Roles of statistical modeling in characterizing the genetic basis of human diseases and traits

Hongyu Zhao

PDF(496 KB)
PDF(496 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 371-377. DOI: 10.15302/J-QB-021-0283
PERSPECTIVE
PERSPECTIVE

Roles of statistical modeling in characterizing the genetic basis of human diseases and traits

Author information +
History +

Cite this article

Download citation ▾
Hongyu Zhao. Roles of statistical modeling in characterizing the genetic basis of human diseases and traits. Quant. Biol., 2021, 9(4): 371‒377 https://doi.org/10.15302/J-QB-021-0283

References

[1]
Klein J., R. Y., Zeiss Y., C. S., Chew K., E. P., Tsai M., J. T.. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308 : 385– 389
CrossRef Google scholar
[2]
Yengo E., L. R., Sidorenko N., J. M., Kemper M.. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum. Mol. Genet., 2018, 27 : 3641– 3649
CrossRef Google scholar
[3]
Hall J. M., Lee, M. K., Newman, B., Morrow, J. E., Anderson, L. A., Huey, B. , King, M. C.. Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 1990, 250 : 1684– 1689
CrossRef Google scholar
[4]
Risch N. , Merikangas, K.. The future of genetic studies of complex human diseases. Science, 1996, 273 : 1516– 1517
CrossRef Google scholar
[5]
Spielman R. S., McGinnis, R. E. , Ewens, W. J.. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet., 1993, 52 : 506– 516
[6]
Zhang S., Zhu, X. , Zhao, H.. On a semiparametric test to detect associations between quantitative traits and candidate genes using unrelated individuals. Genet. Epidemiol., 2003, 24 : 44– 56
CrossRef Google scholar
[7]
Price A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. , Reich, D.. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet., 2006, 38 : 904– 909
CrossRef Google scholar
[8]
International HapMap Consortium. The International HapMap Project. Nature, 2003, 426 : 789– 796
CrossRef Google scholar
[9]
Manolio A., T. S., Collins J., F. B., Cox A., N. J., Goldstein I., D. M., Hindorff R.. Finding the missing heritability of complex diseases. Nature, 2009, 461 : 747– 753
CrossRef Google scholar
[10]
Yang P., J. K., Benyamin R., B. A., McEvoy C., B. G., Gordon W.. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet., 2010, 42 : 565– 569
CrossRef Google scholar
[11]
Fisher R. A.. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb., 1918, 52 : 399– 433
CrossRef Google scholar
[12]
Jiang J., Li, C., Paul, D., Yang, C. , Zhao, H.. On high-dimensional misspecified mixed model analysis in genome-wide association study. Ann. Stat., 2016, 44 : 2127– 2160
CrossRef Google scholar
[13]
Speed D., Cai, N., Johnson, M. R., Nejentsev, S. , Balding, D. J. , the UCLEB Consortium.. Reevaluation of SNP heritability in complex human traits. Nat. Genet., 2017, 49 : 986– 992
CrossRef Google scholar
[14]
Pasaniuc B. , Price, A. L.. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet., 2017, 18 : 117– 127
CrossRef Google scholar
[15]
Bulik-Sullivan K., B. R., Loh K., P. J., Finucane L., H. M., Ripke Schizophrenia Working Group of the Psychiatric Genomics Consortium. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 2015, 47 : 291– 295
CrossRef Google scholar
[16]
Lu Q., Powles, R. L., Abdallah, S., Ou, D., Wang, Q., Hu, Y., Lu, Y., Liu, W., Li, B., Mukherjee, S.. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease. PLoS Genet., 2017, 13 : e1006933–
CrossRef Google scholar
[17]
Finucane K., H. R.. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet., 2015, 47 : 1228– 1235
CrossRef Google scholar
[18]
Lu Q., Powles, R. L., Wang, Q., He, B. J. , Zhao, H.. Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies. PLoS Genet., 2016, 12 : e1005947–
CrossRef Google scholar
[19]
