/J-QB-021-0284
REVIEW
REVIEW

The methodological challenge in high-throughput profiling and quantifying microRNAs

Author information +
History +

Abstract

Background: MicroRNAs (miRNAs) play an essential role in various biological processes and signaling pathways through the regulation of gene expression and genome stability. Recent data indicated that the next-generation sequencing (NGS)-based high-throughput quantification of miRNAs from biofluids provided exciting possibilities for discovering biomarkers of various diseases and might help promote the development of the early diagnosis of cancer. However, the complex process of library construction for sequencing always introduces bias, which may twist the actual expression levels of miRNAs and reach misleading conclusions.

Results: We discussed the deviation issue in each step during constructing miRNA sequencing libraries and suggested many strategies to generate high-quality data by avoiding or minimizing bias. For example, improvement of adapter design (a blocking element away from the ligation end, a randomized fragment adjacent to the ligation junction and UMI) and optimization of ligation conditions (a high concentration of PEG 8000, reasonable incubation temperature and time, and the selection of ligase) in adapter ligation, high-quality input RNA samples, removal of adapter dimer (solid phase reverse immobilization (SPRI) magnetic bead, locked nucleic acid (LNA) oligonucleotide, and Phi29 DNA polymerase), PCR (linear amplification, touch-down PCR), and product purification are essential factors for achieving high-quality sequencing data. Moreover, we described several protocols that exhibit significant advantages using combinatorial optimization and commercially available low-input miRNA library preparation kits.

Conclusions: Overall, our work provides the basis for unbiased high-throughput quantification of miRNAs. These data will help achieve optimal design involving miRNA profiling and provide reliable guidance for clinical diagnosis and treatment by significantly increasing the credibility of potential biomarkers.

Author summary

Given the central importance of accurate quantification of miRNAs to molecular biology and clinical diagnosis, in this work, we reviewed recent findings on NGS-based quantification methods of miRNAs and discussed the possible deviations of each step. A series of optimization strategies were proposed to avoid or minimize such biases. In addition, combination optimization of various conditions during library preparation and eight commercially available low-input miRNA library preparation kits were described. Our work points out the problems in the existing library preparation process and summarizes possible optimization conditions that can be used for high-throughput profiling and quantifying microRNAs.

Graphical abstract

Keywords

microRNA / next-generation sequencing / library preparation / bias

Cite this article

Download citation ▾
Mengya Chai, Xueyang Xiong, Huimin Wang, Lida Xu. The methodological challenge in high-throughput profiling and quantifying microRNAs. Quant. Biol., 2022, 10(4): 321‒332 https://doi.org/10.15302/J-QB-021-0284

