DNA methylation profiling reveals new potential subtype-specific gene markers for early-stage renal cell carcinoma in Caucasian population
Alvaro Filbert Liko, Edward Ciputra, Nathaniel Alvin Sanjaya, Priskila Cherisca Thenaka, David Agustriawan
DNA methylation profiling reveals new potential subtype-specific gene markers for early-stage renal cell carcinoma in Caucasian population
Background: Renal cell carcinoma (RCC) is among the top adult cancers worldwide, with a challenging management due to lack of early diagnosis, therapy resistance, and diverse molecular background. Aberrant DNA methylation has been associated with RCC development due to transcription deregulation. We discovered potential DNA methylation-based biomarkers for stage I RCC in Caucasian population from The Cancer Genome Atlas (TCGA) database.
Methods: Patients’ clinical, methylation beta-value, and mRNA expression data were retrieved. Differential methylation and expression analysis were conducted to obtain differentially methylated CpG-gene pairs. Inversely correlated CpG-gene pairs between their expression and methylation levels were selected using Pearson’s correlation test and then screened for any recorded somatic mutations. Their biomarker capacities were analyzed using the Kaplan-Meier and receiver operating characteristic analysis, followed by protein network and functional enrichment analysis.
Results: We obtained differentially methylated CpGs in clear cell (KIRC) and papillary RCC (KIRP) but not chromophobe RCC (KICH). Six inversely correlated CpG-gene pairs with no reported cancer-associated mutations were selected. Prognostic values were found in ATXN1 and RFTN1 for KIRC, along with GRAMD1B and TM4SF19 for KIRP, while diagnostic values were found in VIM and RFTN1 for KIRC, along with TNFAIP6 and TM4SF19 for KIRP. Both subtypes showed enrichment of immune and metabolism-related pathways.
Conclusion: We discovered novel potential DNA methylation-based prognostic and diagnostic markers for early-stage RCC in Caucasian population. Validation by wet laboratory analysis and adjustments for confounding variables might be needed, considering our study limitation to specific race.
Renal cell carcinoma (RCC) is strongly associated with epigenetic aberrations, including DNA methylation. The lack of early diagnosis, however, leads to unexplored epigenetic landscape in stage I RCC. Herein, we identified novel, methylation-driven, and subtype-specific gene markers of three early-stage RCC subtypes (KIRC, KIRP, KICH) with potential prognostic and diagnostic values, from TCGA database. Strikingly, stage I KIRC displays total hypomethylation, while KICH displays insignificant methylation aberration. Importantly, the identified genes (ATXN1, RFTN1, VIM, HLA-B, TM4SF19, TNFAIP6, GRAMD1B) correlate with immune infiltration and altered metabolism as the main hallmarks of RCC, which may contribute to better understanding of early-stage RCC.
biomarker / chromophobe renal cell carcinoma / clear cell renal cell carcinoma / DNA methylation / papillary renal cell carcinoma / TCGA
[1] |
Capitanio,U., Bensalah,K., Bex,A., Boorjian,S. A., Bray,F., Coleman,J., Gore,J. L., Sun,M., Wood,C. ( 2019). Epidemiology of renal cell carcinoma. Eur. Urol., 75 : 74– 84
CrossRef
Google scholar
|
[2] |
Lasseigne,B. N. Brooks,J. ( 2018). The role of DNA methylation in renal cell carcinoma. Mol. Diagn. Ther., 22 : 431– 442
CrossRef
Google scholar
|
[3] |
Tabibu,S., Vinod,P. K. Jawahar,C. ( 2019). Pan-renal cell carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep., 9 : 10509
CrossRef
Google scholar
|
[4] |
Shuch,B., Amin,A., Armstrong,A. J., Eble,J. N., Ficarra,V., Lopez-Beltran,A., Martignoni,G., Rini,B. I. ( 2015). Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur. Urol., 67 : 85– 97
CrossRef
Google scholar
|
[5] |
nn,E. A., Landfors,M., Haider,Z., hn,L., Ljungberg,B., Roos,G. ( 2019). DNA methylation associates with survival in non-metastatic clear cell renal cell carcinoma. BMC Cancer, 19 : 65
CrossRef
Google scholar
|
[6] |
Maher,E. ( 2018). Hereditary renal cell carcinoma syndromes: diagnosis, surveillance and management. World J. Urol., 36 : 1891– 1898
CrossRef
Google scholar
|
[7] |
Sharma,S., Kelly,T. K. Jones,P. ( 2010). Epigenetics in cancer. Carcinogenesis, 31 : 27– 36
CrossRef
Google scholar
|
[8] |
Ricketts,C. J., De Cubas,A. A., Fan,H., Smith,C. C., Lang,M., Reznik,E., Bowlby,R., Gibb,E. A., Akbani,R., Beroukhim,R.
