Molecular docking of cyanine and squarylium dyes with SARS-CoV-2 proteases NSP3, NSP5 and NSP12

Pavel Pronkin , Alexander Tatikolov

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 440 -450.

PDF (5625KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 440 -450. DOI: 10.15302/J-QB-021-0263
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular docking of cyanine and squarylium dyes with SARS-CoV-2 proteases NSP3, NSP5 and NSP12

Author information +
History +
PDF (5625KB)

Abstract

Background: The outbreak and continued spread of coronavirus infection (COVID-19) sets the goal of finding new tools and methods to develop analytical procedures and tests to detect, study infection and prevent morbidity.

Methods: The noncovalent binding of cyanine and squarylium dyes of different classes (60 compounds in total) with the proteases NSP3, NSP5, and NSP12 of SARS-CoV-2 was studied by the method of molecular docking.

Results: The interaction energies and spatial configurations of dye molecules in complexes with NSP3, NSP5, and NSP12 have been determined.

Conclusion: A number of anionic dyes showing lower values of the total energy Etot could be recommended for practical research in the development of agents for the detection and inactivation of the coronavirus.

Graphical abstract

Keywords

SARS-CoV-2 / proteases / polymethine dyes / squarylium dyes / noncovalent interaction / molecular docking

Cite this article

Download citation ▾
Pavel Pronkin, Alexander Tatikolov. Molecular docking of cyanine and squarylium dyes with SARS-CoV-2 proteases NSP3, NSP5 and NSP12. Quant. Biol., 2021, 9(4): 440-450 DOI:10.15302/J-QB-021-0263

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mosier-BossA., P.H., LiebermanM., S.L., AndrewsE.. Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl. Spectrosc., 2003, 57 : 1138– 1144

[2]

ErikssonM., Härdelin, M., Larsson, A., Bergenholtz, J. , Akerman, B.. Binding of intercalating and groove-binding cyanine dyes to bacteriophage t5. J. Phys. Chem. B, 2007, 111 : 1139– 1148

[3]

SotoM., C.S., BlumJ., A.E., VoraP., G.E., LebedevR. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J. Am. Chem. Soc., 2006, 128 : 5184– 5189

[4]

RobertsonK. L., Soto, C. M., Archer, M. J., Odoemene, O. , Liu, J. L.. Engineered T4 viral nanoparticles for cellular imaging and flow cytometry. Bioconjug. Chem., 2011, 22 : 595– 604

[5]

VusO.. Association of novel monomethine cyanine dyes with bacteriophage MS2: A fluorescence study. J. Mol. Liq., 2020, 302 : 112569–

[6]

ShindyH. A.. Fundamentals in the chemistry of cyanine dyes: A review. Dyes Pigments, 2017, 145 : 505– 513

[7]

TatikolovA. S.. Polymethine dyes as spectral-fluorescent probes for biomacromolecules. J. Photochem. Photobiol. C., 2012, 13 : 55– 90

[8]

TatikolovA. S., Pronkin, P. G., Shvedova, L. A. , Panova, I. G.. Meso-substituted carbocyanines as effective spectral-fluorescent and photochemical probes for structurally organized systems based on macromolecules. Russ. J. Phys. Chem. B., 2019, 13 : 900– 906

[9]

AtharF. , Beg, M. A.. Anti-HIV and Anti-HCV drugs are the putative inhibitors of RNA-dependent-RNA polymerase activity of NSP12 of the SARS-CoV-2 (COVID-19). Pharm. Pharmacol. Int. J., 2020, 8 : 163– 172

[10]

Tazikeh-LemeskiA. M.. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J. Biomol. Struct. Dyn., 2020, 39 : 4633– 4646

[11]

Al-MasoudiA., N.S.. Molecular docking studies of some antiviral and antimalarial drugs via bindings to 3CL-protease and polymerase enzymes of the novel coronavirus (SARS-CoV-2). Biointerface Res. Appl., 2020, 10 : 6444– 6459

[12]

GuedesI. A., de Magalhães, C. S. , Dardenne, L. E.. Receptor-ligand molecular docking. Biophys. Rev., 2014, 6 : 75– 87

[13]

Guedes, I. A., Costa, L. S. C., dos Santos, K. B., Karl, A. L. M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M., Medeiros, V., Krempser, E., Custódio, F. L., et al. (2020) Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci. Rep., 11, 5543

[14]