References

[1]
Liang, H., Zhang, J., Zen, K., Zhang, C. Y. (2013). Nuclear microRNAs and their unconventional role in regulating non-coding RNAs. Protein Cell, 4: 325–330
CrossRef Google scholar
[2]
Gurtan, A. M. Sharp, P. (2013). The role of miRNAs in regulating gene expression networks. J. Mol. Biol., 425: 3582–3600
CrossRef Google scholar
[3]
Bartel, D. (2018). Metazoan MicroRNAs. Cell, 173: 20–51
CrossRef Google scholar
[4]
Ludwig, N., Leidinger, P., Becker, K., Backes, C., Fehlmann, T., Pallasch, C., Rheinheimer, S., Meder, B., hler, C., Meese, E. . (2016). Distribution of miRNA expression across human tissues. Nucleic Acids Res., 44: 3865–3877
CrossRef Google scholar
[5]
Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K. Calin, G. (2011). MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol., 8: 467–477
CrossRef Google scholar
[6]
TissotC.. (2008) Application Note: Analysis of miRNA content in total RNA preparations using the Agilent 2100 bioanalyzer. Agilent Technologies, Santa Clara, CA. Publication number 5989-7870EN, pp. 1‒8
[7]
Jost, D., Nowojewski, A. (2011). Small RNA biology is systems biology. BMB Rep., 44: 11–21
CrossRef Google scholar
[8]
Ghildiyal, M. Zamore, P. (2009). Small silencing RNAs: an expanding universe. Nat. Rev. Genet., 10: 94–108
CrossRef Google scholar
[9]
Witwer, K. W. Halushka, M. (2016). Toward the promise of microRNAs — Enhancing reproducibility and rigor in microRNA research. RNA Biol., 13: 1103–1116
CrossRef Google scholar
[10]
Kim, T. (2013). Non-coding RNAs: functional aspects and diagnostic utility in oncology. Int. J. Mol. Sci., 14: 4934–4968
CrossRef Google scholar
[11]
Backes, C., Meese, E. (2016). Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol. Diagn. Ther., 20: 509–518
CrossRef Google scholar
[12]
Kim, Y. (2015). Extracellular microRNAs as biomarkers in human disease. Chonnam Med. J., 51: 51–57
CrossRef Google scholar
[13]
Ma, Y. (2018). The Challenge of microRNA as a biomarker of epilepsy. Curr. Neuropharmacol, 16: 37–42
[14]
Raabe, C. A., Tang, T. H., Brosius, J. Rozhdestvensky, T. (2014). Biases in small RNA deep sequencing data. Nucleic Acids Res., 42: 1414–1426
CrossRef Google scholar
[15]
Raghavachari, N., Barb, J., Yang, Y., Liu, P., Woodhouse, K., Levy, D., Donnell, C. J., Munson, P. J. Kato, G. (2012). A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease. BMC Med. Genomics, 5: 28
CrossRef Google scholar
[16]
Coenen-Stass, A. M. L., Magen, I., Brooks, T., Ben-Dov, I. Z., Greensmith, L., Hornstein, E. (2018). Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol, 15: 1133–1145
[17]
Zhang, Z., Lee, J. E., Riemondy, K., Anderson, E. M. (2013). High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol., 14: R109
CrossRef Google scholar
[18]
Pirritano, M., Fehlmann, T., Laufer, T., Ludwig, N., Gasparoni, G., Li, Y., Meese, E., Keller, A. (2018). Next generation sequencing analysis of total small noncoding RNAs from low input RNA from dried blood sampling. Anal. Chem., 90: 11791–11796
CrossRef Google scholar
[19]
Kozomara, A. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 39: D152–D157
CrossRef Google scholar
[20]
Pritchard, C. C., Cheng, H. H. (2012). MicroRNA profiling: approaches and considerations. Nat. Rev. Genet., 13: 358–369
CrossRef Google scholar
[21]
Joyce, C. E., Zhou, X., Xia, J., Ryan, C., Thrash, B., Menter, A., Zhang, W. Bowcock, A. (2011). Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum. Mol. Genet., 20: 4025–4040
CrossRef Google scholar
[22]
Hafner, M., Renwick, N., Brown, M., Holoch, D., Lin, C., Pena, J. T., Nusbaum, J. D., Morozov, P., Ludwig, J. . (2011). RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA, 17: 1697–1712
CrossRef Google scholar
[23]
