Fundamental Boolean network modelling for childhood acute lymphoblastic leukaemia pathways
Leshi Chen, Don Kulasiri, Sandhya Samarasinghe
Fundamental Boolean network modelling for childhood acute lymphoblastic leukaemia pathways
Background: A novel data-driven Boolean model, namely, the fundamental Boolean model (FBM), has been proposed to draw genetic regulatory insights into gene activation, inhibition, and protein decay, published in 2018. This novel Boolean model facilitates the analysis of the activation and inhibition pathways. However, the novel model does not handle the situation well, where genetic regulation might require more time steps to complete.
Methods: Here, we propose extending the fundamental Boolean modelling to address the issue that some gene regulations might require more time steps to complete than others. We denoted this extension model as the temporal fundamental Boolean model (TFBM) and related networks as the temporal fundamental Boolean networks (TFBNs). The leukaemia microarray datasets downloaded from the National Centre for Biotechnology Information have been adopted to demonstrate the utility of the proposed TFBM and TFBNs.
Results: We developed the TFBNs that contain 285 components and 2775 Boolean rules based on TFBM on the leukaemia microarray datasets, which are in the form of short-time series. The data contain gene expression measurements for 13 GC-sensitive children under therapy for acute lymphoblastic leukaemia, and each sample has three time points: 0 hour (before GC treatment), 6/8 hours (after GC treatment) and 24 hours (after GC treatment).
Conclusion: We conclude that the proposed TFBM unlocks their predecessor’s limitation, i.e., FBM, that could help pharmaceutical agents identify any side effects on clinic-related data. New hypotheses could be identified by analysing the extracted fundamental Boolean networks and analysing their up-regulatory and down-regulatory pathways.
Boolean modelling has been applied in numerous areas. However, minimal effort has been put into creating activation, inhibition and protein decay networks. In the previous study, we proposed a novel concept, namely, fundamental Boolean model, to address these issues. However, it does not reflect that genetic regulation might require more time steps to complete. Hence, in this paper, we proposed extending the original model to temporal fundamental Boolean model and demonstrated the new model with the leukaemia datasets downloaded from NCBI. Our result shows that the proposed model’s capacity could identify crucial signalling pathways for glucocorticoid treated childhood leukaemia patients.
Boolean modelling / Boolean network / time series data / network inference / data-driven boolean modelling / fundamental boolean model / fundamental boolean networks / orchard cube
[1] |
Chen,L., Kulasiri,D. ( 2018). A novel data-driven Boolean model for genetic regulatory networks. Front. Physiol., 9 : 1328
CrossRef
Google scholar
|
[2] |
Schmidt,S., Rainer,J., Riml,S., Ploner,C., Jesacher,S., ller,C., Presul,E., Skvortsov,S., Crazzolara,R., Fiegl,M.
CrossRef
Google scholar
|
[3] |
Shmulevich,I., Dougherty,E. R., Kim,S. ( 2002a). Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18 : 261– 274
CrossRef
Google scholar
|
[4] |
Saboury,A. ( 2009). Enzyme inhibition and activation: A general theory. J. Iran. Chem. Soc., 6 : 219– 229
CrossRef
Google scholar
|
[5] |
Fontes,R., Ribeiro,J. M. ( 2000). Inhibition and activation of enzymes. The effect of a modifier on the reaction rate and on kinetic parameters. Acta Biochim. Pol., 47 : 233– 257
CrossRef
Google scholar
|
[6] |
Naldi,A., Chaouiya,C. ( 2006). Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics, 22 : e124– e131
CrossRef
Google scholar
|
[7] |
Ruz,G. A., Goles,E., Montalva,M. Fogel,G. ( 2014). Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach. Biosystems, 115 : 23– 32
CrossRef
Google scholar
|
[8] |
Hwang,W. ( 2010). Cell signaling dynamics analysis in leukemia with switching Boolean networks. Comput. Syst. Biol., 13 : 168– 175
|
[9] |
Saadatpour,A., Wang,R. S., Liao,A., Liu,X., Loughran,T. P., Albert,I. ( 2011). Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLOS Comput. Biol., 7 : e1002267
CrossRef
Google scholar
|
[10] |
udo,J. G. ( 2013). An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos, 23 : 025111
CrossRef
Google scholar
|
[11] |
Saadatpour,A., Albert,R. Reluga,T. ( 2013). A reduction method for Boolean network models proven to conserve attractors. SIAM J. Appl. Dyn. Syst., 12 : 1997– 2011
CrossRef
Google scholar
|
[12] |
Campbell,C. ( 2014). Stabilization of perturbed Boolean network attractors through compensatory interactions. BMC Syst. Biol., 8 : 53
CrossRef
Google scholar
|
[13] |
Saez-Rodriguez,J., Simeoni,L., Lindquist,J. A., Hemenway,R., Bommhardt,U., Arndt,B., Haus,U. U., Weismantel,R., Gilles,E. D., Klamt,S.
