Altered cerebral activities and functional connectivity in depression: a systematic review of fMRI studies

Xue-Ying Li, Xiao Chen, Chao-Gan Yan

PDF(1192 KB)
PDF(1192 KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (4) : 366-380. DOI: 10.15302/J-QB-021-0270
RESEARCH ARTICLE
RESEARCH ARTICLE

Altered cerebral activities and functional connectivity in depression: a systematic review of fMRI studies

Author information +
History +

Abstract

Background: As one of the leading causes of global disability, major depressive disorder (MDD) places a noticeable burden on individuals and society. Despite the great expectation on finding accurate biomarkers and effective treatment targets of MDD, studies in applying functional magnetic resonance imaging (fMRI) are still faced with challenges, including the representational ambiguity, small sample size, low statistical power, relatively high false positive rates, etc. Thus, reviewing studies with solid methodology may help achieve a consensus on the pathology of MDD.

Methods: In this systematic review, we screened fMRI studies on MDD through strict criteria to focus on reliable studies with sufficient sample size, adequate control of head motion, and a proper multiple comparison control strategy.

Results: We found consistent evidence regarding the dysfunction within and among the default mode network (DMN), the frontoparietal network (FPN), and other brain regions. However, controversy remains, probably due to the heterogeneity of participants and data processing strategies.

Conclusion: Future studies are recommended to apply a comprehensive set of neuro-behavioral measurements, consider the heterogeneity of MDD patients and other potentially confounding factors, apply surface-based neuroscientific network fMRI approaches, and advance research transparency and open science by applying state-of-the-art pipelines along with open data sharing.

Author summary

Major depressive disorder (MDD) is a prevalent disorder and places noticeable societal burdens, however, findings of objective biomarkers in previous researches were inconsistent. In this systematic review, to detect more reproducible MDD-specific brain circuits, fMRI studies on MDD are screened by strict criteria that carefully minimize the effect of fMRI methodology issues. Though dysfunction in the default mode network (DMN) and the frontoparietal network (FPN) was repeatedly reported, heterogeneity remains in the included studies. Based on these findings, we highlight the necessity of considering some specific potentially confounding factors in future fMRI studies on MDD.

Graphical abstract

Keywords

depression / resting-state fMRI / task-based fMRI / default mode network / frontoparietal network

Cite this article

Download citation ▾
Xue-Ying Li, Xiao Chen, Chao-Gan Yan. Altered cerebral activities and functional connectivity in depression: a systematic review of fMRI studies. Quant. Biol., 2022, 10(4): 366‒380 https://doi.org/10.15302/J-QB-021-0270