Buschmann, D., Haberberger, A., Kirchner, B., Spornraft, M., Riedmaier, I., Schelling, G. Pfaffl, M. (2016). Toward reliable biomarker signatures in the age of liquid biopsies — how to standardize the small RNA-Seq workflow. Nucleic Acids Res., 44: 5995–6018
CrossRef Google scholar
[24]
Fuchs, R. T., Sun, Z., Zhuang, F. Robb, G. (2015). Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One, 10: e0126049
CrossRef Google scholar
[25]
van Dijk, E. L., Jaszczyszyn, Y. (2014). Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res., 322: 12–20
CrossRef Google scholar
[26]
McCormick, K. P., Willmann, M. R. Meyers, B. (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence, 2: 2
CrossRef Google scholar
[27]
Alon, S., Vigneault, F., Eminaga, S., Christodoulou, D. C., Seidman, J. G., Church, G. M. (2011). Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Res., 21: 1506–1511
CrossRef Google scholar
[28]
Kim, H., Kim, J., Kim, K., Chang, H., You, K. Kim, V. (2019). Bias-minimized quantification of microRNA reveals widespread alternative processing and 3′ end modification. Nucleic Acids Res., 47: 2630–2640
CrossRef Google scholar
[29]
Linsen, S. E. V., de Wit, E., Janssens, G., Heater, S., Chapman, L., Parkin, R. K., Fritz, B., Wyman, S. K., de Bruijn, E., Voest, E. E. . (2009). Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods, 6: 474–476
CrossRef Google scholar
[30]
Heinicke, F., Zhong, X., Zucknick, M., Breidenbach, J., Sundaram, A. Y. M., Leithaug, M., Dalland, M., Farmer, A., Henderson, J. M. . (2020). Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol., 17: 75–86
CrossRef Google scholar
[31]
Raabe, C. A., Hoe, C. H., Randau, G., Brosius, J., Tang, T. H. Rozhdestvensky, T. (2011). The rocks and shallows of deep RNA sequencing: Examples in the Vibrio cholerae RNome. RNA, 17: 1357–1366
CrossRef Google scholar
[32]
Zhuang, F., Fuchs, R. T. Robb, G. (2012). Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation. J. Nucleic Acids, 2012: 360358
CrossRef Google scholar
[33]
Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng., 96: 317–323
CrossRef Google scholar
[34]
Kim, Y. K., Yeo, J., Kim, B., Ha, M. Kim, V. (2012). Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol. Cell, 46: 893–895
CrossRef Google scholar
[35]
El-Khoury, V., Pierson, S., Kaoma, T., Bernardin, F. (2016). Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci. Rep., 6: 19529
CrossRef Google scholar
[36]
Ford, K. L., Anwar, M., Heys, R., Ahmed, E. M., Caputo, M., Game, L., Reeves, B. C., Punjabi, P. P., Angelini, G. D., Petretto, E. . (2019). Optimisation of laboratory methods for whole transcriptomic RNA analyses in human left ventricular biopsies and blood samples of clinical relevance. PLoS One, 14: e0213685
CrossRef Google scholar
[37]
Taylor, C. J., Satoor, S. N., Ranjan, A. K., Pereira e Cotta, M. V. Joglekar, M. (2012). A protocol for measurement of noncoding RNA in human serum. Exp. Diabetes Res., 2012: 168368
CrossRef Google scholar
[38]
ez, L. A., Martos, L., Oto, J., Medina, P., (2017). Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation. PLoS One, 12: e0187005
CrossRef Google scholar
[39]
Gautam, A., Kumar, R., Dimitrov, G., Hoke, A., Hammamieh, R. (2016). Identification of extracellular miRNA in archived serum samples by next-generation sequencing from RNA extracted using multiple methods. Mol. Biol. Rep., 43: 1165–1178
CrossRef Google scholar
[40]
Fishman, A., Light, D. Lamm, A. (2018). QsRNA-seq: a method for high-throughput profiling and quantifying small RNAs. Genome Biol., 19: 113
CrossRef Google scholar
[41]
Wright, K., de Silva, K., Purdie, A. C. Plain, K. (2020). Comparison of methods for miRNA isolation and quantification from ovine plasma. Sci. Rep., 10: 825
CrossRef Google scholar
[42]
Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., Holoch, D., Lim, C. (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44: 3–12
[43]