CrossRef
Google scholar
|
[14] |
Wittmann,D. M., Krumsiek,J., Saez-Rodriguez,J., Lauffenburger,D. A., Klamt,S. Theis,F. ( 2009). Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol., 3 : 98
CrossRef
Google scholar
|
[15] |
Polyanin, A. D. and Zaitsev, V. F. (2003) Handbook of Exact Solutions for Ordinary Differential Equations (2nd ed.). Boca Raton: Chapman & Hall/CRC Press
|
[16] |
Ling,H., Samarasinghe,S. ( 2013). Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics. Biosystems, 114 : 191– 205
CrossRef
Google scholar
|
[17] |
Wang,Z., Huang,D., Meng,H. ( 2013). A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation. Biosystems, 114 : 1– 7
CrossRef
Google scholar
|
[18] |
Kim,S. Y., Imoto,S. ( 2003). Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief. Bioinform., 4 : 228– 235
CrossRef
Google scholar
|
[19] |
Akutsu,T., Miyano,S. ( 1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput., 1999 : 17– 28
|
[20] |
Liu,F., Zhang,S. W., Guo,W. F., Wei,Z. G. ( 2016). Inference of gene regulatory network based on local Bayesian networks. PLOS Comput. Biol., 12 : e1005024
CrossRef
Google scholar
|
[21] |
Wu,H. C., Zhang,L. Chan,S. ( 2014). Reconstruction of gene regulatory networks from short time series high throughput data: Review and New Findings. In:19th International Conference on Digital Signal Processing (DSP),
|
[22] |
ekA.. ( 2012) Mathematical modelling of gene regulatory networks. Applied Biological Engineering‒ Principles and Practice, Naik, G. R. (ed.) Vol. 5. London
|
[23] |
Liang,S., Fuhrman,S. ( 1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput., 1998 : 18– 29
|
[24] |
Traynard,P., Monteiro,P. T., Saez-Rodriguez,J., Helikar,T., Thieffry,D. ( 2016). Logical modeling and dynamical analysis of cellular networks. Front. Genet., 7 : 94
CrossRef
Google scholar
|
[25] |
Barberis,M., Todd,R. G. ( 2017). Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models. FEMS Yeast Res., 17 : fow103
CrossRef
Google scholar
|
[26] |
Traynard,P., Tobalina,L., Eduati,F., Calzone,L. ( 2017). Logic modeling in quantitative systems pharmacology. CPT Pharmacometrics Syst. Pharmacol., 6 : 499– 511
CrossRef
Google scholar
|
[27] |
Wang,R. S., Saadatpour,A. ( 2012). Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol., 9 : 055001
CrossRef
Google scholar
|
[28] |
Xiao,Y. ( 2009). A tutorial on analysis and simulation of Boolean gene regulatory network models. Curr. Genomics, 10 : 511– 525
CrossRef
Google scholar
|
[29] |
SamuelssonB.. (2006) Dynamics in random Boolean networks. In: Department of Theoretical Physics. Lund: Lund University
|
[30] |
Silverbush,D., Grosskurth,S., Wang,D., Powell,F., Gottgens,B., Dry,J. ( 2017). Cell-specific computational modeling of the PIM pathway in acute myeloid leukemia. Cancer Res., 77 : 827– 838
CrossRef
Google scholar
|
[31] |
Kauffman,S. ( 1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22 : 437– 467
CrossRef
Google scholar
|
[32] |
Kauffman,S., Peterson,C., Samuelsson,B. ( 2003). Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. USA, 100 : 14796– 14799
CrossRef
Google scholar
|
[33] |
Jacob,F. ( 1961). Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 3 : 318– 356
CrossRef
Google scholar
|
[34] |
ShmulevichI.. and Dougherty, E. (2005) Modeling genetic regulatory networks with probabilistic Boolean networks. New York: Hindawi
|
[35] |
Russo,G., Zegar,C. ( 2003). Advantages and limitations of microarray technology in human cancer. Oncogene, 22 : 6497– 6507
CrossRef
Google scholar
|
[36] |
Taub,F. E., DeLeo,J. M. Thompson,E. ( 1983). Sequential comparative hybridizations analyzed by computerized image processing can identify and quantitate regulated RNAs. DNA, 2 : 309– 327
CrossRef
Google scholar
|
[37] |