Lee S. H., Yang, J., Goddard, M. E., Visscher, P. M. , Wray, N. R.. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics, 2012, 28 : 2540– 2542
CrossRef Google scholar
[20]
Bulik-Sullivan K., B. R., Finucane R., H. R., Anttila B.. An atlas of genetic correlations across human diseases and traits. Nat. Genet., 2015, 47 : 1236– 1241
CrossRef Google scholar
[21]
van Rheenen W., Peyrot, W. J., Schork, A. J., Lee, S. H. , Wray, N. R.. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet., 2019, 20 : 567– 581
CrossRef Google scholar
[22]
Lu Q., Li, B., Ou, D., Erlendsdottir, M., Powles, R. L., Jiang, T., Hu, Y., Chang, D., Jin, C., Dai, W.. A powerful approach to estimating annotation-stratified genetic covariance via GWAS summary statistics. Am. J. Hum. Genet., 2017, 101 : 939– 964
CrossRef Google scholar
[23]
Zhang Y., Lu, Q., Ye, Y., Huang, K., Liu, W., Wu, Y., Zhong, X., Li, B., Yu, Z., Travers, B. G.. SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biol., 2021, 22 : 262–
CrossRef Google scholar
[24]
Guo C., H. P., Hou Q. ( 2021) Quantifying concordant genetic effects of de novo mutations on multiple disorders. bioRxiv, 2021.06.13.448234
[25]
Turley K., P. J., Walters A., R. A., Maghzian A.. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet., 2018, 50 : 229– 237
CrossRef Google scholar
[26]
Xie Y., Li, M., Dong, W., Jiang, W. , Zhao, H.. M-DATA: A statistical approach to jointly analyzing de novo mutations for multiple traits. medRxive, 2021,
CrossRef Google scholar
[27]
Kang J., Cho, J. , Zhao, H.. Practical issues in building risk-predicting models for complex diseases. J. Biopharm. Stat., 2010, 20 : 415– 440
CrossRef Google scholar
[28]
Vilhjálmsson J., B. K., Yang R.. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet., 2015, 97 : 576– 592
CrossRef Google scholar
[29]
Hu Y., Lu, Q., Powles, R., Yao, X., Yang, C., Fang, F., Xu, X. , Zhao, H.. Leveraging functional annotations in genetic risk prediction for human complex diseases. PLoS Comput. Biol., 2017, 13 : e1005589–
CrossRef Google scholar
[30]
Li C., Yang, C., Gelernter, J. , Zhao, H.. Improving genetic risk prediction by leveraging pleiotropy. Hum. Genet., 2014, 133 : 639– 650
CrossRef Google scholar
[31]
Hu Y., Lu, Q., Liu, W., Zhang, Y., Li, M. , Zhao, H.. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLoS Genet., 2017, 13 : e1006836–
CrossRef Google scholar
[32]
Ge T., Chen, C. Y., Ni, Y., Feng, Y. A. , Smoller, J. W.. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun., 2019, 10 : 1776–
CrossRef Google scholar
[33]
Song S., Jiang, W., Hou, L. , Zhao, H.. Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies. PLoS Comput. Biol., 2020, 16 : e1007565–
CrossRef Google scholar
[34]
Zhou G. , Zhao, H.. A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics. PLoS Genet., 2021, 17 : e1009697–
CrossRef Google scholar
[35]
Consortium E. P. , the ENCODE Project Consortium. ( 2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306, 636– 640
[36]
Bernstein E., B. A., Stamatoyannopoulos F., J. A., Costello L., J. R.. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol., 2010, 28 : 1045– 1048
CrossRef Google scholar
[37]
Lonsdale . The genotype-tissue expression (GTEx) project. Nat. Genet., 2013, 45 : 580– 585
CrossRef Google scholar
[38]
Gusev W., A. Geus, Ko J., A. I., Shi A.. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 2016, 48 : 245– 252
CrossRef Google scholar
[39]
Gamazon R., E. E., Wheeler P., H. V., Shah J., K. E., Mozaffari C., S. L., Aquino-Michaels J.. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet., 2015, 47 : 1091– 1098
CrossRef Google scholar
[40]
Hu Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S.. A statistical framework for cross-tissue transcriptome-wide association analysis. Nat. Genet., 2019, 51 : 568– 576
