Altered cerebral activities and functional connectivity in depression: a systematic review of fMRI studies
Xue-Ying Li, Xiao Chen, Chao-Gan Yan
Altered cerebral activities and functional connectivity in depression: a systematic review of fMRI studies
Background: As one of the leading causes of global disability, major depressive disorder (MDD) places a noticeable burden on individuals and society. Despite the great expectation on finding accurate biomarkers and effective treatment targets of MDD, studies in applying functional magnetic resonance imaging (fMRI) are still faced with challenges, including the representational ambiguity, small sample size, low statistical power, relatively high false positive rates, etc. Thus, reviewing studies with solid methodology may help achieve a consensus on the pathology of MDD.
Methods: In this systematic review, we screened fMRI studies on MDD through strict criteria to focus on reliable studies with sufficient sample size, adequate control of head motion, and a proper multiple comparison control strategy.
Results: We found consistent evidence regarding the dysfunction within and among the default mode network (DMN), the frontoparietal network (FPN), and other brain regions. However, controversy remains, probably due to the heterogeneity of participants and data processing strategies.
Conclusion: Future studies are recommended to apply a comprehensive set of neuro-behavioral measurements, consider the heterogeneity of MDD patients and other potentially confounding factors, apply surface-based neuroscientific network fMRI approaches, and advance research transparency and open science by applying state-of-the-art pipelines along with open data sharing.
Major depressive disorder (MDD) is a prevalent disorder and places noticeable societal burdens, however, findings of objective biomarkers in previous researches were inconsistent. In this systematic review, to detect more reproducible MDD-specific brain circuits, fMRI studies on MDD are screened by strict criteria that carefully minimize the effect of fMRI methodology issues. Though dysfunction in the default mode network (DMN) and the frontoparietal network (FPN) was repeatedly reported, heterogeneity remains in the included studies. Based on these findings, we highlight the necessity of considering some specific potentially confounding factors in future fMRI studies on MDD.
depression / resting-state fMRI / task-based fMRI / default mode network / frontoparietal network
[1] |
Friedrich,M. (2017). Depression is the leading cause of disability around the world. JAMA, 317: 1517
CrossRef
Google scholar
|
[2] |
Vos,T., Lim,S. S., Abbafati,C., Abbas,K. M., Abbasi,M., Abbasifard,M., Abbasi-Kangevari,M., Abbastabar,H., Abd-Allah,F., Abdelalim,A.
CrossRef
Google scholar
|
[3] |
rez-Stable,E. J., Miranda,J., oz,R. F. Ying,Y. (1990). Depression in medical outpatients. Underrecognition and misdiagnosis. Arch. Intern. Med., 150: 1083–1088
CrossRef
Google scholar
|
[4] |
Bandettini,P. (2012). Twenty years of functional MRI: the science and the stories. Neuroimage, 62: 575–588
CrossRef
Google scholar
|
[5] |
Bijsterbosch,J., Harrison,S. J., Jbabdi,S., Woolrich,M., Beckmann,C., Smith,S. Duff,E. (2020). Challenges and future directions for representations of functional brain organization. Nat. Neurosci., 23: 1484–1495
CrossRef
Google scholar
|
[6] |
Ioannidis,J. (2005). Why most published research findings are false. PLoS Med., 2: e124
CrossRef
Google scholar
|
[7] |
Button,K. S., Ioannidis,J. P., Mokrysz,C., Nosek,B. A., Flint,J., Robinson,E. S. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci., 14: 365–376
CrossRef
Google scholar
|
[8] |
Zuo,X. N., Xu,T. Milham,M. (2019). Harnessing reliability for neuroscience research. Nat. Hum. Behav., 3: 768–771
CrossRef
Google scholar
|
[9] |
Ciric,R., Wolf,D. H., Power,J. D., Roalf,D. R., Baum,G. L., Ruparel,K., Shinohara,R. T., Elliott,M. A., Eickhoff,S. B., Davatzikos,C.