References

[1]
Friedrich,M. (2017). Depression is the leading cause of disability around the world. JAMA, 317: 1517
CrossRef Google scholar
[2]
Vos,T., Lim,S. S., Abbafati,C., Abbas,K. M., Abbasi,M., Abbasifard,M., Abbasi-Kangevari,M., Abbastabar,H., Abd-Allah,F., Abdelalim,A. . (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990‒2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396: 1204–1222
CrossRef Google scholar
[3]
rez-Stable,E. J., Miranda,J., oz,R. F. Ying,Y. (1990). Depression in medical outpatients. Underrecognition and misdiagnosis. Arch. Intern. Med., 150: 1083–1088
CrossRef Google scholar
[4]
Bandettini,P. (2012). Twenty years of functional MRI: the science and the stories. Neuroimage, 62: 575–588
CrossRef Google scholar
[5]
Bijsterbosch,J., Harrison,S. J., Jbabdi,S., Woolrich,M., Beckmann,C., Smith,S. Duff,E. (2020). Challenges and future directions for representations of functional brain organization. Nat. Neurosci., 23: 1484–1495
CrossRef Google scholar
[6]
Ioannidis,J. (2005). Why most published research findings are false. PLoS Med., 2: e124
CrossRef Google scholar
[7]
Button,K. S., Ioannidis,J. P., Mokrysz,C., Nosek,B. A., Flint,J., Robinson,E. S. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci., 14: 365–376
CrossRef Google scholar
[8]
Zuo,X. N., Xu,T. Milham,M. (2019). Harnessing reliability for neuroscience research. Nat. Hum. Behav., 3: 768–771
CrossRef Google scholar
[9]
Ciric,R., Wolf,D. H., Power,J. D., Roalf,D. R., Baum,G. L., Ruparel,K., Shinohara,R. T., Elliott,M. A., Eickhoff,S. B., Davatzikos,C. . (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage, 154: 174–187
CrossRef Google scholar
[10]
Yan,C. Cheung,B., Kelly,C., Colcombe,S., Craddock,R. C., Di Martino,A., Li,Q., Zuo,X. N., Castellanos,F. X. Milham,M. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76: 183–201
CrossRef Google scholar
[11]
Ciric,R., Rosen,A. F. G., Erus,G., Cieslak,M., Adebimpe,A., Cook,P. A., Bassett,D. S., Davatzikos,C., Wolf,D. H. Satterthwaite,T. (2018). Mitigating head motion artifact in functional connectivity MRI. Nat. Protoc., 13: 2801–2826
CrossRef Google scholar
[12]
Eklund,A., Nichols,T. E. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA, 113: 7900–7905
CrossRef Google scholar
[13]
Algermissen,J. Mehler,D. M. (2018). May the power be with you: are there highly powered studies in neuroscience, and how can we get more of them? J. Neurophysiol., 119: 2114–2117
CrossRef Google scholar
[14]
Chen,X., Lu,B. Yan,C. (2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Hum. Brain Mapp., 39: 300–318
CrossRef Google scholar
[15]
Van Dijk,K. R., Sabuncu,M. R. Buckner,R. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59: 431–438
CrossRef Google scholar
[16]
Power,J. D., Barnes,K. A., Snyder,A. Z., Schlaggar,B. L. Petersen,S. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59: 2142–2154
CrossRef Google scholar
[17]
Eklund,A., Nichols,T. E. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA, 113: 7900–7905
CrossRef Google scholar
[18]
Nichols,T. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res., 12: 419–446
CrossRef Google scholar
[19]
Genovese,C. R., Lazar,N. A. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15: 870–878
CrossRef Google scholar
[20]
Grimes,D. A. Schulz,K. (1996). Determining sample size and power in clinical trials: the forgotten essential. Semin. Reprod. Endocrinol., 14: 125–131
CrossRef Google scholar
[21]
Demenescu,L. R., Renken,R., Kortekaas,R., van Tol,M. J., Marsman,J. B., van Buchem,M. A., van der Wee,N. J., Veltman,D. J., den Boer,J. A. (2011). Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study. Psychol. Med., 41: 2253–2264
CrossRef Google scholar
[22]
van Tol,M. J., van der Wee,N. J., Demenescu,L. R., Nielen,M. M., Aleman,A., Renken,R., van Buchem,M. A., Zitman,F. G. Veltman,D. (2011). Functional MRI correlates of visuospatial planning in out-patient depression and anxiety. Acta Psychiatr. Scand., 124: 273–284
CrossRef Google scholar
[23]
Bermingham,R., Carballedo,A., Lisiecka,D., Fagan,A., Morris,D., Fahey,C., Meaney,J., Gill,M. (2012). Effect of genetic variant in BICC1 on functional and structural brain changes in depression. Neuropsychopharmacology, 37: 285–2862
