COVIDX: Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans
Wajid Arshad Abbasi , Syed Ali Abbas , Saiqa Andleeb , Maryum Bibi , Fiaz Majeed , Abdul Jaleel , Muhammad Naveed Akhtar
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (2) : 208 -220.
COVIDX: Computer-aided diagnosis of COVID-19 and its severity prediction with raw digital chest X-ray scans
Background: Coronavirus disease (COVID-19) is a contagious infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) and it has infected and killed millions of people across the globe.
Objective: In the absence or inadequate provision of therapeutic treatments of COVID-19 and the limited convenience of diagnostic techniques, there is a necessity for some alternate spontaneous screening systems that can easily be used by the physicians to rapidly recognize and isolate the infected patients to circumvent onward surge. A chest X-ray (CXR) image can effortlessly be used as a substitute modality to diagnose the COVID-19.
Method: In this study, we present an automatic COVID-19 diagnostic and severity prediction system (COVIDX) that uses deep feature maps of CXR images along with classical machine learning algorithms to identify COVID-19 and forecast its severity. The proposed system uses a three-phase classification approach (healthy vs unhealthy, COVID-19 vs pneumonia, and COVID-19 severity) using different conventional supervised classification algorithms.
Results: We evaluated COVIDX through 10-fold cross-validation, by using an external validation dataset, and also in a real setting by involving an experienced radiologist. In all the adopted evaluation settings, COVIDX showed strong generalization power and outperforms all the prevailing state-of-the-art methods designed for this purpose.
Conclusions: Our proposed method (COVIDX), with vivid performance in COVID-19 diagnosis and its severity prediction, can be used as an aiding tool for clinical physicians and radiologists in the diagnosis and follow-up studies of COVID-19 infected patients.
Availability: We made COVIDX easily accessible through a cloud-based webserver and python code available at the site of google and the website of Github.
coronavirus / COVID-19 / radiology / machine learning / chest X-ray / contagious infection
| [1] |
|
| [2] |
|
| [3] |
COVID-19 Map, Johns Hopkins Coronavirus Resource Center. (n.d.). Accessed: November 27, 2020 |
| [4] |
Coronavirus disease (COVID-19) – World Health Organization, (n.d.). Available from the website of World Health Organization |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
The Author(s) 2022. Published by Higher Education Press.
/
| 〈 |
|
〉 |