Gautier,L., Cope,L., Bolstad,B. M. Irizarry,R. ( 2004). affy‒analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20 : 307– 315
CrossRef
Google scholar
|
[38] |
Silvescu,A. ( 2001). Temporal Boolean network models of genetic networks and their inference from gene expression time series. Complex Syst., 13 : 61– 78
|
[39] |
Ernst,J. ( 2006). STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 7 : 191
CrossRef
Google scholar
|
[40] |
Ernst,J., Nau,G. J. ( 2005). Clustering short time series gene expression data. Bioinformatics, 21 : i159– i168
CrossRef
Google scholar
|
[41] |
Chaiboonchoe,A. ( 2010). Identification of glucocorticoid-regulated genes and inferring their network focused on the glucocorticoid receptor in childhood leukaemia, based on microarray data and pathway databases, pp. 170. Lincoln University,
|
[42] |
Wang,Z., Yang,F., Ho,D. W., Swift,S., Tucker,A. ( 2008). Stochastic dynamic modeling of short gene expression time-series data. IEEE Trans. Nanobioscience, 7 : 44– 55
CrossRef
Google scholar
|
[43] |
Tchagang,A. B., Phan,S., Famili,F., Shearer,H., Fobert,P., Huang,Y., Zou,J., Huang,D., Cutler,A., Liu,Z.
CrossRef
Google scholar
|
[44] |
Bockmayr, A. (2009) Logic-based modeling in systems biology. In: Logic Programming and Nonmonotonic Reasoning, Erdem, E., Lin, F. and Schaub, T. (eds.). Heidelberg: Springer
|
[45] |
Irizarry,R. A., Wu,Z. Jaffee,H. ( 2006). Comparison of Affymetrix GeneChip expression measures. Bioinformatics, 22 : 789– 794
CrossRef
Google scholar
|
[46] |
Affymetrix, Inc. (2002) Statistical algorithms description document. Part number 701137 Rev 3
|
[47] |
Irizarry,R. A., Hobbs,B., Collin,F., Beazer-Barclay,Y. D., Antonellis,K. J., Scherf,U. Speed,T. ( 2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4 : 249– 264
CrossRef
Google scholar
|
[48] |
Wu,Z., Irizarry,R. A., Gentleman,R., Martinez-Murillo,F. ( 2004). A Model-Based Background Adjustment for Oligonucleotide Expression Arrays. J. Am. Stat. Assoc., 99 : 909– 917
CrossRef
Google scholar
|
[49] |
WeinbergR.. (2007) The biology of cancer. New York: Garland Science
|
[50] |
Hornberg,J. J., Bruggeman,F. J., Westerhoff,H. V. ( 2006). Cancer: a systems biology disease. Biosystems, 83 : 81– 90
CrossRef
Google scholar
|
[51] |
Hanahan,D. Weinberg,R. ( 2000). The hallmarks of cancer. Cell, 100 : 57– 70
CrossRef
Google scholar
|
[52] |
Martinez,J. D.
|
[53] |
Banjar,H., Adelson,D., Brown,F. ( 2017). Intelligent techniques using molecular data analysis in leukaemia: An opportunity for personalized medicine support system. BioMed Res. Int., 2017 : 3587309
CrossRef
Google scholar
|
[54] |
Inaba,H., Greaves,M. Mullighan,C. ( 2013). Acute lymphoblastic leukaemia. Lancet, 381 : 1943– 1955
CrossRef
Google scholar
|
[55] |
Hunger,S. P. Mullighan,C. ( 2015). Acute lymphoblastic leukemia in children. N. Engl. J. Med., 373 : 1541– 1552
CrossRef
Google scholar
|
[56] |
GreenD.. R. (2011) Means to an End: Apoptosis and Other Cell Death Mechanisms. Cold Spring Harbor Laboratory Press
|
[57] |
Lakna. Difference Between Apoptosis and Necrosis. (2017) Available from the website of PEDIAA
|
[58] |
Schmidt,S., Rainer,J., Ploner,C., Presul,E., Riml,S. ( 2004). Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ., 11 : S45– S55
CrossRef
Google scholar
|
[59] |
Thompson,E. B. Johnson,B. ( 2003). Regulation of a distinctive set of genes in glucocorticoid-evoked apoptosis in CEM human lymphoid cells. Recent Prog. Horm. Res., 58 : 175– 197
CrossRef
Google scholar
|
[60] |
Planey,S. L., Abrams,M. T., Robertson,N. M. ( 2003). Role of apical caspases and glucocorticoid-regulated genes in glucocorticoid-induced apoptosis of pre-B leukemic cells. Cancer Res, 63 : 172– 178
|
[61] |
Schmidt,S., Irving,J. A., Minto,L., Matheson,E., Nicholson,L., Ploner,A., Parson,W., Kofler,A., Amort,M., Erdel,M.