[24]
Yang,X., Ma,X., Li,M., Liu,Y., Zhang,J., Huang,B., Zhao,L., Deng,W., Li,T. (2015). Anatomical and functional brain abnormalities in unmedicated major depressive disorder. Neuropsychiatr. Dis. Treat., 11: 2415–2423
[25]
Gollier-Briant,F., re-Martinot,M. L., Lemaitre,H., Miranda,R., Vulser,H., Goodman,R., Struve,M., Fadai,T., Kappel,V. . (2016). Neural correlates of three types of negative life events during angry face processing in adolescents. Soc. Cogn. Affect. Neurosci., 11: 1961–1969
CrossRef Google scholar
[26]
Posner,J., Cha,J., Wang,Z., Talati,A., Warner,V., Gerber,A., Peterson,B. (2016). Increased default mode network connectivity in individuals at high familial risk for depression. Neuropsychopharmacology, 41: 1759–1767
[27]
Casement,M. D., Keenan,K. E., Hipwell,A. E., Guyer,A. E. Forbes,E. (2016). Neural reward processing mediates the relationship between insomnia symptoms and depression in adolescence. Sleep, 39: 439–447
CrossRef Google scholar
[28]
Hermesdorf,M., Sundermann,B., Feder,S., Schwindt,W., Minnerup,J., Arolt,V., Berger,K., Pfleiderer,B. (2016). Major depressive disorder: Findings of reduced homotopic connectivity and investigation of underlying structural mechanisms. Hum. Brain Mapp., 37: 1209–1217
CrossRef Google scholar
[29]
Davey,C. G., Breakspear,M., Pujol,J. Harrison,B. (2017). A brain model of disturbed self-appraisal in depression. Am. J. Psychiatry, 174: 895–903
CrossRef Google scholar
[30]
ksel,D., Dietsche,B., Forstner,A. J., Witt,S. H., Maier,R., Rietschel,M., Konrad,C., then,M. M., Dannlowski,U., Baune,B. T. . (2017). Polygenic risk for depression and the neural correlates of working memory in healthy subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry, 79: 67–76
CrossRef Google scholar
[31]
Ye,J., Shen,Z., Xu,X., Yang,S., Chen,W., Liu,X., Lu,Y., Liu,F., Lu,J., Li,N. . (2017). Abnormal functional connectivity of the amygdala in first-episode and untreated adult major depressive disorder patients with different ages of onset. Neuroreport, 28: 214–221
CrossRef Google scholar
[32]
Pan,P. M., Sato,J. R., Salum,G. A., Rohde,L. A., Gadelha,A., Zugman,A., Mari,J., Jackowski,A., Picon,F., Miguel,E. C. . (2017). Ventral striatum functional connectivity as a predictor of adolescent depressive disorder in a longitudinal community-based sample. Am. J. Psychiatry, 174: 1112–1119
CrossRef Google scholar
[33]
Admon,R., Kaiser,R. H., Dillon,D. G., Beltzer,M., Goer,F., Olson,D. P., Vitaliano,G. Pizzagalli,D. (2017). Dopaminergic enhancement of striatal response to reward in major depression. Am. J. Psychiatry, 174: 378–386
CrossRef Google scholar
[34]
Lopez,K. C., Luby,J. L., Belden,A. C. Barch,D. (2018). Emotion dysregulation and functional connectivity in children with and without a history of major depressive disorder. Cogn. Affect. Behav. Neurosci., 18: 232–248
CrossRef Google scholar
[35]
Mehta,N. D., Haroon,E., Xu,X., Woolwine,B. J., Li,Z. Felger,J. (2018). Inflammation negatively correlates with amygdala-ventromedial prefrontal functional connectivity in association with anxiety in patients with depression: Preliminary results. Brain Behav. Immun., 73: 725–730
CrossRef Google scholar
[36]
Qi,S., Yang,X., Zhao,L., Calhoun,V. D., Perrone-Bizzozero,N., Liu,S., Jiang,R., Jiang,T., Sui,J. (2018). MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain, 141: 916–926
CrossRef Google scholar
[37]
Tokuda,T., Yoshimoto,J., Shimizu,Y., Okada,G., Takamura,M., Okamoto,Y., Yamawaki,S. (2018). Identification of depression subtypes and relevant brain regions using a data-driven approach. Sci. Rep., 8: 14082
CrossRef Google scholar
[38]
Tu,Z., Jia,Y. Y., Wang,T., Qu,H., Pan,J. X., Jie,J., Xu,X. Y., Wang,H. Y. (2018). Modulatory interactions of resting-state brain functional connectivity in major depressive disorder. Neuropsychiatr. Dis. Treat., 14: 2461–2472
CrossRef Google scholar
[39]
Wang,D., Xue,S. W., Tan,Z., Wang,Y., Lian,Z. (2019). Altered hypothalamic functional connectivity patterns in major depressive disorder. Neuroreport, 30: 1115–1120