CrossRef
Google scholar
|
[9] |
Chen,F., Zhang,Y., lu,Y., Ciriello,G., Yang,L., Reznik,E., Shuch,B., Micevic,G., De Velasco,G., Shinbrot,E.
CrossRef
Google scholar
|
[10] |
Chen,W., Zhuang,J., Wang,P. P., Jiang,J., Lin,C., Zeng,P., Liang,Y., Zhang,X., Dai,Y. ( 2019). DNA methylation-based classification and identification of renal cell carcinoma prognosis-subgroups. Cancer Cell Int., 19 : 185
CrossRef
Google scholar
|
[11] |
Nguyen,D. P., Vertosick,E. A., Corradi,R. B., Vilaseca,A., Benfante,N. E., Touijer,K. A., Sjoberg,D. D. ( 2016). Histological subtype of renal cell carcinoma significantly affects survival in the era of partial nephrectomy. Urol. Oncol., 34 : 259.e1– 259.e8
CrossRef
Google scholar
|
[12] |
Peters,I., Merseburger,A., Tezval,H., Lafos,M., Tabrizi,P., Mazdak,M., Wolters,M., Kuczyk,M. A., Serth,J. von Klot,C. ( 2020). The prognostic value of DNA methylation markers in renal cell cancer: A systematic review. Kidney Cancer, 4 : 3– 13
CrossRef
Google scholar
|
[13] |
Lommen,K., Vaes,N., Aarts,M. J., van Roermund,J. G., Schouten,L. J., Oosterwijk,E., Melotte,V., Tjan-Heijnen,V. C., van Engeland,M. Smits,K. ( 2021). Diagnostic DNA methylation biomarkers for renal cell carcinoma: A systematic review. Eur. Urol. Oncol., 4 : 215– 226
CrossRef
Google scholar
|
[14] |
Cairns,P. ( 2010). Renal cell carcinoma. Cancer Biomark., 9 : 461– 473
CrossRef
Google scholar
|
[15] |
Lipworth,L., McLaughlin,J. K., Tarone,R. E. Blot,W. ( 2011). Renal cancer paradox: higher incidence but not higher mortality among African-Americans. Eur. J. Cancer Prev., 20 : 331– 333
CrossRef
Google scholar
|
[16] |
Malouf,G. G., Su,X., Zhang,J., Creighton,C. J., Ho,T. H., Lu,Y., Raynal,N. J. M., Karam,J. A., Tamboli,P., Allanick,F.
CrossRef
Google scholar
|
[17] |
nn,E. A., Degerman,S., hn,L., Landfors,M., Ljungberg,B. ( 2016). DNA methylation status defines clinicopathological parameters including survival for patients with clear cell renal cell carcinoma (ccRCC). Tumour Biol., 37 : 10219– 10228
CrossRef
Google scholar
|
[18] |
Spainhour,J. C., Lim,H. S., Yi,S. V. ( 2019). Correlation patterns between DNA methylation and gene expression in The Cancer Genome Atlas. Cancer Inform., 18 : 1176935119828776
CrossRef
Google scholar
|
[19] |
Li,M., Zou,D., Li,Z., Gao,R., Sang,J., Zhang,Y., Li,R., Xia,L., Zhang,T., Niu,G.
CrossRef
Google scholar
|
[20] |
Jeziorska,D. M., Murray,R. J. S., De Gobbi,M., Gaentzsch,R., Garrick,D., Ayyub,H., Chen,T., Li,E., Telenius,J., Lynch,M.