BerezikovE.CuppenE.PlasterkR. H.. (2006) Approaches to microRNA discovery. Nature Genetics, 38, Suppl, S2–7
[44]
Romaniuk, E., McLaughlin, L. W., Neilson, T. Romaniuk, P. (1982). The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur. J. Biochem., 125: 639–643
CrossRef Google scholar
[45]
Zhuang, F., Fuchs, R. T., Sun, Z., Zheng, Y. Robb, G. (2012). Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res., 40: e54
CrossRef Google scholar
[46]
Jayaprakash, A. D., Jabado, O., Brown, B. D. (2011). Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res., 39: e141
CrossRef Google scholar
[47]
Song, Y., Liu, K. J. Wang, T. (2014). Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One, 9: e94619
CrossRef Google scholar
[48]
Sorefan, K., Pais, H., Hall, A. E., Kozomara, A., Griffiths-Jones, S., Moulton, V. (2012). Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence, 3: 4
CrossRef Google scholar
[49]
Jackson, T. J., Spriggs, R. V., Burgoyne, N. J., Jones, C. Willis, A. (2014). Evaluating bias-reducing protocols for RNA sequencing library preparation. BMC Genomics, 15: 569
CrossRef Google scholar
[50]
n-Soler, S., Vo, J. M., Hogans, R. E., Dallas, A., Johnston, B. H. Kazakov, S. (2018). Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol., 19: 105
CrossRef Google scholar
[51]
Liu, X., Zheng, Q., Vrettos, N., Maragkakis, M., Alexiou, P., Gregory, B. D. (2014). A MicroRNA precursor surveillance system in quality control of microRNA synthesis. Mol. Cell., 55: 868–879
[52]
Lee, C., Harris, R. A., Wall, J. K., Mayfield, R. D. Wilke, C. (2013). RNaseIII and T4 polynucleotide kinase sequence biases and solutions during RNA-seq library construction. Biol. Direct, 8: 16
CrossRef Google scholar
[53]
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. Weissman, J. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324: 218–223
CrossRef Google scholar
[54]
Nguyen, Q., Aguado, J., Iannelli, F., Suzuki, A. M., Rossiello, F., Adda di Fagagna, F. (2018). Target-enrichment sequencing for detailed characterization of small RNAs. Nat. Protoc., 13: 768–786
[55]
Hagemann-Jensen, M., Abdullayev, I., Sandberg, R. Faridani, O. (2018). Small-seq for single-cell small-RNA sequencing. Nat. Protoc., 13: 2407–2424
CrossRef Google scholar
[56]
Sun, G., Wu, X., Wang, J., Li, H., Li, X., Gao, H., Rossi, J. (2011). A bias-reducing strategy in profiling small RNAs using Solexa. RNA, 17: 2256–2262
CrossRef Google scholar
[57]
Dard-Dascot, C., Naquin, D., Aubenton-Carafa, Y., Alix, K., Thermes, C. (2018). Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics, 19: 118
CrossRef Google scholar
[58]
Xu, P., Billmeier, M., Mohorianu, I., Green, D., Fraser, W. D. (2015). An improved protocol for small RNA library construction using high definition adapters. Methods Next Generat. Sequenc., 2: 1–10
CrossRef Google scholar
[59]
Giraldez, M. D., Spengler, R. M., Etheridge, A., Godoy, P. M., Barczak, A. J., Srinivasan, S., De Hoff, P. L., Tanriverdi, K., Courtright, A., Lu, S. . (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol., 36: 746–757
CrossRef Google scholar
[60]
Baran-Gale, J., Kurtz, C. L., Erdos, M. R., Sison, C., Young, A., Fannin, E. E., Chines, P. S. (2015). Addressing bias in small RNA library preparation for sequencing: A new protocol recovers microRNAs that evade capture by current methods. Front. Genet., 6: 352
CrossRef Google scholar
[61]
Billmeier, M. (2017). Small RNA profiling by next-generation sequencing using high-definition adapters. Methods Mol. Biol., 1580: 45–57
CrossRef Google scholar
[62]
Zhelkovsky, A. M. McReynolds, L. (2011). Simple and efficient synthesis of 5′ pre-adenylated DNA using thermostable RNA ligase. Nucleic Acids Res., 39: e117
CrossRef Google scholar
[63]
Kivioja, T., rautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S. (2011). Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods, 9: 72–74