CrossRef Google scholar
[40]
Fitzgerald,J. M., Klumpp,H., Langenecker,S. Phan,K. (2019). Transdiagnostic neural correlates of volitional emotion regulation in anxiety and depression. Depress. Anxiety, 36: 453–464
CrossRef Google scholar
[41]
Xia,M., Si,T., Sun,X., Ma,Q., Liu,B., Wang,L., Meng,J., Chang,M., Huang,X., Chen,Z. . (2019). Reproducibility of functional brain alterations in major depressive disorder: Evidence from a multisite resting-state functional MRI study with 1,434 individuals. Neuroimage, 189: 700–714
CrossRef Google scholar
[42]
Yao,Z., Zou,Y., Zheng,W., Zhang,Z., Li,Y., Yu,Y., Zhang,Z., Fu,Y., Shi,J., Zhang,W. . (2019). Structural alterations of the brain preceded functional alterations in major depressive disorder patients: Evidence from multimodal connectivity. J. Affect. Disord., 253: 107–117
CrossRef Google scholar
[43]
Chin Fatt,C. R., Jha,M. K., Cooper,C. M., Fonzo,G., South,C., Grannemann,B., Carmody,T., Greer,T. L., Kurian,B., Fava,M. . (2020). Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression. Am. J. Psychiatry, 177: 143–154
CrossRef Google scholar
[44]
Zhu,D. M., Zhang,C., Yang,Y., Zhang,Y., Zhao,W., Zhang,B., Zhu,J. (2020). The relationship between sleep efficiency and clinical symptoms is mediated by brain function in major depressive disorder. J. Affect. Disord., 266: 327–337
CrossRef Google scholar
[45]
Hilland,E., Harmer,C. J., Browning,M., Maglanoc,L. A. (2020). Attentional bias modification is associated with fMRI response toward negative stimuli in individuals with residual depression: a randomized controlled trial. J. Psychiatry Neurosci., 45: 23–33
CrossRef Google scholar
[46]
Korgaonkar,M. S., Goldstein-Piekarski,A. N., Fornito,A. Williams,L. (2020). Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Mol. Psychiatry, 25: 1537–1549
CrossRef Google scholar
[47]
Rupprechter,S., Romaniuk,L., Series,P., Hirose,Y., Hawkins,E., Sandu,A. L., Waiter,G. D., McNeil,C. J., Shen,X., Harris,M. A. . (2020). Blunted medial prefrontal cortico-limbic reward-related effective connectivity and depression. Brain, 143: 1946–1956
CrossRef Google scholar
[48]
Yang,Y., Zhu,D. M., Zhang,C., Zhang,Y., Wang,C., Zhang,B., Zhao,W., Zhu,J. (2020). Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder. Front. Neurosci., 14: 50
CrossRef Google scholar
[49]
GrahamJ.,Salimi-Khorshidi G.,HaganC.,WalshN.,GoodyerI., LennoxB.. (2013) Meta-analytic evidence for neuroimaging models of depression: state or trait? J. Affect. Disord., 151, 423–431
[50]
Groenewold,N. A., Opmeer,E. M., de Jonge,P., Aleman,A. Costafreda,S. (2013). Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev., 37: 152–163
CrossRef Google scholar
[51]
Zhang,W. N., Chang,S. H., Guo,L. Y., Zhang,K. L. (2013). The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J. Affect. Disord., 151: 531–539
CrossRef Google scholar
[52]
Iwabuchi,S. J., Krishnadas,R., Li,C., Auer,D. P., Radua,J. (2015). Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci. Biobehav. Rev., 51: 77–86
CrossRef Google scholar
[53]
Wang,X. L., Du,M. Y., Chen,T. L., Chen,Z. Q., Huang,X. Q., Luo,Y., Zhao,Y. J., Kumar,P. Gong,Q. (2015). Neural correlates during working memory processing in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 56: 101–108
CrossRef Google scholar
[54]
Zhong,X., Pu,W. (2016). Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data. J. Affect. Disord., 206: 280–286
CrossRef Google scholar
[55]
Wang,W., Zhao,Y., Hu,X., Huang,X., Kuang,W., Lui,S., Kemp,G. J. (2017). Conjoint and dissociated structural and functional abnormalities in first-episode drug-naive patients with major depressive disorder: a multimodal meta-analysis. Sci. Rep., 7: 10401
CrossRef Google scholar
[56]
Kambeitz,J., Cabral,C., Sacchet,M. D., Gotlib,I. H., Zahn,R., Serpa,M. H., Walter,M., Falkai,P. (2017). Detecting neuroimaging biomarkers for depression: A meta-analysis of multivariate pattern recognition studies. Biol. Psychiatry, 82: 330–338
CrossRef Google scholar
[57]
Zhou,M., Hu,X., Lu,L., Zhang,L., Chen,L., Gong,Q. (2017). Intrinsic cerebral activity at resting state in adults with major depressive disorder: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 75: 157–164