CrossRef
Google scholar
|
[21] |
Deaton,A. M. ( 2011). CpG islands and the regulation of transcription. Genes Dev., 25 : 1010– 1022
CrossRef
Google scholar
|
[22] |
Jia,P. ( 2017). Impacts of somatic mutations on gene expression: an association perspective. Brief Bioinform., 18 : 413– 425
|
[23] |
Strimbu,K. Tavel,J. ( 2010). What are biomarkers?. Curr. Opin. HIV AIDS, 5 : 463– 466
CrossRef
Google scholar
|
[24] |
Zhang,S., Zhang,E., Long,J., Hu,Z., Peng,J., Liu,L., Tang,F., Li,L., Ouyang,Y. ( 2019). Immune infiltration in renal cell carcinoma. Cancer Sci., 110 : 1564– 1572
CrossRef
Google scholar
|
[25] |
Muglia,V. F. ( 2015). Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol. Bras., 48 : 166– 174
CrossRef
Google scholar
|
[26] |
nchez,I., ( 2016). Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). Hum. Mol. Genet., 25 : 4021– 4040
CrossRef
Google scholar
|
[27] |
Williams,A. A., Higgins,J. P., Zhao,H., Ljunberg,B. Brooks,J. ( 2009). CD 9 and vimentin distinguish clear cell from chromophobe renal cell carcinoma. BMC Clin. Pathol., 9 : 9
CrossRef
Google scholar
|
[28] |
Chen,H. K., Fernandez-Funez,P., Acevedo,S. F., Lam,Y. C., Kaytor,M. D., Fernandez,M. H., Aitken,A., Skoulakis,E. M. C., Orr,H. T., Botas,J.
CrossRef
Google scholar
|
[29] |
Svandova,E., Lesot,H., Vanden Berghe,T., Tucker,A. S., Sharpe,P. T., Vandenabeele,P. ( 2014). Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis., 5 : e1366
CrossRef
Google scholar
|
[30] |
Vilella-Arias,S. A., Rocha,R. M., da Costa,W. H., Zequi,S. C., es,G. C., Verjovski-Almeida,S., Soares,F. A. Reis,E. ( 2013). Loss of caspase 7 expression is associated with poor prognosis in renal cell carcinoma clear cell subtype. Urology, 82 : 974.e1– 974.e7
CrossRef
Google scholar
|
[31] |
Yang,C., Kaushal,V., Haun,R. S., Seth,R., Shah,S. V. Kaushal,G. ( 2008). Transcriptional activation of caspase-6 and -7 genes by cisplatin-induced p53 and its functional significance in cisplatin nephrotoxicity. Cell Death Differ., 15 : 530– 544
CrossRef
Google scholar
|
[32] |
Kang,J. H., Lee,J. S., Hong,D., Lee,S. H., Kim,N., Lee,W. K., Sung,T. W., Gong,Y. D. Kim,S. ( 2016). Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis., 7 : e2163
CrossRef
Google scholar
|
[33] |
Ke,W., Lu,Z. N., Deng,X. R., Li,W. L., Du,M., Yang,H. Liu,Y. ( 2017). MicroRNA-18a targets ATXN1 to alleviate injury induced by permanent middle cerebral artery occlusion in mice. Int. J. Clin. Exp. Med., 10 : 965– 971
|
[34] |
Kang,A. R., An,H. T., Ko,J. ( 2017). Ataxin-1 regulates epithelial-mesenchymal transition of cervical cancer cells. Oncotarget, 8 : 18248– 18259
CrossRef
Google scholar
|
[35] |
Kang,A. R., An,H. T., Ko,J., Choi,E. J. ( 2017). Ataxin-1 is involved in tumorigenesis of cervical cancer cells via the EGFR-RAS-MAPK signaling pathway. Oncotarget, 8 : 94606– 94618
CrossRef
Google scholar
|
[36] |
Staubach,S. Hanisch,F. ( 2011). Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev. Proteomics, 8 : 263– 277
CrossRef
Google scholar
|
[37] |
Watanabe,A., Tatematsu,M., Saeki,K., Shibata,S., Shime,H., Yoshimura,A., Obuse,C., Seya,T. ( 2011). Raftlin is involved in the nucleocapture complex to induce poly(I: C)-mediated TLR3 activation. J. Biol. Chem., 286 : 10702– 10711
CrossRef
Google scholar
|
[38] |
Bayliss,A. L., Sundararaman,A., Granet,C. ( 2020). Raftlin is recruited by neuropilin-1 to the activated VEGFR2 complex to control proangiogenic signaling. Angiogenesis, 23 : 371– 383
CrossRef
Google scholar
|
[39] |
WuG., WangQ., XuY., LiJ., ZhangH., QiG. Xia Q. ( 2019) Targeting the transcription factor receptor LXR to treat clear cell renal cell carcinoma: agonist or inverse agonist? Cell Death Dis., 10, 416
|
[40] |
Yuan,T., Hong,S., Yao,Y. ( 2007). Glut-4 is translocated to both caveolae and non-caveolar lipid rafts, but is partially internalized through caveolae in insulin-stimulated adipocytes. Cell Res., 17 : 772– 782
CrossRef
Google scholar
|
[41] |
Unbekandt,M. Olson,M. ( 2014). The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. J. Mol. Med. (Berl. ), 92 : 217– 225
CrossRef
Google scholar
|
[42] |
Arias-Romero,L. E. ( 2013). Targeting Cdc42 in cancer. Expert Opin. Ther. Targets, 17 : 1263– 1273
CrossRef
Google scholar
|
[43] |
Uhlen,M., Oksvold,P., Fagerberg,L., Lundberg,E., Jonasson,K., Forsberg,M., Zwahlen,M., Kampf,C., Wester,K., Hober,S.