GuedesA., I.M. S., BarretoA., A.E., MarinhoA. New machine learning and physics-based scoring functions for drug discovery. Sci. Rep., 2021, 11 : 3198–

[15]

LiH., Sze, K. -H., Lu, G. , Ballester, P. J.. Machine-learning scoring functions for structure-based drug lead optimization. WIREs Comput. Mol. Sci., 2020, 10 : e1465–

[16]

LiJ., Fu, A. , Zhang, L.. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci., 2019, 11 : 320– 328

[17]

PantsarT. , Poso, A.. Binding affinity via docking: fact and fiction. Molecules, 2018, 23 : 1899– 1910

[18]

DevganM.. Homology modeling and molecular docking studies of DNA replication licensing factor minichromosome maintenance protein 5 (MCM5). Asian J. Pharm. Tech., 2015, 5 : 17– 22

[19]

SelvarajG., Kaliamurthi, S., Çakmak, Z. E. , Çakmak, T.. In silico validation of microalgal metabolites against Diabetes mellitus. Diabetes Mellitus, 2017, 20 : 301– 307

[20]

Tutorial 1. Redocking study of HIV-1 protease in complex with amprenavir PDB code 1HPV. Laboratório Nacional de Computação Científica – LNCC/MCTI. April 2020. Accessed: 12 February, 2021

[21]

KhimenkoV., Chibisov, A. K. , Görner, H.. Effects of alkyl substituents in the polymethine chain on the photoprocesses in thiacarbocyanine dyes. J. Phys. Chem. A, 1997, 101 : 7304– 7310

[22]

Chimera, U. C. S. F. Visualization System for Research and Analysis. Version 1.13. 1. Accessed: 12 July, 2020

[23]

TatikolovA. S., Akimkin, T. M., Kashin, A. S. , Panova, I. G.. Meso-substituted polymethine dyes as efficient spectral and fluorescent probes for biomacromolecules. High Energy Chem., 2010, 44 : 224– 227

[24]

PronkinP. G., Shvedova, L. A. , Tatikolov, A. S.. Comparative study of the interaction of some meso-substituted anionic cyanine dyes with human serum albumin. Biophys. Chem., 2020, 261 : 106378–

[25]

PronkinP. G., Tatikolov, A. S., Sklyarenko, V. I. , Kuz’min, V. A.. Photochemical properties of meso-substituted thiacarbocyanine dyes in solutions and in complexes with DNA. High Energy Chem., 2006, 40 : 252– 258

[26]

PronkinP. G., Tatikolov, A. S., Sklyarenko, V. I. , Kuz’min, V. A.. Quenching of the triplet state of meso-substituted thiacarbocyanine dyes by nitroxyl radicals, iodide ions, and oxygen in solutions and in complexes with DNA. High Energy Chem., 2006, 40 : 403– 409

[27]

KeilS. D., Bowen, R. , Marschner, S.. Inactivation of middle east respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion, 2016, 56 : 2948– 2952

[28]

KeilS. D., Ragan, I., Yonemura, S., Hartson, L., Dart, N. K. , Bowen, R.. Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment. Vox Sang., 2020, 115 : 495– 501

[29]

de Magalhães, C. S., Barbosa, H. J. C. and Dardenne, L. E. (2004) Genetic and Evolutionary Computation – GECCO 2004. Lecture Notes in Computer Science. Heidelberg: Springer

[30]

deMagalhães, C.S., AlmeidaM., D.J. C., BarbosaE. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci., 2014, 289 : 206– 224

[31]

Osipiuk, J., Jedrzejczak, R., Tesar, C., Endres, M., Stols, L., Babnigg, G., Kim, Y., Michalska, K., Joachimiak, A. (2020) Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 12, 743−752

[32]

JinZ., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C.. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582 : 289– 293

[33]

YinW., Mao, C., Luan, X., Shen, D. -D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M.. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368 : 1499– 1504

[34]

HanwellM. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. , Hutchison, G. R.. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4 : 17–

[35]

Avogadro: open source molecule building and visualization tool. Version 1.2. 0. Accessed: 12 July, 2020

[36]

YangC., Z.F., LaskerD., K.C., Schneidman-DuhovnyE. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol., 2012, 179 : 269– 278

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press.

AI Summary AI Mindmap
PDF (5625KB)

Supplementary files

QB-21263-of-PP_suppl_1

1546

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/