CrossRef Google scholar
[58]
Keren,H., Callaghan,G., Vidal-Ribas,P., Buzzell,G. A., Brotman,M. A., Leibenluft,E., Pan,P. M., Meffert,L., Kaiser,A., Wolke,S. . (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG Studies. Am. J. Psychiatry, 175: 1111–1120
CrossRef Google scholar
[59]
Sha,Z., Xia,M., Lin,Q., Cao,M., Tang,Y., Xu,K., Song,H., Wang,Z., Wang,F., Fox,P. . (2018). Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders. Cereb. Cortex, 28: 4179–4194
[60]
Wu,J. C., Buchsbaum,M. S., Johnson,J. C., Hershey,T. G., Wagner,E. A., Tung,C. (1993). Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depression. J. Affect. Disord., 28: 15–25
CrossRef Google scholar
[61]
Biswal,B., Yetkin,F. Z., Haughton,V. M. Hyde,J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med., 34: 537–541
CrossRef Google scholar
[62]
Friston,K. J., Ashburner,J., Frith,C. D., Poline,J. Heather,J. D. Frackowiak,R. S. (1995). Spatial registration and normalization of images. Hum. Brain Mapp., 3: 165–189
CrossRef Google scholar
[63]
Yan,C. G., Wang,X. D., Zuo,X. N. Zang,Y. (2016). DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14: 339–351
CrossRef Google scholar
[64]
Jenkinson,M., Bannister,P., Brady,M. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17: 825–841
CrossRef Google scholar
[65]
Cox,R. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res., 29: 162–173
CrossRef Google scholar
[66]
Yan,C. G., Chen,X., Li,L., Castellanos,F. X., Bai,T. J., Bo,Q. J., Cao,J., Chen,G. M., Chen,N. X., Chen,W. . (2019). Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. USA, 116: 9078–9083
CrossRef Google scholar
[67]
Castellanos,F. X., Margulies,D. S., Kelly,C., Uddin,L. Q., Ghaffari,M., Kirsch,A., Shaw,D., Shehzad,Z., Di Martino,A., Biswal,B. . (2008). Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry, 63: 332–337
CrossRef Google scholar
[68]
Burstein,R., Noseda,R. (2015). Migraine: multiple processes, complex pathophysiology. J. Neurosci., 35: 6619–6629
CrossRef Google scholar
[69]
Zhou,H. X., Chen,X., Shen,Y. Q., Li,L., Chen,N. X., Zhu,Z. C., Castellanos,F. X. Yan,C. (2020). Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage, 206: 116287
CrossRef Google scholar
[70]
Chen,X., Chen,N. Shen,Y. Li,H. Li,L., Lu,B., Zhu,Z. C., Fan,Z. Yan,C. (2020). The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study. Neuroimage, 221: 117185
CrossRef Google scholar
[71]
Greicius,M. D., Flores,B. H., Menon,V., Glover,G. H., Solvason,H. B., Kenna,H., Reiss,A. L. Schatzberg,A. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry, 62: 429–437
CrossRef Google scholar
[72]
Hamilton,J. P., Farmer,M., Fogelman,P. Gotlib,I. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry, 78: 224–230
CrossRef Google scholar
[73]
Silvers,J. A., Weber,J., Wager,T. D. Ochsner,K. (2015). Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions. Soc. Cogn. Affect. Neurosci., 10: 172–179
CrossRef Google scholar
[74]
George,M. S., Taylor,J. J. Short,E. (2013). The expanding evidence base for rTMS treatment of depression. Curr. Opin. Psychiatry, 26: 13–18
CrossRef Google scholar
[75]
Ochsner,K. N., Silvers,J. A. Buhle,J. (2012). Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci., 1251: E1–E24
CrossRef Google scholar
[76]
EysenckM.. (2020) Cognitive Psychology: A Student’s Handbook. London: Taylor & Francis Group
[77]
GrossJ. J.. (2007) Emotion regulation: conceptual foundations. In: Handbook of Emotion Regulation, Gross, J. J. (Ed.), pp. 3–24. New York: The Guilford Press
[78]
Wang,L., Zhao,Y., Edmiston,E. K., Womer,F. Y., Zhang,R., Zhao,P., Jiang,X., Wu,F., Kong,L., Zhou,Y. . (2020). Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts. Front. Psychiatry, 10: 923
CrossRef Google scholar
[79]
Peterson,B. (2015). Editorial: Research Domain Criteria (RDoC): a new psychiatric nosology whose time has not yet come. J. Child Psychol. Psychiatry, 56: 719–722
CrossRef Google scholar
[80]
Sanislow,C. A., Ferrante,M., Pacheco,J., Rudorfer,M. V. Morris,S. (2019). Advancing translational research using NIMH research domain criteria and computational methods. Neuron, 101: 779–782