CrossRef
Google scholar
|
[10] |
Yan,C. Cheung,B., Kelly,C., Colcombe,S., Craddock,R. C., Di Martino,A., Li,Q., Zuo,X. N., Castellanos,F. X. Milham,M. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76: 183–201
CrossRef
Google scholar
|
[11] |
Ciric,R., Rosen,A. F. G., Erus,G., Cieslak,M., Adebimpe,A., Cook,P. A., Bassett,D. S., Davatzikos,C., Wolf,D. H. Satterthwaite,T. (2018). Mitigating head motion artifact in functional connectivity MRI. Nat. Protoc., 13: 2801–2826
CrossRef
Google scholar
|
[12] |
Eklund,A., Nichols,T. E. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA, 113: 7900–7905
CrossRef
Google scholar
|
[13] |
Algermissen,J. Mehler,D. M. (2018). May the power be with you: are there highly powered studies in neuroscience, and how can we get more of them? J. Neurophysiol., 119: 2114–2117
CrossRef
Google scholar
|
[14] |
Chen,X., Lu,B. Yan,C. (2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Hum. Brain Mapp., 39: 300–318
CrossRef
Google scholar
|
[15] |
Van Dijk,K. R., Sabuncu,M. R. Buckner,R. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59: 431–438
CrossRef
Google scholar
|
[16] |
Power,J. D., Barnes,K. A., Snyder,A. Z., Schlaggar,B. L. Petersen,S. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59: 2142–2154
CrossRef
Google scholar
|
[17] |
Eklund,A., Nichols,T. E. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA, 113: 7900–7905
CrossRef
Google scholar
|
[18] |
Nichols,T. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res., 12: 419–446
CrossRef
Google scholar
|
[19] |
Genovese,C. R., Lazar,N. A. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15: 870–878
CrossRef
Google scholar
|
[20] |
Grimes,D. A. Schulz,K. (1996). Determining sample size and power in clinical trials: the forgotten essential. Semin. Reprod. Endocrinol., 14: 125–131
CrossRef
Google scholar
|
[21] |
Demenescu,L. R., Renken,R., Kortekaas,R., van Tol,M. J., Marsman,J. B., van Buchem,M. A., van der Wee,N. J., Veltman,D. J., den Boer,J. A. (2011). Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study. Psychol. Med., 41: 2253–2264
CrossRef
Google scholar
|
[22] |
van Tol,M. J., van der Wee,N. J., Demenescu,L. R., Nielen,M. M., Aleman,A., Renken,R., van Buchem,M. A., Zitman,F. G. Veltman,D. (2011). Functional MRI correlates of visuospatial planning in out-patient depression and anxiety. Acta Psychiatr. Scand., 124: 273–284
CrossRef
Google scholar
|
[23] |
Bermingham,R., Carballedo,A., Lisiecka,D., Fagan,A., Morris,D., Fahey,C., Meaney,J., Gill,M. (2012). Effect of genetic variant in BICC1 on functional and structural brain changes in depression. Neuropsychopharmacology, 37: 285–2862
|
[24] |
Yang,X., Ma,X., Li,M., Liu,Y., Zhang,J., Huang,B., Zhao,L., Deng,W., Li,T. (2015). Anatomical and functional brain abnormalities in unmedicated major depressive disorder. Neuropsychiatr. Dis. Treat., 11: 2415–2423
|
[25] |
Gollier-Briant,F., re-Martinot,M. L., Lemaitre,H., Miranda,R., Vulser,H., Goodman,R., Struve,M., Fadai,T., Kappel,V.
