High-throughput experimental methods for investigating biomolecular condensates

Taoyu Chen, Qi Lei, Minglei Shi, Tingting Li

PDF(2523 KB)
PDF(2523 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 255-266. DOI: 10.15302/J-QB-021-0264
REVIEW
REVIEW

High-throughput experimental methods for investigating biomolecular condensates

Author information +
History +

Abstract

Background: The concept of biomolecular condensate was put forward recently to emphasize the ability of certain cellular compartments to concentrate molecules and comprise proteins and nucleic acids with specific biological functions, from ribosome genesis to RNA splicing. Due to their unique role in biological processes, it is crucial to investigate their compositions, which is a primary determinant of condensate properties.

Results: Since a wide range of macromolecules comprise biomolecular condensates, it is necessary for researchers to investigate them using high-throughput methodologies while low-throughput experiments are not efficient enough. These high-throughput methods usually purify interacting protein libraries from condensates before being scanned in mass spectrometry. It is possible to extract organelles as a whole for specific condensates for further analysis, however, most condensates do not have a distinguishable marker or are sensitive to shear force to be extracted as a whole. Affinity tagging allows a comprehensive view of interacting proteins of target molecule yet only proteins with strong bonds may be pulled down. Proximity labeling serves as a complementary method to label more dynamic proteins with weaker interactions, increasing sensitivity while decreasing specificity. Image-based fluorescent screening takes another path by scanning images automatically to illustrate the condensing state of biomolecules within membraneless organelles, which is a unique feature unlike the previous mass spectrometry-based methods.

Conclusion: This review presents a rough glimpse into high-throughput methodologies for biomolecular condensate investigation to encourage usage of bioinformatic tools by researchers in relevant fields.

Author summary

Biomacromolecules often form condensates in cytoplasm or nucleoplasm to keep biomolecular reactions organized and strictly regulated. The past 10 years have witnessed a surge in researches concerning biomolecular condensates and phase-separating molecules, yet most experiments are performed in low-throughput manners. This review summarizes the common high-throughput experimental methods for biomolecular condensate investigation, including organelle purification, affinity purification, proximity labeling, and image-based fluorescence screening and discusses their advantages and shortcomings. We demonstrate that high-throughput screening may provide new insights into related studies and encourage researchers to develop new tools to unravel phase-separated biomolecular condensates.

Graphical abstract

Keywords

biomolecular condensates / high-throughput / phase separation / interaction

Cite this article

Download citation ▾
Taoyu Chen, Qi Lei, Minglei Shi, Tingting Li. High-throughput experimental methods for investigating biomolecular condensates. Quant. Biol., 2021, 9(3): 255‒266 https://doi.org/10.15302/J-QB-021-0264

