High-throughput experimental methods for investigating biomolecular condensates
Taoyu Chen, Qi Lei, Minglei Shi, Tingting Li
High-throughput experimental methods for investigating biomolecular condensates
Background: The concept of biomolecular condensate was put forward recently to emphasize the ability of certain cellular compartments to concentrate molecules and comprise proteins and nucleic acids with specific biological functions, from ribosome genesis to RNA splicing. Due to their unique role in biological processes, it is crucial to investigate their compositions, which is a primary determinant of condensate properties.
Results: Since a wide range of macromolecules comprise biomolecular condensates, it is necessary for researchers to investigate them using high-throughput methodologies while low-throughput experiments are not efficient enough. These high-throughput methods usually purify interacting protein libraries from condensates before being scanned in mass spectrometry. It is possible to extract organelles as a whole for specific condensates for further analysis, however, most condensates do not have a distinguishable marker or are sensitive to shear force to be extracted as a whole. Affinity tagging allows a comprehensive view of interacting proteins of target molecule yet only proteins with strong bonds may be pulled down. Proximity labeling serves as a complementary method to label more dynamic proteins with weaker interactions, increasing sensitivity while decreasing specificity. Image-based fluorescent screening takes another path by scanning images automatically to illustrate the condensing state of biomolecules within membraneless organelles, which is a unique feature unlike the previous mass spectrometry-based methods.
Conclusion: This review presents a rough glimpse into high-throughput methodologies for biomolecular condensate investigation to encourage usage of bioinformatic tools by researchers in relevant fields.
Biomacromolecules often form condensates in cytoplasm or nucleoplasm to keep biomolecular reactions organized and strictly regulated. The past 10 years have witnessed a surge in researches concerning biomolecular condensates and phase-separating molecules, yet most experiments are performed in low-throughput manners. This review summarizes the common high-throughput experimental methods for biomolecular condensate investigation, including organelle purification, affinity purification, proximity labeling, and image-based fluorescence screening and discusses their advantages and shortcomings. We demonstrate that high-throughput screening may provide new insights into related studies and encourage researchers to develop new tools to unravel phase-separated biomolecular condensates.
biomolecular condensates / high-throughput / phase separation / interaction
[1] |
BananiS. F., Lee, H. O., Hyman, A. A. , Rosen, M. K.. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol., 2017, 18
CrossRef
Google scholar
|
[2] |
FriedmanJ. R. , Nunnari, J.. Mitochondrial form and function. Nature, 2014, 505
CrossRef
Google scholar
|
[3] |
GuoE., Y.C., Manteiga E., J.R., HenningerM., J.H., Sabari K., B.V.. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, 2019, 572
CrossRef
Google scholar
|
[4] |
TripathiD., V.Y., Ellis T., J.M., ShenF., Z.A.. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39
CrossRef
Google scholar
|
[5] |
PedersonT.. The nucleolus. Cold Spring Harb. Perspect. Biol., 2011, 3
CrossRef
Google scholar
|
[6] |
BoisvertF. M., van Koningsbruggen, S., Navascués, J. , Lamond, A. I.. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol., 2007, 8
CrossRef
Google scholar
|
[7] |
AlbertiS., Gladfelter, A. , Mittag, T.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176
CrossRef
Google scholar
|
[8] |
BrangwynneP., C.R., Eckmann S., C.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324
CrossRef
Google scholar
|
[9] |
PengA. , Weber, S. C.. Evidence for and against liquid-liquid phase separation in the nucleus. Noncoding RNA, 2019, 5
CrossRef
Google scholar
|
[10] |
HymanA. A., Weber, C. A. , Jülicher, F.. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, 30
CrossRef
Google scholar
|
[11] |
McSwiggenT., D.S., Hansen S., A.B., TevesK.. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife, 2019, 8
CrossRef
Google scholar
|
[12] |
LiQ., Wang, X., Dou, Z., Yang, W., Huang, B., Lou, J. , Zhang, Z.. Protein databases related to liquid-liquid phase separation. Int J Mol Sci, 2020, 21
|
[13] |