CrossRef
Google scholar
|
[26] |
Posner,J., Cha,J., Wang,Z., Talati,A., Warner,V., Gerber,A., Peterson,B. (2016). Increased default mode network connectivity in individuals at high familial risk for depression. Neuropsychopharmacology, 41: 1759–1767
|
[27] |
Casement,M. D., Keenan,K. E., Hipwell,A. E., Guyer,A. E. Forbes,E. (2016). Neural reward processing mediates the relationship between insomnia symptoms and depression in adolescence. Sleep, 39: 439–447
CrossRef
Google scholar
|
[28] |
Hermesdorf,M., Sundermann,B., Feder,S., Schwindt,W., Minnerup,J., Arolt,V., Berger,K., Pfleiderer,B. (2016). Major depressive disorder: Findings of reduced homotopic connectivity and investigation of underlying structural mechanisms. Hum. Brain Mapp., 37: 1209–1217
CrossRef
Google scholar
|
[29] |
Davey,C. G., Breakspear,M., Pujol,J. Harrison,B. (2017). A brain model of disturbed self-appraisal in depression. Am. J. Psychiatry, 174: 895–903
CrossRef
Google scholar
|
[30] |
ksel,D., Dietsche,B., Forstner,A. J., Witt,S. H., Maier,R., Rietschel,M., Konrad,C., then,M. M., Dannlowski,U., Baune,B. T.
CrossRef
Google scholar
|
[31] |
Ye,J., Shen,Z., Xu,X., Yang,S., Chen,W., Liu,X., Lu,Y., Liu,F., Lu,J., Li,N.
CrossRef
Google scholar
|
[32] |
Pan,P. M., Sato,J. R., Salum,G. A., Rohde,L. A., Gadelha,A., Zugman,A., Mari,J., Jackowski,A., Picon,F., Miguel,E. C.
CrossRef
Google scholar
|
[33] |
Admon,R., Kaiser,R. H., Dillon,D. G., Beltzer,M., Goer,F., Olson,D. P., Vitaliano,G. Pizzagalli,D. (2017). Dopaminergic enhancement of striatal response to reward in major depression. Am. J. Psychiatry, 174: 378–386
CrossRef
Google scholar
|
[34] |
Lopez,K. C., Luby,J. L., Belden,A. C. Barch,D. (2018). Emotion dysregulation and functional connectivity in children with and without a history of major depressive disorder. Cogn. Affect. Behav. Neurosci., 18: 232–248
CrossRef
Google scholar
|
[35] |
Mehta,N. D., Haroon,E., Xu,X., Woolwine,B. J., Li,Z. Felger,J. (2018). Inflammation negatively correlates with amygdala-ventromedial prefrontal functional connectivity in association with anxiety in patients with depression: Preliminary results. Brain Behav. Immun., 73: 725–730
CrossRef
Google scholar
|
[36] |
Qi,S., Yang,X., Zhao,L., Calhoun,V. D., Perrone-Bizzozero,N., Liu,S., Jiang,R., Jiang,T., Sui,J. (2018). MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder. Brain, 141: 916–926
CrossRef
Google scholar
|
[37] |
Tokuda,T., Yoshimoto,J., Shimizu,Y., Okada,G., Takamura,M., Okamoto,Y., Yamawaki,S. (2018). Identification of depression subtypes and relevant brain regions using a data-driven approach. Sci. Rep., 8: 14082
CrossRef
Google scholar
|
[38] |
Tu,Z., Jia,Y. Y., Wang,T., Qu,H., Pan,J. X., Jie,J., Xu,X. Y., Wang,H. Y. (2018). Modulatory interactions of resting-state brain functional connectivity in major depressive disorder. Neuropsychiatr. Dis. Treat., 14: 2461–2472
CrossRef
Google scholar
|
[39] |
Wang,D., Xue,S. W., Tan,Z., Wang,Y., Lian,Z. (2019). Altered hypothalamic functional connectivity patterns in major depressive disorder. Neuroreport, 30: 1115–1120
CrossRef
Google scholar
|
[40] |
Fitzgerald,J. M., Klumpp,H., Langenecker,S. Phan,K. (2019). Transdiagnostic neural correlates of volitional emotion regulation in anxiety and depression. Depress. Anxiety, 36: 453–464
CrossRef
Google scholar
|
[41] |
Xia,M., Si,T., Sun,X., Ma,Q., Liu,B., Wang,L., Meng,J., Chang,M., Huang,X., Chen,Z.
