A wonderful time – exciting progress made in the past 20 years in genetics powered by the Human Genome Project

Zhaohui S. Qin

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 366 -370.

PDF (301KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 366 -370. DOI: 10.15302/J-QB-021-0273
FEATURE
FEATURE

A wonderful time – exciting progress made in the past 20 years in genetics powered by the Human Genome Project

Author information +
History +
PDF (301KB)

Cite this article

Download citation ▾
Zhaohui S. Qin. A wonderful time – exciting progress made in the past 20 years in genetics powered by the Human Genome Project. Quant. Biol., 2021, 9(4): 366-370 DOI:10.15302/J-QB-021-0273

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lander S., E. M., Linton C.. Initial sequencing and analysis of the human genome. Nature, 2001, 409 : 860– 921

[2]

Venter C., J. D., Adams W., M. W., Myers J., E. G., Li O., P. A., Mural A.. The sequence of the human genome. Science, 2001, 291 : 1304– 1351

[3]

Collins F. S., Green, E. D., Guttmacher, A. E. , Guyer, M. S. , the US National Human Genome Research Institute.. A vision for the future of genomics research. Nature, 2003, 422 : 835– 847

[4]

Barski A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. , Zhao, K.. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129 : 823– 837

[5]

Mortazavi A., Williams, B. A., McCue, K., Schaeffer, L. , Wold, B.. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 2008, 5 : 621– 628

[6]

Buenrostro J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. , Greenleaf, W. J.. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 2013, 10 : 1213– 1218

[7]

Lieberman-Aiden Berkum, E. L., van R., N. J., Williams O.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326 : 289– 293

[8]

Birney A., E. R., Stamatoyannopoulos H., J. T., Dutta E.. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447 : 799– 816

[9]

International HapMap Consortium. A haplotype map of the human genome. Nature, 2005, 437 : 1299– 1320

[10]

Frazer A., K. G., Ballinger R., D. A., Cox L., D. A., Hinds W., D. M.. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007, 449 : 851– 861

[11]

Dewey E., F. P., Chen E., R. J., Cordero T., S. T., Ormond K.. Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet., 2011, 7 : e1002280–

[12]

Yuan S., Johnston, H. R., Zhang, G., Li, Y., Hu, Y. J. , Qin, Z. S.. One size doesn’t fit all-refeditor: Building personalized diploid reference genome to improve read mapping and genotype calling in next generation sequencing studies. PLOS Comput. Biol., 2015, 11 : e1004448–

[13]

Welter . The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res., 2014, 42 : D1001– D1006

[14]

Zhu Y., Tazearslan, C. , Suh, Y.. Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Exp. Biol. Med. (Maywood), 2017, 242 : 1325– 1334

[15]

Ritchie G. R., Dunham, I., Zeggini, E. , Flicek, P.. Functional annotation of noncoding sequence variants. Nat. Methods, 2014, 11 : 294– 296

[16]

Kircher M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. , Shendure, J.. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 2014, 46 : 310– 315

[17]

Ionita-Laza D. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet., 2016, 48 : 214– 220

[18]

Chen L., Jin, P. , Qin, Z. S.. DIVAN: accurate identification of non-coding disease-specific risk variants using multi-omics profiles. Genome Biol., 2016, 17 : 252–

[19]

Zhou L. , Zhao, F.. Prioritization and functional assessment of noncoding variants associated with complex diseases. Genome Med., 2018, 10 : 53–

[20]

Rojano E., Seoane, P., Ranea, J. A. G. , Perkins, J. R.. Regulatory variants: from detection to predicting impact. Brief. Bioinform., 2019, 20 : 1639– 1654

[21]

Ellegren H.. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet., 2004, 5 : 435– 445

[22]

Ryan C. P.. Tandem repeat disorders. Evol. Med. Public Health, 2019, 2019 : 17–

[23]

Hsu, P.D., Lander, E.S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157, 1262−1278

RIGHTS & PERMISSIONS

Author(s) 2021. Published by Higher Education Press.

AI Summary AI Mindmap
PDF (301KB)

1386

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/