SawyerI. A., Sturgill, D., Sung, M. H., Hager, G. L. , Dundr, M.. Cajal body function in genome organization and transcriptome diversity. BioEssays, 2016, 38
CrossRef
Google scholar
|
[14] |
DomonB. , Aebersold, R.. Mass spectrometry and protein analysis. Science, 2006, 312
CrossRef
Google scholar
|
[15] |
AebersoldR. , Mann, M.. Mass spectrometry-based proteomics. Nature, 2003, 422
CrossRef
Google scholar
|
[16] |
YouK., Huang, Q., Yu, C., Shen, B., Sevilla, C., Shi, M., Hermjakob, H., Chen, Y. , Li, T.. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res., 2019, 48
|
[17] |
MészárosP.. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res., 2020, 48
|
[18] |
LiQ., Peng, X., Li, Y., Tang, W., Zhu, J., Huang, J., Qi, Y. , Zhang, Z.. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res., 2019, 48
|
[19] |
NingW., Guo, Y., Lin, S., Mei, B., Wu, Y., Jiang, P., Tan, X., Zhang, W., Chen, G., Peng, D.. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res., 2020, 48
CrossRef
Google scholar
|
[20] |
BolognesiB., Lorenzo Gotor, N., Dhar, R., Cirillo, D., Baldrighi, M., Tartaglia, G. G. , Lehner, B.. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep., 2016, 16
CrossRef
Google scholar
|
[21] |
VernonR. M. C., Chong, P. A., Tsang, B., Kim, T. H., Bah, A., Farber, P., Lin, H. , Forman-Kay, J. D.. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife, 2018, 7
CrossRef
Google scholar
|
[22] |
ShenB., Chen, Z., Yu, C., Chen, T., Shi, M. , Li, T.. Computational screening of biological phase-separating proteins. Genom. Proteom. Bioinfor., 2021,
CrossRef
Google scholar
|
[23] |
AndersenJ. S., Lam, Y. W., Leung, A. K. L., Ong, S. E., Lyon, C. E., Lamond, A. I. , Mann, M.. Nucleolar proteome dynamics. Nature, 2005, 433
CrossRef
Google scholar
|
[24] |
BokeP., E.A., Ruer J. Amyloid-like self-assembly of a cellular compartment. Cell, 2016, 166
CrossRef
Google scholar
|
[25] |
Hubstenberger
CrossRef
Google scholar
|
[26] |
PinaA. S., Batalha, I. L. , Roque, A. C.. Affinity tags in protein purification and peptide enrichment: an overview. Methods Mol. Biol., 2014, 1129
CrossRef
Google scholar
|
[27] |
Green, M. R. and Sambrook, J. (2012) Molecular Cloning: A Laboratory Manual, 4th Ed., New York City: Cold Spring Harbor Laboratory Press
|
[28] |
LiW., X. S., ReesW., J.E., Xue W., P.S.. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem., 2014, 289
CrossRef
Google scholar
|
[29] |
CronanJ. E. J. Jr.. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J. Biol. Chem., 1990, 265
CrossRef
Google scholar
|
[30] |
TerpeK.. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 2003, 60
CrossRef
Google scholar
|
[31] |
LiY.. The tandem affinity purification technology: an overview. Biotechnol. Lett., 2011, 33
CrossRef
Google scholar
|
[32] |
AyacheJ., Bénard, M., Ernoult-Lange, M., Minshall, N., Standart, N., Kress, M. , Weil, D.. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol. Biol. Cell, 2015, 26
CrossRef
Google scholar
|
[33] |
MaX., Yang, C., Alexandrov, A., Grayhack, E. J., Behm-Ansmant, I. , Yu, Y. T.. Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J., 2005, 24
CrossRef
Google scholar
|
[34] |
TaiT. N., Havelka, W. A. , Kaplan, S.. A broad-host-range vector system for cloning and translational lacZ fusion analysis. Plasmid, 1988, 19
CrossRef
Google scholar
|
[35] |
JønsonK., L.H., Vikesaa C. Molecular composition of IMP1 ribonucleoprotein granules. Mol. Cell. Proteomics, 2007, 6
CrossRef
Google scholar
|
[36] |
Trinkle-Mulcahy
CrossRef
Google scholar
|
[37] |
HonkeK. , Kotani, N.. The enzyme-mediated activation of radical source reaction: a new approach to identify partners of a given molecule in membrane microdomains. J. Neurochem., 2011, 116
CrossRef
Google scholar
|
[38] |
MartellD., J.J., Deerinck L., T.K., SancakE., Y.H., Poulos Y. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol., 2012, 30
CrossRef
Google scholar
|
[39] |
HanS., Li, J. , Ting, A. Y.. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol., 2018, 50
CrossRef
Google scholar
|
[40] |
LamS. S., Martell, J. D., Kamer, K. J., Deerinck, T. J., Ellisman, M. H., Mootha, V. K. , Ting, A. Y.. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods, 2015, 12
CrossRef
Google scholar
|
[41] |
MarkmillerL., S.Y., Soltanieh C.. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell, 2018, 172
CrossRef
Google scholar
|
[42] |
BobrowM. N., Harris, T. D., Shaughnessy, K. J. , Litt, G. J.. Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods, 1989, 125
CrossRef
Google scholar
|
[43] |
BobrowM. N., Shaughnessy, K. J. , Litt, G. J.. Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods, 1991, 137