CrossRef
Google scholar
|
[42] |
Yao,Z., Zou,Y., Zheng,W., Zhang,Z., Li,Y., Yu,Y., Zhang,Z., Fu,Y., Shi,J., Zhang,W.
CrossRef
Google scholar
|
[43] |
Chin Fatt,C. R., Jha,M. K., Cooper,C. M., Fonzo,G., South,C., Grannemann,B., Carmody,T., Greer,T. L., Kurian,B., Fava,M.
CrossRef
Google scholar
|
[44] |
Zhu,D. M., Zhang,C., Yang,Y., Zhang,Y., Zhao,W., Zhang,B., Zhu,J. (2020). The relationship between sleep efficiency and clinical symptoms is mediated by brain function in major depressive disorder. J. Affect. Disord., 266: 327–337
CrossRef
Google scholar
|
[45] |
Hilland,E., Harmer,C. J., Browning,M., Maglanoc,L. A. (2020). Attentional bias modification is associated with fMRI response toward negative stimuli in individuals with residual depression: a randomized controlled trial. J. Psychiatry Neurosci., 45: 23–33
CrossRef
Google scholar
|
[46] |
Korgaonkar,M. S., Goldstein-Piekarski,A. N., Fornito,A. Williams,L. (2020). Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Mol. Psychiatry, 25: 1537–1549
CrossRef
Google scholar
|
[47] |
Rupprechter,S., Romaniuk,L., Series,P., Hirose,Y., Hawkins,E., Sandu,A. L., Waiter,G. D., McNeil,C. J., Shen,X., Harris,M. A.
CrossRef
Google scholar
|
[48] |
Yang,Y., Zhu,D. M., Zhang,C., Zhang,Y., Wang,C., Zhang,B., Zhao,W., Zhu,J. (2020). Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder. Front. Neurosci., 14: 50
CrossRef
Google scholar
|
[49] |
GrahamJ.,Salimi-Khorshidi G.,HaganC.,WalshN.,GoodyerI., LennoxB.. (2013) Meta-analytic evidence for neuroimaging models of depression: state or trait? J. Affect. Disord., 151, 423–431
|
[50] |
Groenewold,N. A., Opmeer,E. M., de Jonge,P., Aleman,A. Costafreda,S. (2013). Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev., 37: 152–163
CrossRef
Google scholar
|
[51] |
Zhang,W. N., Chang,S. H., Guo,L. Y., Zhang,K. L. (2013). The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J. Affect. Disord., 151: 531–539
CrossRef
Google scholar
|
[52] |
Iwabuchi,S. J., Krishnadas,R., Li,C., Auer,D. P., Radua,J. (2015). Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci. Biobehav. Rev., 51: 77–86
CrossRef
Google scholar
|
[53] |
Wang,X. L., Du,M. Y., Chen,T. L., Chen,Z. Q., Huang,X. Q., Luo,Y., Zhao,Y. J., Kumar,P. Gong,Q. (2015). Neural correlates during working memory processing in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 56: 101–108
CrossRef
Google scholar
|
[54] |
Zhong,X., Pu,W. (2016). Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data. J. Affect. Disord., 206: 280–286
CrossRef
Google scholar
|
[55] |
Wang,W., Zhao,Y., Hu,X., Huang,X., Kuang,W., Lui,S., Kemp,G. J. (2017). Conjoint and dissociated structural and functional abnormalities in first-episode drug-naive patients with major depressive disorder: a multimodal meta-analysis. Sci. Rep., 7: 10401
CrossRef
Google scholar
|
[56] |
Kambeitz,J., Cabral,C., Sacchet,M. D., Gotlib,I. H., Zahn,R., Serpa,M. H., Walter,M., Falkai,P. (2017). Detecting neuroimaging biomarkers for depression: A meta-analysis of multivariate pattern recognition studies. Biol. Psychiatry, 82: 330–338
CrossRef
Google scholar
|
[57] |
Zhou,M., Hu,X., Lu,L., Zhang,L., Chen,L., Gong,Q. (2017). Intrinsic cerebral activity at resting state in adults with major depressive disorder: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 75: 157–164
CrossRef
Google scholar
|
[58] |
Keren,H., Callaghan,G., Vidal-Ribas,P., Buzzell,G. A., Brotman,M. A., Leibenluft,E., Pan,P. M., Meffert,L., Kaiser,A., Wolke,S.
