Roles of statistical modeling in characterizing the genetic basis of human diseases and traits
Hongyu Zhao
Roles of statistical modeling in characterizing the genetic basis of human diseases and traits
[1] |
Klein J., R. Y., Zeiss Y., C. S., Chew K., E. P., Tsai M., J. T.. Complement factor H polymorphism in age-related macular degeneration. Science, 2005, 308
CrossRef
Google scholar
|
[2] |
Yengo E., L. R., Sidorenko N., J. M., Kemper M.. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum. Mol. Genet., 2018, 27
CrossRef
Google scholar
|
[3] |
Hall J. M., Lee, M. K., Newman, B., Morrow, J. E., Anderson, L. A., Huey, B. , King, M. C.. Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 1990, 250
CrossRef
Google scholar
|
[4] |
Risch N. , Merikangas, K.. The future of genetic studies of complex human diseases. Science, 1996, 273
CrossRef
Google scholar
|
[5] |
Spielman R. S., McGinnis, R. E. , Ewens, W. J.. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet., 1993, 52
|
[6] |
Zhang S., Zhu, X. , Zhao, H.. On a semiparametric test to detect associations between quantitative traits and candidate genes using unrelated individuals. Genet. Epidemiol., 2003, 24
CrossRef
Google scholar
|
[7] |
Price A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. , Reich, D.. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet., 2006, 38
CrossRef
Google scholar
|
[8] |
International HapMap Consortium. The International HapMap Project. Nature, 2003, 426
CrossRef
Google scholar
|
[9] |
Manolio A., T. S., Collins J., F. B., Cox A., N. J., Goldstein I., D. M., Hindorff R.. Finding the missing heritability of complex diseases. Nature, 2009, 461
CrossRef
Google scholar
|
[10] |
Yang P., J. K., Benyamin R., B. A., McEvoy C., B. G., Gordon W.. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet., 2010, 42
CrossRef
Google scholar
|
[11] |
Fisher R. A.. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb., 1918, 52
CrossRef
Google scholar
|
[12] |
Jiang J., Li, C., Paul, D., Yang, C. , Zhao, H.. On high-dimensional misspecified mixed model analysis in genome-wide association study. Ann. Stat., 2016, 44
CrossRef
Google scholar
|
[13] |
Speed D., Cai, N., Johnson, M. R., Nejentsev, S. , Balding, D. J. , the UCLEB Consortium.. Reevaluation of SNP heritability in complex human traits. Nat. Genet., 2017, 49
CrossRef
Google scholar
|
[14] |
Pasaniuc B. , Price, A. L.. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet., 2017, 18
CrossRef
Google scholar
|
[15] |
Bulik-Sullivan K., B. R., Loh K., P. J., Finucane L., H. M., Ripke Schizophrenia Working Group of the Psychiatric Genomics Consortium. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 2015, 47
CrossRef
Google scholar
|
[16] |
Lu Q., Powles, R. L., Abdallah, S., Ou, D., Wang, Q., Hu, Y., Lu, Y., Liu, W., Li, B., Mukherjee, S.. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease. PLoS Genet., 2017, 13
CrossRef
Google scholar
|
[17] |
Finucane K., H. R.. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet., 2015, 47
CrossRef
Google scholar
|
[18] |
Lu Q., Powles, R. L., Wang, Q., He, B. J. , Zhao, H.. Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies. PLoS Genet., 2016, 12
CrossRef
Google scholar
|
[19] |
Lee S. H., Yang, J., Goddard, M. E., Visscher, P. M. , Wray, N. R.. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics, 2012, 28
CrossRef
Google scholar
|
[20] |
Bulik-Sullivan K., B. R., Finucane R., H. R., Anttila B.. An atlas of genetic correlations across human diseases and traits. Nat. Genet., 2015, 47
CrossRef
Google scholar
|
[21] |
van Rheenen W., Peyrot, W. J., Schork, A. J., Lee, S. H. , Wray, N. R.. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet., 2019, 20
CrossRef
Google scholar
|
[22] |
Lu Q., Li, B., Ou, D., Erlendsdottir, M., Powles, R. L., Jiang, T., Hu, Y., Chang, D., Jin, C., Dai, W.. A powerful approach to estimating annotation-stratified genetic covariance via GWAS summary statistics. Am. J. Hum. Genet., 2017, 101
CrossRef
Google scholar
|
[23] |
Zhang Y., Lu, Q., Ye, Y., Huang, K., Liu, W., Wu, Y., Zhong, X., Li, B., Yu, Z., Travers, B. G.. SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biol., 2021, 22
CrossRef
Google scholar
|
[24] |
Guo C., H. P., Hou Q. ( 2021) Quantifying concordant genetic effects of de novo mutations on multiple disorders. bioRxiv, 2021.06.13.448234
|
[25] |
Turley K., P. J., Walters A., R. A., Maghzian A.. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet., 2018, 50
CrossRef
Google scholar
|
[26] |
Xie Y., Li, M., Dong, W., Jiang, W. , Zhao, H.. M-DATA: A statistical approach to jointly analyzing de novo mutations for multiple traits. medRxive, 2021,
CrossRef
Google scholar
|
[27] |
Kang J., Cho, J. , Zhao, H.. Practical issues in building risk-predicting models for complex diseases. J. Biopharm. Stat., 2010, 20
CrossRef
Google scholar
|
[28] |
Vilhjálmsson J., B. K., Yang R.. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet., 2015, 97
CrossRef
Google scholar
|