CrossRef
Google scholar
|
[62] |
Smith,L. K. Cidlowski,J. ( 2010). Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes. Prog. Brain Res., 182 : 1– 30
CrossRef
Google scholar
|
[63] |
Rhen,T. Cidlowski,J. ( 2005). Antiinflammatory action of glucocorticoids‒new mechanisms for old drugs. N. Engl. J. Med., 353 : 1711– 1723
CrossRef
Google scholar
|
[64] |
Rainer,J., Lelong,J., Bindreither,D., Mantinger,C., Ploner,C., Geley,S. ( 2012). Research resource: transcriptional response to glucocorticoids in childhood acute lymphoblastic leukemia. Mol. Endocrinol., 26 : 178– 193
CrossRef
Google scholar
|
[65] |
Yoshida,N. L., Miyashita,T., U,M., Yamada,M., Reed,J. C., Sugita,Y. ( 2002). Analysis of gene expression patterns during glucocorticoid-induced apoptosis using oligonucleotide arrays. Biochem. Biophys. Res. Commun., 293 : 1254– 1261
CrossRef
Google scholar
|
[66] |
Bachmann,P. S., Gorman,R., Papa,R. A., Bardell,J. E., Ford,J., Kees,U. R., Marshall,G. M. Lock,R. ( 2007). Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res., 67 : 4482– 4490
CrossRef
Google scholar
|
[67] |
Carlet,M., Janjetovic,K., Rainer,J., Schmidt,S., mayer,R., Mann,G., Prelog,M., Meister,B., Ploner,C. ( 2010). Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells. BMC Cancer, 10 : 638
CrossRef
Google scholar
|
[68] |
Lee,W. P. Tzou,W. ( 2009). Computational methods for discovering gene networks from expression data. Brief. Bioinform., 10 : 408– 423
CrossRef
Google scholar
|
[69] |
Ay,A. Arnosti,D. ( 2011). Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit. Rev. Biochem. Mol. Biol., 46 : 137– 151
CrossRef
Google scholar
|
[70] |
Wang,Y., Zhang,X. S. ( 2011). Computational systems biology: integration of sequence, structure, network, and dynamics. BMC Syst. Biol., 5 : S1
CrossRef
Google scholar
|
[71] |
Hood,L. ( 2013). Systems biology and p4 medicine: past, present, and future. Rambam Maimonides Med. J., 4 : e0012
CrossRef
Google scholar
|
[72] |
Barry,M. ( 1990). Enzyme induction and inhibition. Pharmacol. Ther., 48 : 71– 94
CrossRef
Google scholar
|
[73] |
Lazzarini,N., Widera,P., Williamson,S., Heer,R., Krasnogor,N. ( 2016). Functional networks inference from rule-based machine learning models. BioData Min., 9 : 28
CrossRef
Google scholar
|
[74] |
Albert,R. ( 2004). Boolean modeling of genetic regulatory networks. Lect. Notes Phys, 650 : 459– 481
|
[75] |
Hopfensitz,M., ssel,C., Maucher,M. Kestler,H. ( 2013). Attractors in Boolean networks: a tutorial. Comput. Stat., 28 : 19– 36
CrossRef
Google scholar
|
[76] |
HanJ.., Kamber, M. and Pei, J. (2012) Data Mining-concepts and Techniques, 3rd ed. Morgan Kaufmann Publishers
|
[77] |
RefSeq
|
[78] |
Calvo,F., Ranftl,R., Hooper,S., Farrugia,A. J., Moeendarbary,E., Bruckbauer,A., Batista,F., Charras,G. ( 2015). Cdc42EP3/BORG2 and septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts. Cell Rep., 13 : 2699– 2714
CrossRef
Google scholar
|
[79] |
Genecards. org. F13A1 Gene. ( 2020) Available from the website of GeneCards
|
[80] |
Genecards. org. TUBA4A. ( 2020) Available from the website of GeneCards
|
[81] |
Zhang,H., Duan,J., Qu,Y., Deng,T., Liu,R., Zhang,L., Bai,M., Li,J., Ning,T., Ge,S.