CrossRef Google scholar
[64]
Viollet, S., Fuchs, R. T., Munafo, D. B., Zhuang, F. Robb, G. (2011). T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol., 11: 72
CrossRef Google scholar
[65]
Harrison, B. Zimmerman, S. (1984). Polymer-stimulated ligation: enhanced ligation of oligo- and polynucleotides by T4 RNA ligase in polymer solutions. Nucleic Acids Res., 12: 8235–8251
CrossRef Google scholar
[66]
Shore, S., Henderson, J. M., Lebedev, A., Salcedo, M. P., Zon, G., McCaffrey, A. P., Paul, N. Hogrefe, R. (2016). Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS One, 11: e0167009
CrossRef Google scholar
[67]
Kwok, C. K., Ding, Y., Sherlock, M. E. M., Assmann, S. M. Bevilacqua, P. (2013). A hybridization-based approach for quantitative and low-bias single-stranded DNA ligation. Anal. Biochem., 435: 181–186
CrossRef Google scholar
[68]
Lama, L., Cobo, J., Buenaventura, D. (2019). Small RNA-seq: The RNA 5′-end adapter ligation problem and how to circumvent it. J. Biol. Methods, 6: e108
CrossRef Google scholar
[69]
Vigneault, F., Ter-Ovanesyan, D., Alon, S., Eminaga, S., Seidman, J. G., Eisenberg, E. (2012). High-throughput multiplex sequencing of miRNA. Curr. Protoc. Hum. Genet., 11.12.1–10
[70]
Summer, H., mer, R. (2009). Denaturing urea polyacrylamide gel electrophoresis (urea PAGE). J. Vis. Exp., 29: 1485
[71]
Lundin, S., Lundeberg, J. Nitabach, M. (2011). Large scale library generation for high throughput sequencing. PLoS One, 6: e19119
CrossRef Google scholar
[72]
Lundin, S., Stranneheim, H., Pettersson, E., Klevebring, D., Lundeberg, J. Schnur, J. (2010). Increased throughput by parallelization of library preparation for massive sequencing. PLoS One, 5: e10029
CrossRef Google scholar
[73]
Kawano, M., Kawazu, C., Lizio, M., Kawaji, H., Carninci, P., Suzuki, H. (2010). Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. Biotechniques, 49: 751–755
CrossRef Google scholar
[74]
Blanco, L. (1996). Relating structure to function in phi29 DNA polymerase. J. Biol. Chem., 271: 8509–8512
CrossRef Google scholar
[75]
Garmendia, C., Bernad, A., Esteban, J. A., Blanco, L. (1992). The bacteriophage phi 29 DNA polymerase, a proofreading enzyme. J. Biol. Chem., 267: 2594–2599
CrossRef Google scholar
[76]
Lagunavicius, A., Kiveryte, Z., Zimbaite-Ruskuliene, V., Radzvilavicius, T. (2008). Duality of polynucleotide substrates for Phi29 DNA polymerase: 3′→5′ RNase activity of the enzyme. RNA, 14: 503–513
CrossRef Google scholar
[77]
Li, X. Y., Du, Y. C., Zhang, Y. P. Kong, D. (2017). Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Sci. Rep., 7: 6263
CrossRef Google scholar
[78]
Krzywkowski, T., hnemund, M., Wu, D. (2018). Limited reverse transcriptase activity of phi29 DNA polymerase. 46, 3625–3632
[79]
Wright, C., Rajpurohit, A., Burke, E. E., Williams, C., Collado-Torres, L., Kimos, M., Brandon, N. J., Cross, A. J., Jaffe, A. E., Weinberger, D. R. . (2019). Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. BMC Genomics, 20: 513
CrossRef Google scholar
[80]
Dabney, J. (2012). Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques, 52: 87–94
CrossRef Google scholar
[81]
Sendler, E., Johnson, G. D. Krawetz, S. (2011). Local and global factors affecting RNA sequencing analysis. Anal. Biochem., 419: 317–322
CrossRef Google scholar
[82]
Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., Howard, E., Shendure, J. Turner, D. (2010). Target-enrichment strategies for next-generation sequencing. Nat. Methods, 7: 111–118
CrossRef Google scholar
[83]
Sam, L. T., Lipson, D., Raz, T., Cao, X., Thompson, J., Milos, P. M., Robinson, D., Chinnaiyan, A. M., Kumar-Sinha, C. Maher, C. (2011). A comparison of single molecule and amplification based sequencing of cancer transcriptomes. PLoS One, 6: e17305
CrossRef Google scholar
[84]