CrossRef
Google scholar
|
[44] |
Uhlen,M., Zhang,C., Lee,S., stedt,E., Fagerberg,L., Bidkhori,G., Benfeitas,R., Arif,M., Liu,Z., Edfors,F.
CrossRef
Google scholar
|
[45] |
HumanProtein Atlas. Expression of CDC42BPG in cancer. Retrieved in 30 June 2020. Data available from the website of The Human Protein Atlas
|
[46] |
Velikkakath,A. K., Nishimura,T., Oita,E., Ishihara,N. ( 2012). Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell, 23 : 896– 909
CrossRef
Google scholar
|
[47] |
Kusama,Y., Sato,K., Kimura,N., Mitamura,J., Ohdaira,H. ( 2009). Comprehensive analysis of expression pattern and promoter regulation of human autophagy-related genes. Apoptosis, 14 : 1165– 1175
CrossRef
Google scholar
|
[48] |
Yu,B., Zhang,J., Sun,Z., Cao,P., Zheng,X., Gao,Z., Cao,H., Zhang,F. ( 2021). Interferon-inducible protein 16 may be a biomarker and prognostic factor in renal cell carcinoma by bioinformatics analysis. Medicine (Baltimore), 100 : e24257
CrossRef
Google scholar
|
[49] |
Wen,L., Guo,L., Zhang,W., Li,Y., Jiang,W., Di,X., Ma,J., Feng,L., Zhang,K. ( 2019). Cooperation between the inflammation and coagulation systems promotes the survival of circulating tumor cells in renal cell carcinoma patients. Front. Oncol., 9 : 504
CrossRef
Google scholar
|
[50] |
Guo,F. ( 2020). Tumor necrosis factor alpha-induced proteins in malignant tumors: progress and prospects. OncoTargets Ther., 13 : 3303– 3318
CrossRef
Google scholar
|
[51] |
Chan,T. C., Li,C. F., Ke,H. L., Wei,Y. C., Shiue,Y. L., Li,C. C., Yeh,H. C., Lee,H. Y., Huang,S. K., Wu,W. J.
CrossRef
Google scholar
|
[52] |
Offenberg,H., nner,N., Mansilla,F., rntoft Torben,F. ( 2008). TIMP-1 expression in human colorectal cancer is associated with TGF-B1, LOXL2, INHBA1, TNF-AIP6 and TIMP-2 transcript profiles. Mol. Oncol., 2 : 233– 240
CrossRef
Google scholar
|
[53] |
Zhang,X., Xue,J., Yang,H., Zhou,T. ( 2021). TNFAIP6 promotes invasion and metastasis of gastric cancer and indicates poor prognosis of patients. Tissue Cell, 68 : 101455
CrossRef
Google scholar
|
[54] |
Shin,S. Jang,H. Xu,R., Won,J. ( 2020). Active PLK1-driven metastasis is amplified by TGF-β signaling that forms a positive feedback loop in non-small cell lung cancer. Oncogene, 39 : 767– 785
CrossRef
Google scholar
|
[55] |
Bommaya,G., Meran,S., Krupa,A., Phillips,A. O. ( 2011). Tumour necrosis factor-stimulated gene (TSG)-6 controls epithelial-mesenchymal transition of proximal tubular epithelial cells. Int. J. Biochem. Cell Biol., 43 : 1739– 1746
CrossRef
Google scholar
|
[56] |
Pasquier,J., Abu-Kaoud,N., Al Thani,H. ( 2015). Epithelial to mesenchymal transition in a clinical perspective. J. Oncol., 2015 : 792182
CrossRef
Google scholar
|
[57] |
Peng,Q., Zhao,L., Hou,Y., Sun,Y., Wang,L., Luo,H., Peng,H. ( 2013). Biological characteristics and genetic heterogeneity between carcinoma-associated fibroblasts and their paired normal fibroblasts in human breast cancer. PLoS One, 8 : e60321
CrossRef
Google scholar
|
[58] |
Fu,F., Yang,X., Zheng,M., Zhao,Q., Zhang,K., Li,Z., Zhang,H. ( 2020). Role of transmembrane 4 L six family 1 in the development and progression of cancer. Front. Mol. Biosci., 7 : 202