References

[1]
BananiS. F., Lee, H. O., Hyman, A. A. , Rosen, M. K.. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol., 2017, 18 : 285– 298
CrossRef Google scholar
[2]
FriedmanJ. R. , Nunnari, J.. Mitochondrial form and function. Nature, 2014, 505 : 335– 343
CrossRef Google scholar
[3]
GuoE., Y.C., Manteiga E., J.R., HenningerM., J.H., Sabari K., B.V.. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, 2019, 572 : 543– 548
CrossRef Google scholar
[4]
TripathiD., V.Y., Ellis T., J.M., ShenF., Z.A.. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39 : 925– 938
CrossRef Google scholar
[5]
PedersonT.. The nucleolus. Cold Spring Harb. Perspect. Biol., 2011, 3 : a000638–
CrossRef Google scholar
[6]
BoisvertF. M., van Koningsbruggen, S., Navascués, J. , Lamond, A. I.. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol., 2007, 8 : 574– 585
CrossRef Google scholar
[7]
AlbertiS., Gladfelter, A. , Mittag, T.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176 : 419– 434
CrossRef Google scholar
[8]
BrangwynneP., C.R., Eckmann S., C.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324 : 1729– 1732
CrossRef Google scholar
[9]
PengA. , Weber, S. C.. Evidence for and against liquid-liquid phase separation in the nucleus. Noncoding RNA, 2019, 5 : 50–
CrossRef Google scholar
[10]
HymanA. A., Weber, C. A. , Jülicher, F.. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, 30 : 39– 58
CrossRef Google scholar
[11]
McSwiggenT., D.S., Hansen S., A.B., TevesK.. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife, 2019, 8 : e47098–
CrossRef Google scholar
[12]
LiQ., Wang, X., Dou, Z., Yang, W., Huang, B., Lou, J. , Zhang, Z.. Protein databases related to liquid-liquid phase separation. Int J Mol Sci, 2020, 21 : 1– 16
[13]
SawyerI. A., Sturgill, D., Sung, M. H., Hager, G. L. , Dundr, M.. Cajal body function in genome organization and transcriptome diversity. BioEssays, 2016, 38 : 1197– 1208
CrossRef Google scholar
[14]
DomonB. , Aebersold, R.. Mass spectrometry and protein analysis. Science, 2006, 312 : 212– 217
CrossRef Google scholar
[15]
AebersoldR. , Mann, M.. Mass spectrometry-based proteomics. Nature, 2003, 422 : 198– 207
CrossRef Google scholar
[16]
YouK., Huang, Q., Yu, C., Shen, B., Sevilla, C., Shi, M., Hermjakob, H., Chen, Y. , Li, T.. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res., 2019, 48 : 354– 359
[17]
MészárosP.. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res., 2020, 48 : D360– D367
[18]
LiQ., Peng, X., Li, Y., Tang, W., Zhu, J., Huang, J., Qi, Y. , Zhang, Z.. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res., 2019, 48 : 320– 327
[19]
NingW., Guo, Y., Lin, S., Mei, B., Wu, Y., Jiang, P., Tan, X., Zhang, W., Chen, G., Peng, D.. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res., 2020, 48 : D288– D295
CrossRef Google scholar
[20]
BolognesiB., Lorenzo Gotor, N., Dhar, R., Cirillo, D., Baldrighi, M., Tartaglia, G. G. , Lehner, B.. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep., 2016, 16 : 222– 231
CrossRef Google scholar
[21]
VernonR. M. C., Chong, P. A., Tsang, B., Kim, T. H., Bah, A., Farber, P., Lin, H. , Forman-Kay, J. D.. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife, 2018, 7 : e31486–
CrossRef Google scholar
[22]
ShenB., Chen, Z., Yu, C., Chen, T., Shi, M. , Li, T.. Computational screening of biological phase-separating proteins. Genom. Proteom. Bioinfor., 2021, S1672-0229(21)00022-X–
CrossRef Google scholar
[23]
AndersenJ. S., Lam, Y. W., Leung, A. K. L., Ong, S. E., Lyon, C. E., Lamond, A. I. , Mann, M.. Nucleolar proteome dynamics. Nature, 2005, 433 : 77– 83
CrossRef Google scholar
[24]
BokeP., E.A., Ruer J. Amyloid-like self-assembly of a cellular compartment. Cell, 2016, 166 : 637– 650
CrossRef Google scholar
[25]
Hubstenberger. P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell, 2017, 68 : 144– 157
CrossRef Google scholar
[26]
PinaA. S., Batalha, I. L. , Roque, A. C.. Affinity tags in protein purification and peptide enrichment: an overview. Methods Mol. Biol., 2014, 1129 : 147– 168