CrossRef
Google scholar
|
[82] |
BaiT. ZhaoY. LiuY. CaiB. DongN.. ( 2019) Effect of KNL1 on the proliferation and apoptosis of colorectal cancer cells. Technol. Cancer Res. Treat., 18, 1533033819858668
|
[83] |
Zhang,R., Deng,Y., Lv,Q., Xing,Q., Pan,Y., Liang,J., Jiang,M., Wei,Y., Shi,D., Xie,B.
CrossRef
Google scholar
|
[84] |
Zou,W., Ma,X., Hua,W., Chen,B., Huang,Y., Wang,D. ( 2016). BRIP1 inhibits the tumorigenic properties of cervical cancer by regulating RhoA GTPase activity. Oncol. Lett., 11 : 551– 558
CrossRef
Google scholar
|
[85] |
Cui,H., Wang,Q., Lei,Z., Feng,M., Zhao,Z., Wang,Y. ( 2019). DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation. J. Exp. Clin. Cancer Res., 38 : 350
CrossRef
Google scholar
|
[86] |
Chaiboonchoe,A., Samarasinghe,S., Kulasiri,D. ( 2014). Integrated analysis of gene network in childhood leukemia from microarray and pathway databases. BioMed Res. Int., 2014 : 278748
CrossRef
Google scholar
|
[87] |
ChaiboonchoeA. SamarasingheS.. ( 2009) Using emergent clustering methods to analyse short time series gene expression data from childhood leukemia treated with glucocorticoids. In: 18th World IMACS/MODSIM Congress, pp. 13‒ 17. Cairns, Australia
|
[88] |
Berrar, D. P. , Dubitzky, W. and Granzow, M. (2003) Introduction to microarray data analysis. In: A Practical Approach to Microarray Data Analysis. Kluwer Academic Publishers
|
[89] |
Li,Y., Jann,T. ( 2019). Benchmarking time-series data discretization on inference methods. Bioinformatics, 35 : 3102– 3109
CrossRef
Google scholar
|
[90] |
CatlettJ.. ( 1991) On changing continuous attributes into ordered discrete attributes. In: EWSL’91: Proceedings of the 5th European Conference on European Working Session on Learning, pp. 164‒ 178. Heidelberg: Springer
|
[91] |
JiangS. LiX. Zheng Q.. ( 2009) Approximate equal frequency discretization method. In: 2009 WRI Global Congress on Intelligent Systems, pp. 514‒ 518, Xiamen, China
|
[92] |
MacQueenJ.. (1967) Some methods for classification and analysis of multivariate observations. In: Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press
|
[93] |
Gupta,A., Mehrotra,K. Mohan,C. ( 2009). A clustering based discretization for supervised learning. Statis. & Prob. Lett. 80,
|
[94] |
Dimitrova,E. S., Licona,M. P., McGee,J. ( 2010). Discretization of time series data. J. Comput. Biol., 17 : 853– 868
CrossRef
Google scholar
|
[95] |
Schmidberger, G. and Frank, E. (2005) Unsupervised discretization using tree-based density estimation. In: Knowledge Discovery in Databases: Pkdd, 2005, Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., and Gama, J. (eds). Heidelberg: Springer
|
[96] |
ssel,C., Hopfensitz,M. Kestler,H. ( 2010). BoolNet‒an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics, 26 : 1378– 1380
CrossRef
Google scholar
|
[97] |
Win,H. M. L. Htwe,N. A. ( 2014). Comparison between edge detection and K-means clustering methods for image segmentation and merging. Inter. J. Scient. Engin. Technol. Res., 3 : 3012– 3017
|
[98] |
Wheeler,D. ( 2007). A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996−2003. Int. J. Health Geogr., 6 : 13
CrossRef
Google scholar
|
[99] |
Huang,W., Sherman,B. T. Lempicki,R. ( 2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4 : 44– 57
CrossRef
Google scholar
|
[100] |
Huang,W., Sherman,B. T. Lempicki,R. ( 2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37 : 1– 13
CrossRef
Google scholar
|
/
〈 | 〉 |