A wonderful time – exciting progress made in the past 20 years in genetics powered by the Human Genome Project

Zhaohui S. Qin

PDF(301 KB)
PDF(301 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 366-370. DOI: 10.15302/J-QB-021-0273
FEATURE
FEATURE

A wonderful time – exciting progress made in the past 20 years in genetics powered by the Human Genome Project

Author information +
History +

Cite this article

Download citation ▾
Zhaohui S. Qin. A wonderful time – exciting progress made in the past 20 years in genetics powered by the Human Genome Project. Quant. Biol., 2021, 9(4): 366‒370 https://doi.org/10.15302/J-QB-021-0273

References

[1]
Lander S., E. M., Linton C.. Initial sequencing and analysis of the human genome. Nature, 2001, 409 : 860– 921
CrossRef Google scholar
[2]
Venter C., J. D., Adams W., M. W., Myers J., E. G., Li O., P. A., Mural A.. The sequence of the human genome. Science, 2001, 291 : 1304– 1351
CrossRef Google scholar
[3]
Collins F. S., Green, E. D., Guttmacher, A. E. , Guyer, M. S. , the US National Human Genome Research Institute.. A vision for the future of genomics research. Nature, 2003, 422 : 835– 847
CrossRef Google scholar
[4]
Barski A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. , Zhao, K.. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129 : 823– 837
CrossRef Google scholar
[5]
Mortazavi A., Williams, B. A., McCue, K., Schaeffer, L. , Wold, B.. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 2008, 5 : 621– 628
CrossRef Google scholar
[6]
Buenrostro J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. , Greenleaf, W. J.. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 2013, 10 : 1213– 1218
CrossRef Google scholar
[7]
Lieberman-Aiden Berkum, E. L., van R., N. J., Williams O.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326 : 289– 293
CrossRef Google scholar
[8]
Birney A., E. R., Stamatoyannopoulos H., J. T., Dutta E.. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447 : 799– 816
CrossRef Google scholar
[9]
International HapMap Consortium. A haplotype map of the human genome. Nature, 2005, 437 : 1299– 1320
CrossRef Google scholar
[10]
Frazer A., K. G., Ballinger R., D. A., Cox L., D. A., Hinds W., D. M.. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007, 449 : 851– 861
CrossRef Google scholar
[11]
Dewey E., F. P., Chen E., R. J., Cordero T., S. T., Ormond K.. Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet., 2011, 7 : e1002280–
CrossRef Google scholar
[12]
Yuan S., Johnston, H. R., Zhang, G., Li, Y., Hu, Y. J. , Qin, Z. S.. One size doesn’t fit all-refeditor: Building personalized diploid reference genome to improve read mapping and genotype calling in next generation sequencing studies. PLOS Comput. Biol., 2015, 11 : e1004448–
CrossRef Google scholar
[13]
Welter . The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res., 2014, 42 : D1001– D1006
CrossRef Google scholar
[14]
Zhu Y., Tazearslan, C. , Suh, Y.. Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Exp. Biol. Med. (Maywood), 2017, 242 : 1325– 1334
CrossRef Google scholar
[15]
Ritchie G. R., Dunham, I., Zeggini, E. , Flicek, P.. Functional annotation of noncoding sequence variants. Nat. Methods, 2014, 11 : 294– 296
CrossRef Google scholar
[16]
Kircher M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. , Shendure, J.. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 2014, 46 : 310– 315
CrossRef Google scholar
[17]
Ionita-Laza D. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet., 2016, 48 : 214– 220
CrossRef Google scholar
[18]
Chen L., Jin, P. , Qin, Z. S.. DIVAN: accurate identification of non-coding disease-specific risk variants using multi-omics profiles. Genome Biol., 2016, 17 : 252–
CrossRef Google scholar
[19]
Zhou L. , Zhao, F.. Prioritization and functional assessment of noncoding variants associated with complex diseases. Genome Med., 2018, 10 : 53–
CrossRef Google scholar
[20]
Rojano E., Seoane, P., Ranea, J. A. G. , Perkins, J. R.. Regulatory variants: from detection to predicting impact. Brief. Bioinform., 2019, 20 : 1639– 1654
CrossRef Google scholar
[21]
Ellegren H.. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet., 2004, 5 : 435– 445
CrossRef Google scholar
[22]
Ryan C. P.. Tandem repeat disorders. Evol. Med. Public Health, 2019, 2019 : 17–
CrossRef Google scholar
[23]
Hsu, P.D., Lander, E.S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157, 1262−1278

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 Author(s) 2021. Published by Higher Education Press.
AI Summary AI Mindmap
PDF(301 KB)

Accesses

Citations

Detail

Sections
Recommended

/