High-throughput experimental methods for investigating biomolecular condensates

Taoyu Chen , Qi Lei , Minglei Shi , Tingting Li

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 255 -266.

PDF (2523KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 255 -266. DOI: 10.15302/J-QB-021-0264
REVIEW
REVIEW

High-throughput experimental methods for investigating biomolecular condensates

Author information +
History +
PDF (2523KB)

Abstract

Background: The concept of biomolecular condensate was put forward recently to emphasize the ability of certain cellular compartments to concentrate molecules and comprise proteins and nucleic acids with specific biological functions, from ribosome genesis to RNA splicing. Due to their unique role in biological processes, it is crucial to investigate their compositions, which is a primary determinant of condensate properties.

Results: Since a wide range of macromolecules comprise biomolecular condensates, it is necessary for researchers to investigate them using high-throughput methodologies while low-throughput experiments are not efficient enough. These high-throughput methods usually purify interacting protein libraries from condensates before being scanned in mass spectrometry. It is possible to extract organelles as a whole for specific condensates for further analysis, however, most condensates do not have a distinguishable marker or are sensitive to shear force to be extracted as a whole. Affinity tagging allows a comprehensive view of interacting proteins of target molecule yet only proteins with strong bonds may be pulled down. Proximity labeling serves as a complementary method to label more dynamic proteins with weaker interactions, increasing sensitivity while decreasing specificity. Image-based fluorescent screening takes another path by scanning images automatically to illustrate the condensing state of biomolecules within membraneless organelles, which is a unique feature unlike the previous mass spectrometry-based methods.

Conclusion: This review presents a rough glimpse into high-throughput methodologies for biomolecular condensate investigation to encourage usage of bioinformatic tools by researchers in relevant fields.

Graphical abstract

Keywords

biomolecular condensates / high-throughput / phase separation / interaction

Cite this article

Download citation ▾
Taoyu Chen, Qi Lei, Minglei Shi, Tingting Li. High-throughput experimental methods for investigating biomolecular condensates. Quant. Biol., 2021, 9(3): 255-266 DOI:10.15302/J-QB-021-0264

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BananiS. F., Lee, H. O., Hyman, A. A. , Rosen, M. K.. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol., 2017, 18 : 285– 298

[2]

FriedmanJ. R. , Nunnari, J.. Mitochondrial form and function. Nature, 2014, 505 : 335– 343

[3]

GuoE., Y.C., Manteiga E., J.R., HenningerM., J.H., Sabari K., B.V.. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, 2019, 572 : 543– 548

[4]

TripathiD., V.Y., Ellis T., J.M., ShenF., Z.A.. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39 : 925– 938

[5]

PedersonT.. The nucleolus. Cold Spring Harb. Perspect. Biol., 2011, 3 : a000638–

[6]

BoisvertF. M., van Koningsbruggen, S., Navascués, J. , Lamond, A. I.. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol., 2007, 8 : 574– 585

[7]

AlbertiS., Gladfelter, A. , Mittag, T.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176 : 419– 434

[8]

BrangwynneP., C.R., Eckmann S., C.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324 : 1729– 1732

[9]

PengA. , Weber, S. C.. Evidence for and against liquid-liquid phase separation in the nucleus. Noncoding RNA, 2019, 5 : 50–

[10]

HymanA. A., Weber, C. A. , Jülicher, F.. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, 30 : 39– 58

[11]

McSwiggenT., D.S., Hansen S., A.B., TevesK.. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife, 2019, 8 : e47098–

[12]

LiQ., Wang, X., Dou, Z., Yang, W., Huang, B., Lou, J. , Zhang, Z.. Protein databases related to liquid-liquid phase separation. Int J Mol Sci, 2020, 21 : 1– 16

[13]

SawyerI. A., Sturgill, D., Sung, M. H., Hager, G. L. , Dundr, M.. Cajal body function in genome organization and transcriptome diversity. BioEssays, 2016, 38 : 1197– 1208

[14]

DomonB. , Aebersold, R.. Mass spectrometry and protein analysis. Science, 2006, 312 : 212– 217

[15]

AebersoldR. , Mann, M.. Mass spectrometry-based proteomics. Nature, 2003, 422 : 198– 207

[16]

YouK., Huang, Q., Yu, C., Shen, B., Sevilla, C., Shi, M., Hermjakob, H., Chen, Y. , Li, T.. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res., 2019, 48 : 354– 359

[17]

MészárosP.. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res., 2020, 48 : D360– D367

[18]