CrossRef Google scholar
[27]
Green, M. R. and Sambrook, J. (2012) Molecular Cloning: A Laboratory Manual, 4th Ed., New York City: Cold Spring Harbor Laboratory Press
[28]
LiW., X. S., ReesW., J.E., Xue W., P.S.. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem., 2014, 289 : 14434– 14447
CrossRef Google scholar
[29]
CronanJ. E. J. Jr.. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J. Biol. Chem., 1990, 265 : 10327– 10333
CrossRef Google scholar
[30]
TerpeK.. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60 : 523– 533
CrossRef Google scholar
[31]
LiY.. The tandem affinity purification technology: an overview. Biotechnol. Lett., 2011, 33 : 1487– 1499
CrossRef Google scholar
[32]
AyacheJ., Bénard, M., Ernoult-Lange, M., Minshall, N., Standart, N., Kress, M. , Weil, D.. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol. Biol. Cell, 2015, 26 : 2579– 2595
CrossRef Google scholar
[33]
MaX., Yang, C., Alexandrov, A., Grayhack, E. J., Behm-Ansmant, I. , Yu, Y. T.. Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J., 2005, 24 : 2403– 2413
CrossRef Google scholar
[34]
TaiT. N., Havelka, W. A. , Kaplan, S.. A broad-host-range vector system for cloning and translational lacZ fusion analysis. Plasmid, 1988, 19 : 175– 188
CrossRef Google scholar
[35]
JønsonK., L.H., Vikesaa C. Molecular composition of IMP1 ribonucleoprotein granules. Mol. Cell. Proteomics, 2007, 6 : 798– 811
CrossRef Google scholar
[36]
Trinkle-Mulcahy. Recent advances in proximity-based labeling methods for interactome mapping. F1000 Res., 2019, 8 : F1000 Faculty Rev-135–
CrossRef Google scholar
[37]
HonkeK. , Kotani, N.. The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains. J. Neurochem., 2011, 116 : 690– 695
CrossRef Google scholar
[38]
MartellD., J.J., Deerinck L., T.K., SancakE., Y.H., Poulos Y. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol., 2012, 30 : 1143– 1148
CrossRef Google scholar
[39]
HanS., Li, J. , Ting, A. Y.. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol., 2018, 50 : 17– 23
CrossRef Google scholar
[40]
LamS. S., Martell, J. D., Kamer, K. J., Deerinck, T. J., Ellisman, M. H., Mootha, V. K. , Ting, A. Y.. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods, 2015, 12 : 51– 54
CrossRef Google scholar
[41]
MarkmillerL., S.Y., Soltanieh C.. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 2018, 172 : 590– 604
CrossRef Google scholar
[42]
BobrowM. N., Harris, T. D., Shaughnessy, K. J. , Litt, G. J.. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods, 1989, 125 : 279– 285
CrossRef Google scholar
[43]
BobrowM. N., Shaughnessy, K. J. , Litt, G. J.. Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods, 1991, 137 : 103– 112
CrossRef Google scholar
[44]
DopieJ., Sweredoski, M. J., Moradian, A. , Belmont, A. S.. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol., 2020, 219 : e201910207–
CrossRef Google scholar
[45]
ReinkeA. W., Balla, K. M., Bennett, E. J. , Troemel, E. R.. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat. Commun., 2017, 8 : 14023–
CrossRef Google scholar
[46]
ReinkeA. W., Mak, R., Troemel, E. R. , Bennett, E. J.. In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. Sci. Adv., 2017, 3 : e1602426–
CrossRef Google scholar
[47]
ChenL., C.D., Hu Y., Y.Y., UdeshiA.. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc. Natl. Acad. Sci. USA, 2015, 112 : 12093– 12098
CrossRef Google scholar
[48]
van SteenselB. , Henikoff, S.. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol., 2000, 18 : 424– 428
CrossRef Google scholar
[49]
RouxK. J., Kim, D. I., Raida, M. , Burke, B.. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol., 2012, 196 : 801– 810
CrossRef Google scholar
[50]
YounY., J.H., Dunham J., W.D. R., HongI., S.W. M.. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell, 2018, 69 : 517– 532
CrossRef Google scholar
[51]
KimD. I., Jensen, S. C., Noble, K. A., Kc, B., Roux, K. H., Motamedchaboki, K. , Roux, K. J.. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell, 2016, 27 : 1188– 1196