CrossRef Google scholar
[41]
Liu W., Li, M., Zhang, W., Zhou, G., Wu, X., Wang, J., Lu, Q. , Zhao, H.. Leveraging functional annotation to identify genes associated with complex diseases. PLoS Comput. Biol., 2020, 16 : e1008315–
CrossRef Google scholar
[42]
Li M., X. K.. Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nat. Genet., 2020, 52 : 969– 983
CrossRef Google scholar
[43]
Chung D., Yang, C., Li, C., Gelernter, J. , Zhao, H.. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet., 2014, 10 : e1004787–
CrossRef Google scholar
[44]
Chen M., Cho, J. , Zhao, H.. Incorporating biological pathways via a Markov random field model in genome-wide association studies. PLoS Genet., 2011, 7 : e1001353–
CrossRef Google scholar
[45]
Hou L., Chen, M., Zhang, C. K., Cho, J. , Zhao, H.. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Hum. Mol. Genet., 2014, 23 : 2780– 2790
CrossRef Google scholar
[46]
Lu Q., Yao, X., Hu, Y. , Zhao, H.. GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation. Bioinformatics, 2016, 32 : 542– 548
CrossRef Google scholar
[47]
Weissbrod P., O. de Geijn. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet., 2020, 52 : 1355– 1363
CrossRef Google scholar
[48]
Hutchinson A., Asimit, J. , Wallace, C.. Fine-mapping genetic associations. Hum. Mol. Genet., 2020, 29 : R81– R88
CrossRef Google scholar
[49]
Rozenblatt-Rosen J. T., O. A. The Human Cell Atlas: from vision to reality. Nature, 2017, 550 : 451– 453
CrossRef Google scholar
[50]
Dekker S., J. O., Belmont T., A. A., Guttman C., M. J.. The 4D nucleome project. Nature, 2017, 549 : 219– 226
CrossRef Google scholar
[51]
Katan M. B.. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet, 1986, 327 : 507– 508
CrossRef Google scholar
[52]
Smith G. D. , Ebrahim, S.. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol., 2003, 32 : 1– 22
CrossRef Google scholar
[53]
Slob E. A. W. , Burgess, S.. A comparison of robust Mendelian randomization methods using summary data. Genet. Epidemiol., 2020, 44 : 313– 329
CrossRef Google scholar
[54]
Bodmer W. , Bonilla, C.. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet., 2008, 40 : 695– 701
CrossRef Google scholar
[55]
Crouch D. J. M. , Bodmer, W. F.. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl. Acad. Sci. USA, 2020, 117 : 18924– 18933
CrossRef Google scholar
[56]
Zhao J., J. M., Akinsanmi M.. A burden of rare variants associated with extremes of gene expression in human peripheral blood. Am. J. Hum. Genet., 2016, 98 : 299– 309
CrossRef Google scholar
[57]
Li K., X. R., Kim N., Y. T., Tsang J., E. J.. The impact of rare variation on gene expression across tissues. Nature, 2017, 550 : 239– 243
CrossRef Google scholar
[58]
So H. C., Chau, C. K., Chiu, W. T., Ho, K. S., Lo, C. P., Yim, S. H. , Sham, P. C.. Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry. Nat. Neurosci., 2017, 20 : 1342– 1349
CrossRef Google scholar
[59]
Duncan L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feldman, M., Peterson, R. , Domingue, B.. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun., 2019, 10 : 3328–
CrossRef Google scholar
[60]
Martin A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M. , Daly, M. J.. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet., 2019, 51 : 584– 591
CrossRef Google scholar

ACKNOWLEDGMENTS

This work was supported in part by NSF grant DMS 1902903 and NIH grants R03HD100883, R03OD030609, and R01GM134005.

COMPLIANCE WITH ETHICS GUIDELINES

The author Hongyu Zhao declares he has no conflict of interests.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The author(s) 2021. Published by Higher Education Press.
AI Summary AI Mindmap
PDF(496 KB)

Accesses

Citations

Detail

Sections
Recommended

/