LiQ., Peng, X., Li, Y., Tang, W., Zhu, J., Huang, J., Qi, Y. , Zhang, Z.. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res., 2019, 48 : 320– 327

[19]

NingW., Guo, Y., Lin, S., Mei, B., Wu, Y., Jiang, P., Tan, X., Zhang, W., Chen, G., Peng, D.. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res., 2020, 48 : D288– D295

[20]

BolognesiB., Lorenzo Gotor, N., Dhar, R., Cirillo, D., Baldrighi, M., Tartaglia, G. G. , Lehner, B.. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep., 2016, 16 : 222– 231

[21]

VernonR. M. C., Chong, P. A., Tsang, B., Kim, T. H., Bah, A., Farber, P., Lin, H. , Forman-Kay, J. D.. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife, 2018, 7 : e31486–

[22]

ShenB., Chen, Z., Yu, C., Chen, T., Shi, M. , Li, T.. Computational screening of biological phase-separating proteins. Genom. Proteom. Bioinfor., 2021, S1672-0229(21)00022-X–

[23]

AndersenJ. S., Lam, Y. W., Leung, A. K. L., Ong, S. E., Lyon, C. E., Lamond, A. I. , Mann, M.. Nucleolar proteome dynamics. Nature, 2005, 433 : 77– 83

[24]

BokeP., E.A., Ruer J. Amyloid-like self-assembly of a cellular compartment. Cell, 2016, 166 : 637– 650

[25]

Hubstenberger. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell, 2017, 68 : 144– 157

[26]

PinaA. S., Batalha, I. L. , Roque, A. C.. Affinity tags in protein purification and peptide enrichment: an overview. Methods Mol. Biol., 2014, 1129 : 147– 168

[27]

Green, M. R. and Sambrook, J. (2012) Molecular Cloning: A Laboratory Manual, 4th Ed., New York City: Cold Spring Harbor Laboratory Press

[28]

LiW., X. S., ReesW., J.E., Xue W., P.S.. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem., 2014, 289 : 14434– 14447

[29]

CronanJ. E. J. Jr.. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J. Biol. Chem., 1990, 265 : 10327– 10333

[30]

TerpeK.. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60 : 523– 533

[31]

LiY.. The tandem affinity purification technology: an overview. Biotechnol. Lett., 2011, 33 : 1487– 1499

[32]

AyacheJ., Bénard, M., Ernoult-Lange, M., Minshall, N., Standart, N., Kress, M. , Weil, D.. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol. Biol. Cell, 2015, 26 : 2579– 2595

[33]

MaX., Yang, C., Alexandrov, A., Grayhack, E. J., Behm-Ansmant, I. , Yu, Y. T.. Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J., 2005, 24 : 2403– 2413

[34]

TaiT. N., Havelka, W. A. , Kaplan, S.. A broad-host-range vector system for cloning and translational lacZ fusion analysis. Plasmid, 1988, 19 : 175– 188

[35]

JønsonK., L.H., Vikesaa C. Molecular composition of IMP1 ribonucleoprotein granules. Mol. Cell. Proteomics, 2007, 6 : 798– 811

[36]

Trinkle-Mulcahy. Recent advances in proximity-based labeling methods for interactome mapping. F1000 Res., 2019, 8 : F1000 Faculty Rev-135–

[37]

HonkeK. , Kotani, N.. The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains. J. Neurochem., 2011, 116 : 690– 695

[38]

MartellD., J.J., Deerinck L., T.K., SancakE., Y.H., Poulos Y. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol., 2012, 30 : 1143– 1148

[39]

HanS., Li, J. , Ting, A. Y.. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol., 2018, 50 : 17– 23

[40]

LamS. S., Martell, J. D., Kamer, K. J., Deerinck, T. J., Ellisman, M. H., Mootha, V. K. , Ting, A. Y.. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods, 2015, 12 : 51– 54

[41]

MarkmillerL., S.Y., Soltanieh C.. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 2018, 172 : 590– 604

[42]

BobrowM. N., Harris, T. D., Shaughnessy, K. J. , Litt, G. J.. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods, 1989, 125 : 279– 285

[43]

BobrowM. N., Shaughnessy, K. J. , Litt, G. J.. Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods, 1991, 137 : 103– 112

[44]

DopieJ., Sweredoski, M. J., Moradian, A. , Belmont, A. S.. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol., 2020, 219 : e201910207–

[45]

ReinkeA. W., Balla, K. M., Bennett, E. J. , Troemel, E. R.. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat. Commun., 2017, 8 : 14023–