CrossRef
Google scholar
|
[59] |
Chung,C. T., Yeh,K. C., Lee,C. H., Chen,Y. Y., Ho,P. J., Chang,K. Y., Chen,C. H., Lai,Y. K. Chen,C. ( 2020). Molecular profiling of afatinib-resistant non-small cell lung cancer cells in vivo derived from mice. Pharmacol. Res., 161 : 105183
CrossRef
Google scholar
|
[60] |
Scherer,A., nther,O. P., Balshaw,R. F., Hollander,Z., Wilson-McManus,J., Ng,R., McMaster,W. R., McManus,B. M. Keown,P. ( 2013). Alteration of human blood cell transcriptome in uremia. BMC Med. Genomics, 28 : 23
|
[61] |
Liao,L. M., Schwartz,K., Pollak,M., Graubard,B. I., Li,Z., Ruterbusch,J., Rothman,N., Davis,F., Wacholder,S., Colt,J.
CrossRef
Google scholar
|
[62] |
YeoX.. ( 2018) Investigation and validation of the functional role of sMEK1 acetylation in DNA damage repair and HDACi-mediated radiosensitisation. Master’s thesis. University of Oxford
|
[63] |
Wenta,T., Rychlowski,M., Jarzab,M. ( 2019). HtrA4 protease promotes chemotherapeutic-dependent cancer cell death. Cells, 8 : 1112
CrossRef
Google scholar
|
[64] |
Singh,H., Zhao,M., Chen,Q., Wang,Y., Li,Y., u-Lino,T. J., Tong,S. ( 2015). Human HtrA4 expression is restricted to the placenta, is significantly up-regulated in early-onset preeclampsia, and high levels of HtrA4 cause endothelial dysfunction. J. Clin. Endocrinol. Metab., 100 : E936– E945
CrossRef
Google scholar
|
[65] |
Ding,L., Li,L. M., Hu,B., Wang,J. L., Lu,Y. B., Zhang,R. Y., He,X., Shi,C., Wu,L. M., Wu,C. M.
CrossRef
Google scholar
|
[66] |
Khanna,P., Chua,P. J., Wong,B. S. E., Yin,C., Thike,A. A., Wan,W. K., Tan,P. H. Baeg,G. ( 2017). GRAM domain-containing protein 1B (GRAMD1B), a novel component of the JAK/STAT signaling pathway, functions in gastric carcinogenesis. Oncotarget, 8 : 115370– 115383
CrossRef
Google scholar
|
[67] |
Khanna,P., Lee,J. S., Sereemaspun,A., Lee,H. Baeg,G. ( 2018). GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci. Rep., 8 : 9511
CrossRef
Google scholar
|
[68] |
Wu,S. Y., Yang,X., Gharpure,K. M., Hatakeyama,H., Egli,M., McGuire,M. H., Nagaraja,A. S., Miyake,T. M., Rupaimoole,R., Pecot,C. V.
CrossRef
Google scholar
|
[69] |
Lv,T., Lv,H., Fei,J., Xie,Y., Lian,D., Hu,J., Tang,L., Shi,X., Wang,J., Zhang,S.
CrossRef
Google scholar
|
[70] |
Hajian-Tilaki,
|
[71] |
Jung,M., Ramankulov,A., Roigas,J., Johannsen,M., Ringsdorf,M., Kristiansen,G. ( 2007). In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR. BMC Mol. Biol., 8 : 47
|
[72] |
Wong,C. S., Chen,T. T., Chang,W. P., Wong,H. S., Wu,M. Y., Adikusuma,W., Lin,Y. F. Chang,W. ( 2020). Prognostic effect of comorbid disease and immune gene expression on mortality in kidney cancer-a population based study. Cancers (Basel), 12 : 1654
CrossRef
Google scholar
|
[73] |
Wei,L., Jin,Z., Yang,S., Xu,Y., Zhu,Y. ( 2018). TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics, 34 : 1615– 1617
CrossRef
Google scholar
|
[74] |
Colaprico,A., Silva,T. C., Olsen,C., Garofano,L., Cava,C., Garolini,D., Sabedot,T. S., Malta,T. M., Pagnotta,S. M., Castiglioni,I.