[29] |
Hu Y., Lu, Q., Powles, R., Yao, X., Yang, C., Fang, F., Xu, X. , Zhao, H.. Leveraging functional annotations in genetic risk prediction for human complex diseases. PLoS Comput. Biol., 2017, 13
CrossRef
Google scholar
|
[30] |
Li C., Yang, C., Gelernter, J. , Zhao, H.. Improving genetic risk prediction by leveraging pleiotropy. Hum. Genet., 2014, 133
CrossRef
Google scholar
|
[31] |
Hu Y., Lu, Q., Liu, W., Zhang, Y., Li, M. , Zhao, H.. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLoS Genet., 2017, 13
CrossRef
Google scholar
|
[32] |
Ge T., Chen, C. Y., Ni, Y., Feng, Y. A. , Smoller, J. W.. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun., 2019, 10
CrossRef
Google scholar
|
[33] |
Song S., Jiang, W., Hou, L. , Zhao, H.. Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies. PLoS Comput. Biol., 2020, 16
CrossRef
Google scholar
|
[34] |
Zhou G. , Zhao, H.. A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics. PLoS Genet., 2021, 17
CrossRef
Google scholar
|
[35] |
Consortium E. P. , the ENCODE Project Consortium. ( 2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306, 636– 640
|
[36] |
Bernstein E., B. A., Stamatoyannopoulos F., J. A., Costello L., J. R.. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol., 2010, 28
CrossRef
Google scholar
|
[37] |
Lonsdale
CrossRef
Google scholar
|
[38] |
Gusev W., A. Geus, Ko J., A. I., Shi A.. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 2016, 48
CrossRef
Google scholar
|
[39] |
Gamazon R., E. E., Wheeler P., H. V., Shah J., K. E., Mozaffari C., S. L., Aquino-Michaels J.. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet., 2015, 47
CrossRef
Google scholar
|
[40] |
Hu Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S.. A statistical framework for cross-tissue transcriptome-wide association analysis. Nat. Genet., 2019, 51
CrossRef
Google scholar
|
[41] |
Liu W., Li, M., Zhang, W., Zhou, G., Wu, X., Wang, J., Lu, Q. , Zhao, H.. Leveraging functional annotation to identify genes associated with complex diseases. PLoS Comput. Biol., 2020, 16
CrossRef
Google scholar
|
[42] |
Li M., X. K.. Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nat. Genet., 2020, 52
CrossRef
Google scholar
|
[43] |
Chung D., Yang, C., Li, C., Gelernter, J. , Zhao, H.. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet., 2014, 10
CrossRef
Google scholar
|
[44] |
Chen M., Cho, J. , Zhao, H.. Incorporating biological pathways via a Markov random field model in genome-wide association studies. PLoS Genet., 2011, 7
CrossRef
Google scholar
|
[45] |
Hou L., Chen, M., Zhang, C. K., Cho, J. , Zhao, H.. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Hum. Mol. Genet., 2014, 23
CrossRef
Google scholar
|
[46] |
Lu Q., Yao, X., Hu, Y. , Zhao, H.. GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation. Bioinformatics, 2016, 32
CrossRef
Google scholar
|
[47] |
Weissbrod P., O. de Geijn. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet., 2020, 52
CrossRef
Google scholar
|
[48] |
Hutchinson A., Asimit, J. , Wallace, C.. Fine-mapping genetic associations. Hum. Mol. Genet., 2020, 29
CrossRef
Google scholar
|
[49] |
Rozenblatt-Rosen J. T., O. A. The Human Cell Atlas: from vision to reality. Nature, 2017, 550
CrossRef
Google scholar
|
[50] |
Dekker S., J. O., Belmont T., A. A., Guttman C., M. J.. The 4D nucleome project. Nature, 2017, 549
CrossRef
Google scholar
|
[51] |
Katan M. B.. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet, 1986, 327
CrossRef
Google scholar
|
[52] |
Smith G. D. , Ebrahim, S.. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol., 2003, 32
CrossRef
Google scholar
|
[53] |
Slob E. A. W. , Burgess, S.. A comparison of robust Mendelian randomization methods using summary data. Genet. Epidemiol., 2020, 44
CrossRef
Google scholar
|
[54] |
Bodmer W. , Bonilla, C.. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet., 2008, 40
CrossRef
Google scholar
|
[55] |
Crouch D. J. M. , Bodmer, W. F.. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl. Acad. Sci. USA, 2020, 117
CrossRef
Google scholar
|
[56] |
Zhao J., J. M., Akinsanmi M.. A burden of rare variants associated with extremes of gene expression in human peripheral blood. Am. J. Hum. Genet., 2016, 98
CrossRef
Google scholar
|
[57] |
Li K., X. R., Kim N., Y. T., Tsang J., E. J.. The impact of rare variation on gene expression across tissues. Nature, 2017, 550
CrossRef
Google scholar
|
[58] |
So H. C., Chau, C. K., Chiu, W. T., Ho, K. S., Lo, C. P., Yim, S. H. , Sham, P. C.. Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry. Nat. Neurosci., 2017, 20
CrossRef
Google scholar
|
[59] |
Duncan L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feldman, M., Peterson, R. , Domingue, B.. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun., 2019, 10
CrossRef
Google scholar
|
[60] |
Martin A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M. , Daly, M. J.. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet., 2019, 51
CrossRef
Google scholar
|
/
〈 | 〉 |