[46]

ReinkeA. W., Mak, R., Troemel, E. R. , Bennett, E. J.. In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. Sci. Adv., 2017, 3 : e1602426–

[47]

ChenL., C.D., Hu Y., Y.Y., UdeshiA.. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc. Natl. Acad. Sci. USA, 2015, 112 : 12093– 12098

[48]

van SteenselB. , Henikoff, S.. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol., 2000, 18 : 424– 428

[49]

RouxK. J., Kim, D. I., Raida, M. , Burke, B.. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol., 2012, 196 : 801– 810

[50]

YounY., J.H., Dunham J., W.D. R., HongI., S.W. M.. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell, 2018, 69 : 517– 532

[51]

KimD. I., Jensen, S. C., Noble, K. A., Kc, B., Roux, K. H., Motamedchaboki, K. , Roux, K. J.. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell, 2016, 27 : 1188– 1196

[52]

RamanathanS., M.H., Majzoub J., K.G., RaoR.. RNA-protein interaction detection in living cells. Nat. Methods, 2018, 15 : 207– 212

[53]

BranonC., T.A., Bosch D., J.D., SanchezA., A.L., Udeshi Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol., 2018, 36 : 880– 887

[54]

ChoF., K.C., Branon D., T.W., RajeevK., S.A.. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl. Acad. Sci. USA., 2020, 117 : 12143– 12154

[55]

SpectorD. L. , Lamond, A. I.. Nuclear speckles. Cold Spring Harb. Perspect. Biol., 2011, 3 : a000646–

[56]

FoxA. H. , Lamond, A. I.. Paraspeckles. Cold Spring Harb. Perspect. Biol., 2010, 2 : a000687–

[57]

WestA., J.E.. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J. Cell Biol., 2016, 214 : 817– 830

[58]

FeiS., J.T. S., JadalihaS., M.M.. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci., 2017, 130 : 4180– 4192

[59]

MukherjeeJ., Hermesh, O., Eliscovich, C., Nalpas, N., Franz-Wachtel, M., Maček, B. , Jansen, R. P.. β-Actin mRNA interactome mapping by proximity biotinylation. Proc. Natl. Acad. Sci. USA, 2019, 116 : 12863– 12872

[60]

CastelloM., A.W. Comprehensive identification of RNA-binding proteins by RNA interactome capture. Methods Mol. Biol., 2016, 131– 139

[61]

BaoX., Guo, X., Yin, M., Tariq, M., Lai, Y., Kanwal, S., Zhou, J., Li, N., Lv, Y., Pulido-Quetglas, C.. Capturing the interactome of newly transcribed RNA. Nat. Methods, 2018, 15 : 213– 220

[62]

SimonM. D.. Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol., 2013, 101 : 21.25.1– 21.25.16

[63]

EngreitzJ., Lander, E. S. , Guttman, M.. RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol. Biol., 2015, 1262 : 183– 197

[64]

QinW., Cho, K. F., Cavanagh, P. E. , Ting, A. Y.. Deciphering molecular interactions by proximity labeling. Nat. Methods, 2021, 18 : 133– 143

[65]

HanS., Simen, B., Myers, S. A., Carr, S. A., He, C. , Ting, A. Y.. RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc. Natl. Acad. Sci. USA, 2020, 17 : 22068– 22079

[66]

Li, Y., Liu, S., Cao, L., Luo, Y., Du, H., Li, S. and You, F. (2021) CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol.,

[67]

YiW., Li, J., Zhu, X., Wang, X., Fan, L., Sun, W., Liao, L., Zhang, J., Li, X., Ye, J.. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat. Methods, 2020, 17 : 685– 688

[68]

FangX., Zheng, Y., Duan, Y., Liu, Y. , Zhong, W.. Recent advances in design of fluorescence-based assays for high-throughput screening. Anal. Chem., 2019, 91 : 482– 504

[69]

BerchtoldD., Battich, N. , Pelkmans, L.. A systems-level study reveals regulators of membrane-less organelles in human cells. Mol. Cell, 2018, 72 : 1035– 1049. e5

[70]

WheelerC., E.Q., Vu M., A.Nostrand, EinsteinL., J.A., DiSalvo L., M.W. Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors. Nat. Methods, 2020, 17 : 636– 642

[71]

Lyon, A. S., Peeples, W. B. and Rosen, M. K. (2021) A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol.,

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press.

AI Summary AI Mindmap
PDF (2523KB)

3261

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/