CrossRef
Google scholar
|
[44] |
DopieJ., Sweredoski, M. J., Moradian, A. , Belmont, A. S.. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol., 2020, 219
CrossRef
Google scholar
|
[45] |
ReinkeA. W., Balla, K. M., Bennett, E. J. , Troemel, E. R.. Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins. Nat. Commun., 2017, 8
CrossRef
Google scholar
|
[46] |
ReinkeA. W., Mak, R., Troemel, E. R. , Bennett, E. J.. In vivo mapping of tissue- and subcellular-specific proteomes in Caenorhabditis elegans. Sci. Adv., 2017, 3
CrossRef
Google scholar
|
[47] |
ChenL., C.D., Hu Y., Y.Y., UdeshiA.. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc. Natl. Acad. Sci. USA, 2015, 112
CrossRef
Google scholar
|
[48] |
van SteenselB. , Henikoff, S.. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol., 2000, 18
CrossRef
Google scholar
|
[49] |
RouxK. J., Kim, D. I., Raida, M. , Burke, B.. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol., 2012, 196
CrossRef
Google scholar
|
[50] |
YounY., J.H., Dunham J., W.D. R., HongI., S.W. M.. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell, 2018, 69
CrossRef
Google scholar
|
[51] |
KimD. I., Jensen, S. C., Noble, K. A., Kc, B., Roux, K. H., Motamedchaboki, K. , Roux, K. J.. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell, 2016, 27
CrossRef
Google scholar
|
[52] |
RamanathanS., M.H., Majzoub J., K.G., RaoR.. RNA-protein interaction detection in living cells. Nat. Methods, 2018, 15
CrossRef
Google scholar
|
[53] |
BranonC., T.A., Bosch D., J.D., SanchezA., A.L., Udeshi Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol., 2018, 36
CrossRef
Google scholar
|
[54] |
ChoF., K.C., Branon D., T.W., RajeevK., S.A.. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl. Acad. Sci. USA., 2020, 117
CrossRef
Google scholar
|
[55] |
SpectorD. L. , Lamond, A. I.. Nuclear speckles. Cold Spring Harb. Perspect. Biol., 2011, 3
CrossRef
Google scholar
|
[56] |
FoxA. H. , Lamond, A. I.. Paraspeckles. Cold Spring Harb. Perspect. Biol., 2010, 2
CrossRef
Google scholar
|
[57] |
WestA., J.E.. Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J. Cell Biol., 2016, 214
CrossRef
Google scholar
|
[58] |
FeiS., J.T. S., JadalihaS., M.M.. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci., 2017, 130
CrossRef
Google scholar
|
[59] |
MukherjeeJ., Hermesh, O., Eliscovich, C., Nalpas, N., Franz-Wachtel, M., Maček, B. , Jansen, R. P.. β-Actin mRNA interactome mapping by proximity biotinylation. Proc. Natl. Acad. Sci. USA, 2019, 116
CrossRef
Google scholar
|
[60] |
CastelloM., A.W. Comprehensive identification of RNA-binding proteins by RNA interactome capture. Methods Mol. Biol., 2016,
|
[61] |
BaoX., Guo, X., Yin, M., Tariq, M., Lai, Y., Kanwal, S., Zhou, J., Li, N., Lv, Y., Pulido-Quetglas, C.. Capturing the interactome of newly transcribed RNA. Nat. Methods, 2018, 15
CrossRef
Google scholar
|
[62] |
SimonM. D.. Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol., 2013, 101
|
[63] |
EngreitzJ., Lander, E. S. , Guttman, M.. RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol. Biol., 2015, 1262
CrossRef
Google scholar
|
[64] |
QinW., Cho, K. F., Cavanagh, P. E. , Ting, A. Y.. Deciphering molecular interactions by proximity labeling. Nat. Methods, 2021, 18
CrossRef
Google scholar
|
[65] |
HanS., Simen, B., Myers, S. A., Carr, S. A., He, C. , Ting, A. Y.. RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting. Proc. Natl. Acad. Sci. USA, 2020, 17
|
[66] |
Li, Y., Liu, S., Cao, L., Luo, Y., Du, H., Li, S. and You, F. (2021) CBRPP: a new RNA-centric method to study RNA-protein interactions. RNA Biol., doi: 10.1080/15476286.2021.1873620
|
[67] |
YiW., Li, J., Zhu, X., Wang, X., Fan, L., Sun, W., Liao, L., Zhang, J., Li, X., Ye, J.. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat. Methods, 2020, 17
CrossRef
Google scholar
|
[68] |
FangX., Zheng, Y., Duan, Y., Liu, Y. , Zhong, W.. Recent advances in design of fluorescence-based assays for high-throughput screening. Anal. Chem., 2019, 91
CrossRef
Google scholar
|
[69] |
BerchtoldD., Battich, N. , Pelkmans, L.. A systems-level study reveals regulators of membrane-less organelles in human cells. Mol. Cell, 2018, 72
CrossRef
Google scholar
|
[70] |
WheelerC., E.Q., Vu M., A.Nostrand, EinsteinL., J.A., DiSalvo L., M.W. Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors. Nat. Methods, 2020, 17
CrossRef
Google scholar
|
[71] |
Lyon, A. S., Peeples, W. B. and Rosen, M. K. (2021) A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol., doi: 10.1038/s41580-020-00303-z
|
/
〈 | 〉 |