CrossRef
Google scholar
|
[59] |
Sha,Z., Xia,M., Lin,Q., Cao,M., Tang,Y., Xu,K., Song,H., Wang,Z., Wang,F., Fox,P.
|
[60] |
Wu,J. C., Buchsbaum,M. S., Johnson,J. C., Hershey,T. G., Wagner,E. A., Tung,C. (1993). Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depression. J. Affect. Disord., 28: 15–25
CrossRef
Google scholar
|
[61] |
Biswal,B., Yetkin,F. Z., Haughton,V. M. Hyde,J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med., 34: 537–541
CrossRef
Google scholar
|
[62] |
Friston,K. J., Ashburner,J., Frith,C. D., Poline,J. Heather,J. D. Frackowiak,R. S. (1995). Spatial registration and normalization of images. Hum. Brain Mapp., 3: 165–189
CrossRef
Google scholar
|
[63] |
Yan,C. G., Wang,X. D., Zuo,X. N. Zang,Y. (2016). DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14: 339–351
CrossRef
Google scholar
|
[64] |
Jenkinson,M., Bannister,P., Brady,M. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17: 825–841
CrossRef
Google scholar
|
[65] |
Cox,R. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res., 29: 162–173
CrossRef
Google scholar
|
[66] |
Yan,C. G., Chen,X., Li,L., Castellanos,F. X., Bai,T. J., Bo,Q. J., Cao,J., Chen,G. M., Chen,N. X., Chen,W.
CrossRef
Google scholar
|
[67] |
Castellanos,F. X., Margulies,D. S., Kelly,C., Uddin,L. Q., Ghaffari,M., Kirsch,A., Shaw,D., Shehzad,Z., Di Martino,A., Biswal,B.
CrossRef
Google scholar
|
[68] |
Burstein,R., Noseda,R. (2015). Migraine: multiple processes, complex pathophysiology. J. Neurosci., 35: 6619–6629
CrossRef
Google scholar
|
[69] |
Zhou,H. X., Chen,X., Shen,Y. Q., Li,L., Chen,N. X., Zhu,Z. C., Castellanos,F. X. Yan,C. (2020). Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage, 206: 116287
CrossRef
Google scholar
|
[70] |
Chen,X., Chen,N. Shen,Y. Li,H. Li,L., Lu,B., Zhu,Z. C., Fan,Z. Yan,C. (2020). The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study. Neuroimage, 221: 117185
CrossRef
Google scholar
|
[71] |
Greicius,M. D., Flores,B. H., Menon,V., Glover,G. H., Solvason,H. B., Kenna,H., Reiss,A. L. Schatzberg,A. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry, 62: 429–437
CrossRef
Google scholar
|
[72] |
Hamilton,J. P., Farmer,M., Fogelman,P. Gotlib,I. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry, 78: 224–230
CrossRef
Google scholar
|
[73] |
Silvers,J. A., Weber,J., Wager,T. D. Ochsner,K. (2015). Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions. Soc. Cogn. Affect. Neurosci., 10: 172–179
CrossRef
Google scholar
|
[74] |
George,M. S., Taylor,J. J. Short,E. (2013). The expanding evidence base for rTMS treatment of depression. Curr. Opin. Psychiatry, 26: 13–18
CrossRef
Google scholar
|
[75] |
Ochsner,K. N., Silvers,J. A. Buhle,J. (2012). Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci., 1251: E1–E24
CrossRef
Google scholar
|
[76] |
EysenckM.. (2020) Cognitive Psychology: A Student’s Handbook. London: Taylor & Francis Group
|
[77] |
GrossJ. J.. (2007) Emotion regulation: conceptual foundations. In: Handbook of Emotion Regulation, Gross, J. J. (Ed.), pp. 3–24. New York: The Guilford Press
|
[78] |
Wang,L., Zhao,Y., Edmiston,E. K., Womer,F. Y., Zhang,R., Zhao,P., Jiang,X., Wu,F., Kong,L., Zhou,Y.