Head, S. R., Komori, H. K., LaMere, S. A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D. R. (2014). Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 56: 61–77
CrossRef Google scholar
[85]
Aird, D., Ross, M. G., Chen, W. S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D. B., Nusbaum, C. (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol., 12: R18
CrossRef Google scholar
[86]
Hong, J. (2017). Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing. Biotechniques, 63: 221–226
CrossRef Google scholar
[87]
Fu, Y., Wu, P. H., Beane, T., Zamore, P. D. (2018). Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics, 19: 531
CrossRef Google scholar
[88]
Okino, S. T., Kong, M., Sarras, H. (2015). Evaluation of bias associated with high-multiplex, target-specific pre-amplification. Biomol Detect. Quantif., 6: 13–21
CrossRef Google scholar
[89]
Moldovan, L., Batte, K. E., Trgovcich, J., Wisler, J., Marsh, C. B. (2014). Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell. Mol. Med., 18: 371–390
CrossRef Google scholar
[90]
Grisedale, K. (2014). Linear amplification of target prior to PCR for improved low template DNA results. Biotechniques, 56: 145–147
CrossRef Google scholar
[91]
Lee, J., Heo, S. (2019). Applying a linear amplification strategy to recombinase polymerase amplification for uniform DNA library amplification. ACS Omega, 4: 19953–19958
CrossRef Google scholar
[92]
Larsen, H. H., Masur, H., Kovacs, J. A., Gill, V. J., Silcott, V. A., Kogulan, P., Maenza, J., Smith, M., Lucey, D. R. Fischer, S. (2002). Development and evaluation of a quantitative, touch-down, real-time PCR assay for diagnosing Pneumocystis carinii pneumonia. J. Clin. Microbiol., 40: 490–494
CrossRef Google scholar
[93]
Chen, N., Wang, W. M. Wang, H. (2016). An efficient full-length cDNA amplification strategy based on bioinformatics technology and multiplexed PCR methods. Sci. Rep., 6: 19420
CrossRef Google scholar
[94]
Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J. Pallen, M. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol., 30: 434–439
CrossRef Google scholar
[95]
Fishman, A. (2019). QsRNA-seq: A protocol for generating libraries for high-throughput sequencing of small RNAs. Bio Protoc., 9: e3179
CrossRef Google scholar
[96]
Wong, R. K. Y., Macmahon, M., Woodside, J. V. Simpson, D. (2019). A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics. 20, 446
[97]
Herbert, Z. T., Thimmapuram, J., Xie, S., Kershner, J. P., Kolling, F. W., Ringelberg, C. S., LeClerc, A., Alekseyev, Y. O., Fan, J., Podnar, J. W. . (2020). Multisite evaluation of next-generation methods for small RNA quantification. J. Biomol. Tech., 31: 47–56
CrossRef Google scholar
[98]
Pine, P. S., Lund, S. P., Parsons, J. R., Vang, L. K., Mahabal, A. A., Cinquini, L., Kelly, S. C., Kincaid, H., Crichton, D. J., Spira, A. . (2018). Summarizing performance for genome scale measurement of miRNA: reference samples and metrics. BMC Genomics, 19: 180
CrossRef Google scholar
[99]
Yeri, A., Courtright, A., Danielson, K., Hutchins, E., Alsop, E., Carlson, E., Hsieh, M., Ziegler, O., Das, A., Shah, R. V. . (2018). Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genomics, 19: 331
CrossRef Google scholar
[100]
Huang, X., Yuan, T., Tschannen, M., Sun, Z., Jacob, H., Du, M., Liang, M., Dittmar, R. L., Liu, Y., Liang, M. . (2013). Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 14: 319
CrossRef Google scholar

ACKNOWLEDGEMENTS

This work was supported by the National Science and Technology Major Project during the 13th 5-Year Plan Period (No. 2019ZX09721001-007-002).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Mengya Chai, Xueyang Xiong, Huimin Wang and Lida Xu declare that they have no conflicts of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press.
AI Summary AI Mindmap
PDF(1227 KB)

Accesses

Citations

Detail

Sections
Recommended

/