CrossRef Google scholar
[52]
RamanathanS., M.H., Majzoub J., K.G., RaoR.. RNA-protein interaction detection in living cells. Nat. Methods, 2018, 15 : 207– 212
CrossRef Google scholar
[53]
BranonC., T.A., Bosch D., J.D., SanchezA., A.L., Udeshi Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol., 2018, 36 : 880– 887
CrossRef Google scholar
[54]
ChoF., K.C., Branon D., T.W., RajeevK., S.A.. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl. Acad. Sci. USA., 2020, 117 : 12143– 12154
CrossRef Google scholar
[55]
SpectorD. L. , Lamond, A. I.. Nuclear speckles. Cold Spring Harb. Perspect. Biol., 2011, 3 : a000646–
CrossRef Google scholar
[56]
FoxA. H. , Lamond, A. I.. Paraspeckles. Cold Spring Harb. Perspect. Biol., 2010, 2 : a000687–
CrossRef Google scholar
[57]
WestA., J.E.. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J. Cell Biol., 2016, 214 : 817– 830
CrossRef Google scholar
[58]
FeiS., J.T. S., JadalihaS., M.M.. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci., 2017, 130 : 4180– 4192
CrossRef Google scholar
[59]
MukherjeeJ., Hermesh, O., Eliscovich, C., Nalpas, N., Franz-Wachtel, M., Maček, B. , Jansen, R. P.. β-Actin mRNA interactome mapping by proximity biotinylation. Proc. Natl. Acad. Sci. USA, 2019, 116 : 12863– 12872
CrossRef Google scholar
[60]
CastelloM., A.W. Comprehensive identification of RNA-binding proteins by RNA interactome capture. Methods Mol. Biol., 2016, 131– 139
[61]
BaoX., Guo, X., Yin, M., Tariq, M., Lai, Y., Kanwal, S., Zhou, J., Li, N., Lv, Y., Pulido-Quetglas, C.. Capturing the interactome of newly transcribed RNA. Nat. Methods, 2018, 15 : 213– 220
CrossRef Google scholar
[62]
SimonM. D.. Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol., 2013, 101 : 21.25.1– 21.25.16
[63]
EngreitzJ., Lander, E. S. , Guttman, M.. RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol. Biol., 2015, 1262 : 183– 197
CrossRef Google scholar
[64]
QinW., Cho, K. F., Cavanagh, P. E. , Ting, A. Y.. Deciphering molecular interactions by proximity labeling. Nat. Methods, 2021, 18 : 133– 143
CrossRef Google scholar
[65]
HanS., Simen, B., Myers, S. A., Carr, S. A., He, C. , Ting, A. Y.. RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc. Natl. Acad. Sci. USA, 2020, 17 : 22068– 22079
[66]
Li, Y., Liu, S., Cao, L., Luo, Y., Du, H., Li, S. and You, F. (2021) CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol., doi: 10.1080/15476286.2021.1873620
[67]
YiW., Li, J., Zhu, X., Wang, X., Fan, L., Sun, W., Liao, L., Zhang, J., Li, X., Ye, J.. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat. Methods, 2020, 17 : 685– 688
CrossRef Google scholar
[68]
FangX., Zheng, Y., Duan, Y., Liu, Y. , Zhong, W.. Recent advances in design of fluorescence-based assays for high-throughput screening. Anal. Chem., 2019, 91 : 482– 504
CrossRef Google scholar
[69]
BerchtoldD., Battich, N. , Pelkmans, L.. A systems-level study reveals regulators of membrane-less organelles in human cells. Mol. Cell, 2018, 72 : 1035– 1049. e5
CrossRef Google scholar
[70]
WheelerC., E.Q., Vu M., A.Nostrand, EinsteinL., J.A., DiSalvo L., M.W. Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors. Nat. Methods, 2020, 17 : 636– 642
CrossRef Google scholar
[71]
Lyon, A. S., Peeples, W. B. and Rosen, M. K. (2021) A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol., doi: 10.1038/s41580-020-00303-z

ACKNOWLEDGEMENTS

This work was supported by the National Key Research and Development Program of China (2018YFA0507504), the National Natural Science Foundation of China (61773025, 32070666), Clinical Medicine Plus X - Young Scholars Project of Peking University (PKU2021LCXQ012) and the Fundamental Research Funds for the Central Universities.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Taoyu Chen, Qi Lei, Minglei Shi and Tingting Li declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press.
AI Summary AI Mindmap
PDF(2523 KB)

Accesses

Citations

Detail

Sections
Recommended

/