CrossRef
Google scholar
|
[79] |
Peterson,B. (2015). Editorial: Research Domain Criteria (RDoC): a new psychiatric nosology whose time has not yet come. J. Child Psychol. Psychiatry, 56: 719–722
CrossRef
Google scholar
|
[80] |
Sanislow,C. A., Ferrante,M., Pacheco,J., Rudorfer,M. V. Morris,S. (2019). Advancing translational research using NIMH research domain criteria and computational methods. Neuron, 101: 779–782
CrossRef
Google scholar
|
[81] |
Tozzi,L., Staveland,B., Holt-Gosselin,B., Chesnut,M., Chang,S. E., Choi,D., Shiner,M., Wu,H., Lerma-Usabiaga,G., Sporns,O.
CrossRef
Google scholar
|
[82] |
Association,A. (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Publishing,
|
[83] |
Gotlib,I. H. (2010). Cognition and depression: current status and future directions. Annu. Rev. Clin. Psychol., 6: 285–312
CrossRef
Google scholar
|
[84] |
ller,V. I., Cieslik,E. C., Serbanescu,I., Laird,A. R., Fox,P. T. Eickhoff,S. (2017). Altered brain activity in unipolar depression revisited: Meta-analyses of neuroimaging studies. JAMA Psychiatry, 74: 47–55
CrossRef
Google scholar
|
[85] |
Cesario,J. (2014). Priming, replication, and the hardest science. Perspect. Psychol. Sci., 9: 40–48
CrossRef
Google scholar
|
[86] |
Maxwell,S. E., Lau,M. Y. Howard,G. (2015). Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? Am. Psychol., 70: 487–498
CrossRef
Google scholar
|
[87] |
Tackett,J. L., Lilienfeld,S. O., Patrick,C. J., Johnson,S. L., Krueger,R. F., Miller,J. D., Oltmanns,T. F. Shrout,P. (2017). It’s time to broaden the replicability conversation: Thoughts for and from clinical psychological Science. Perspect. Psychol. Sci., 12: 742–756
CrossRef
Google scholar
|
[88] |
Tackett,J. L., Brandes,C. M., King,K. M. Markon,K. (2019). Psychology’s Replication Crisis and Clinical Psychological Science. Annu. Rev. Clin. Psychol., 15: 579–604
CrossRef
Google scholar
|
[89] |
Chao-Gan,Y. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci., 4: 13
|
[90] |
Ahmed,A. T., Frye,M. A., Rush,A. J., Biernacka,J. M., Craighead,W. E., McDonald,W. M., Bobo,W. V., Riva-Posse,P., Tye,S. J., Mayberg,H. S.
CrossRef
Google scholar
|
[91] |
Bullmore,E. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10: 186–198
CrossRef
Google scholar
|
[92] |
Dale,A. M., Fischl,B. Sereno,M. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9: 179–194
CrossRef
Google scholar
|
[93] |
Bassett,D. S. (2017). Network neuroscience. Nat. Neurosci., 20: 353–364
CrossRef
Google scholar
|
[94] |
Long,Y., Cao,H., Yan,C., Chen,X., Li,L., Castellanos,F. X., Bai,T., Bo,Q., Chen,G., Chen,N.
CrossRef
Google scholar
|
[95] |
Ye,M., Yang,T., Qing,P., Lei,X., Qiu,J. (2015). Changes of functional brain networks in major depressive disorder: A graph theoretical analysis of resting-state fMRI. PLoS One, 10: e0133775
CrossRef
Google scholar
|
[96] |
Coalson,T. S., Van Essen,D. C. Glasser,M. (2018). The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc. Natl. Acad. Sci. USA, 115: E6356–E6365
CrossRef
Google scholar
|
/
〈 | 〉 |