CrossRef
Google scholar
|
[75] |
Robinson,M. D., McCarthy,D. J. Smyth,G. ( 2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26 : 139– 140
CrossRef
Google scholar
|
[76] |
Sondka,Z., Bamford,S., Cole,C. G., Ward,S. A., Dunham,I. Forbes,S. ( 2018). The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer, 18 : 696– 705
CrossRef
Google scholar
|
[77] |
In,J. Lee,D. ( 2019). Survival analysis: part II − applied clinical data analysis. Korean J. Anesthesiol., 72 : 441– 457
CrossRef
Google scholar
|
[78] |
Robin,X., Turck,N., Hainard,A., Tiberti,N., Lisacek,F., Sanchez,J. C. ( 2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12 : 77
CrossRef
Google scholar
|
[79] |
Yang,S. ( 2017). The receiver operating characteristic (ROC) curve. Chronicles, 5 : 34– 36
CrossRef
Google scholar
|
[80] |
Szklarczyk,D., Gable,A. L., Lyon,D., Junge,A., Wyder,S., Huerta-Cepas,J., Simonovic,M., Doncheva,N. T., Morris,J. H., Bork,P.
CrossRef
Google scholar
|
[81] |
Zhang,B., Wu,Q., Wang,Z., Xu,R., Hu,X., Sun,Y., Wang,Q., Ju,F., Ren,S., Zhang,C.
CrossRef
Google scholar
|
AJCC | American Joint Committee on cancer |
---|---|
ATG2A | Autophagy-related 2A |
ATG2B | Autophagy-related 2B |
ATXN1 | Ataxin-1 |
AUC | Area under the curve |
CASR | Calcium sensing receptor |
CDC42 | Cell division control protein 42 homolog |
CDC42BPG | CDC42 binding protein kinase gamma |
CHI3L2 | Chitinase 3-like 2 |
CI | Confidence interval |
COSMIC | Catalogue of somatic mutations in cancer |
CPNE7 | Copine 7 |
CRC | Colorectal cancer |
DNA | Deoxyribonucleic acid |
DMRs | Differentially methylated regions |
DEGs | Differentially expressed genes |
ECM | Extracellular matrix |
EGR3 | Early growth response 3 |
EWAS | Epigenome wide association study |
FDR | False discovery rate |
Glut-4 | Glucose transporter 4 |
GO | Gene ontology |
GRAM | Glucosyltransferases, rab-like GTPase activators and myotubularins |
GRAMD1B | GRAM domain containing 1B |
HIF-α | Hypoxia inducible factor-alpha |
HLA-B | Human leukocyte antigen B |
HR | Hazard ratio |
HTRA4 | HtrA serine peptidase 4 |
ICGC | International cancer genome consortium |
JAK/STAT | Janus kinase/signal transducers and activators of transcription |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
KICH | Chromophobe renal cell carcinoma |
KIRC | Clear cell renal cell carcinoma |
KIRP | Papillary renal cell carcinoma |
LEPROTL1 | Leptin receptor overlapping transcript like 1 |
MEK1 | Mitogen-activated protein 2 kinase 1 |
MMP-9 | Matrix metalloproteinase 9 |
mRNA | Messenger ribonucleic acid |
OS | Overall survival |
PI3K | Phosphoinositide 3-kinase |
PTX3 | Pentraxin 3 |
RAC1 | Rac family small GTPase 1 |
RCC | Renal cell carcinoma |
RFTN1 | Raftlin-1 |
RIN1 | Ras and Rab interactor 1 |
ROC | Receiver operating characteristic |
SCA1 | Spinocerebellar ataxia type 1 |
SIM1 | Single-minded homolog 1 |
SMEK1 | Suppressor of MEK1 |
STRING | Search tool for the retrieval of interacting genes/proteins |
TCGA | The Cancer Genome Atlas |
TLR6 | Toll-like receptor 6 |
TM4SF19 | Transmembrane 4 L six family member 19 |
TNFAIP6 | Tumor necrosis factor-alpha induced protein 6 |
TP53 | Tumor suppressor protein 53 |
TRPM8 | Transient receptor potential cation channel subfamily melastatin member 8 |
TSS | Transcription start site |
VHL | Von Hippel-Lindau |
VIM | Vimentin |
/
〈 | 〉 |