CrossRef Google scholar
[81]
Tozzi,L., Staveland,B., Holt-Gosselin,B., Chesnut,M., Chang,S. E., Choi,D., Shiner,M., Wu,H., Lerma-Usabiaga,G., Sporns,O. . (2020). The human connectome project for disordered emotional states: Protocol and rationale for a research domain criteria study of brain connectivity in young adult anxiety and depression. Neuroimage, 214: 116715
CrossRef Google scholar
[82]
Association,A. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Publishing, Inc
[83]
Gotlib,I. H. (2010). Cognition and depression: current status and future directions. Annu. Rev. Clin. Psychol., 6: 285–312
CrossRef Google scholar
[84]
ller,V. I., Cieslik,E. C., Serbanescu,I., Laird,A. R., Fox,P. T. Eickhoff,S. (2017). Altered brain activity in unipolar depression revisited: Meta-analyses of neuroimaging studies. JAMA Psychiatry, 74: 47–55
CrossRef Google scholar
[85]
Cesario,J. (2014). Priming, replication, and the hardest science. Perspect. Psychol. Sci., 9: 40–48
CrossRef Google scholar
[86]
Maxwell,S. E., Lau,M. Y. Howard,G. (2015). Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am. Psychol., 70: 487–498
CrossRef Google scholar
[87]
Tackett,J. L., Lilienfeld,S. O., Patrick,C. J., Johnson,S. L., Krueger,R. F., Miller,J. D., Oltmanns,T. F. Shrout,P. (2017). It’s time to broaden the replicability conversation: Thoughts for and from clinical psychological Science. Perspect. Psychol. Sci., 12: 742–756
CrossRef Google scholar
[88]
Tackett,J. L., Brandes,C. M., King,K. M. Markon,K. (2019). Psychology’s Replication Crisis and Clinical Psychological Science. Annu. Rev. Clin. Psychol., 15: 579–604
CrossRef Google scholar
[89]
Chao-Gan,Y. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci., 4: 13
[90]
Ahmed,A. T., Frye,M. A., Rush,A. J., Biernacka,J. M., Craighead,W. E., McDonald,W. M., Bobo,W. V., Riva-Posse,P., Tye,S. J., Mayberg,H. S. . (2018). Mapping depression rating scale phenotypes onto research domain criteria (RDoC) to inform biological research in mood disorders. J. Affect. Disord., 238: 1–7
CrossRef Google scholar
[91]
Bullmore,E. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10: 186–198
CrossRef Google scholar
[92]
Dale,A. M., Fischl,B. Sereno,M. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9: 179–194
CrossRef Google scholar
[93]
Bassett,D. S. (2017). Network neuroscience. Nat. Neurosci., 20: 353–364
CrossRef Google scholar
[94]
Long,Y., Cao,H., Yan,C., Chen,X., Li,L., Castellanos,F. X., Bai,T., Bo,Q., Chen,G., Chen,N. . (2020). Altered resting-state dynamic functional brain networks in major depressive disorder: Findings from the REST-meta-MDD consortium. Neuroimage Clin., 26: 102163
CrossRef Google scholar
[95]
Ye,M., Yang,T., Qing,P., Lei,X., Qiu,J. (2015). Changes of functional brain networks in major depressive disorder: A graph theoretical analysis of resting-state fMRI. PLoS One, 10: e0133775
CrossRef Google scholar
[96]
Coalson,T. S., Van Essen,D. C. Glasser,M. (2018). The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc. Natl. Acad. Sci. USA, 115: E6356–E6365
CrossRef Google scholar

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (2017YFC1309902 to CY), the National Natural Science Foundation of China (81671774, 81630031 to CY), the 13th Five-year Informatization Plan of Chinese Academy of Sciences (XXH13505 to CY), the Key Research Program of the Chinese Academy of Sciences (ZDBS-SSW-JSC006 to CY), Beijing Nova Program of Science and Technology (Z191100001119104 to CY), Scientific Foundation of Institute of Psychology, Chinese Academy of Sciences (Y9CX422005 to XC), China Postdoctoral Science Foundation (2019M660847 to XC), China National Postdoctoral Program for Innovative Talents (BX20200360 to XC).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Xue-Ying Li, Xiao Chen and Chao-Gan Yan declare that they have no conflict of interest.
This article does not contain any studies with human or animal materials performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2022 The Authors (2022). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(1192 KB)

Accesses

Citations

Detail

Sections
Recommended

/