Adaptive total variation constraint hypergraph regularized NMF for single-cell RNA-seq data analysis
Ya-Li Zhu, Xiao-Ning Zhang, Chuan-Yuan Wang, Jin-Xing Liu, Xiang-Zhen Kong
Adaptive total variation constraint hypergraph regularized NMF for single-cell RNA-seq data analysis
Background: Single-cell RNA sequencing (scRNA-seq) data provides a whole new view to study disease and cell differentiation development. With the explosive increment of scRNA-seq data, effective models are demanded for mining the intrinsic biological information.
Methods: This paper proposes a novel non-negative matrix factorization (NMF) method for clustering and gene co-expression network analysis, termed Adaptive Total Variation Constraint Hypergraph Regularized NMF (ATV-HNMF). ATV-HNMF can adaptively select the different schemes to denoise the cluster or preserve the cluster boundary information between clusters based on the gradient information. Besides, ATV-HNMF incorporates hypergraph regularization, which can consider high-order relationships between cells to reserve the intrinsic structure of the space.
Results: Experiments show that the performances on clustering outperform other compared methods, and the network construction results are consistent with previous studies, which illustrate that our model is effective and useful.
Conclusion: From the clustering results, we can see that ATV-HNMF outperforms other methods, which can help us to understand the heterogeneity. We can discover many disease-related genes from the constructed network, and some are worthy of further clinical exploration.
Single-cell RNA sequencing techniques are helpful for researchers to study the development of disease and cell differentiation. We propose a novel non-negative matrix factorization (NMF) method called Adaptive Total Variation Constraint Hypergraph Regularized NMF (ATV-HNMF), which incorporates hypergraph regularization and adaptive total variation schemes. The results of clustering and gene co-expression network construction show that our model is effective and useful.
adaptive total variation / single-cell RNA sequencing / network analysis / nonnegative matrix factorization / hypergraph
[1] |
Villani, A. C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M., Butler, A., Zheng, S., Lazo, S.,
CrossRef
Pubmed
Google scholar
|
[2] |
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B. B., Siddiqui, A.,
CrossRef
Pubmed
Google scholar
|
[3] |
Islam, S., Kjällquist, U., Moliner, A., Zajac, P., Fan, J. B., Lönnerberg, P. and Linnarsson, S. (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res., 21, 1160–1167.
CrossRef
Pubmed
Google scholar
|
[4] |
Xin, Y., Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C., Murphy, A. J., Yancopoulos, G. D., Lin, C. and Gromada, J. (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab., 24, 608–615.
CrossRef
Pubmed
Google scholar
|
[5] |
Xu, Y., Mizuno, T., Sridharan, A., Du, Y., Guo, M., Tang, J., Wikenheiser-Brokamp, K. A., Perl, A. T., Funari, V. A., Gokey, J. J.,
CrossRef
Pubmed
Google scholar
|
[6] |
Usoskin, D., Furlan, A., Islam, S., Abdo, H., Lönnerberg, P., Lou, D., Hjerling-Leffler, J., Haeggström, J., Kharchenko, O., Kharchenko, P. V.,
CrossRef
Pubmed
Google scholar
|
[7] |
Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L.,
CrossRef
Pubmed
Google scholar
|
[8] |
Treutlein, B., Brownfield, D. G., Wu, A. R., Neff, N. F., Mantalas, G. L., Espinoza, F. H., Desai, T. J., Krasnow, M. A. and Quake, S. R. (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 509, 371–375.
CrossRef
Pubmed
Google scholar
|
[9] |
Maaten, L. d. and Hinton, G. (2008) Visualizing data using t-SNE. J. Mach. Learn. Res., 9, 2579–2605.
|
[10] |
Wold, S., Esbensen, K. and Geladi, P. (1987) Principal component analysis. Chemom. Intell. Lab. Syst., 2, 37–52.
CrossRef
Google scholar
|
[11] |
von Luxburg, U. (2007) A tutorial on spectral clustering. Stat. Comput., 17, 395–416.
CrossRef
Google scholar
|
[12] |
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. and Batzoglou, S. (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods, 14, 414–416.
CrossRef
Pubmed
Google scholar
|
[13] |
Jiao, C.-N., Gao, Y.-L., Yu, N., Liu, J.-X. and Qi, L.-Y. (2020) Hyper-graph regularized constrained NMF for selecting differentially expressed genes and tumor classification. IEEE J. Biomed. Health Inform., 24, 3002–3011.
CrossRef
Pubmed
Google scholar
|
[14] |
Lin, X. and Boutros, P. C. (2020) Optimization and expansion of non-negative matrix factorization. BMC Bioinformatics, 21, 7
CrossRef
Pubmed
Google scholar
|
[15] |
Yu, N., Wu, M. J., Liu, J. X., Zheng, C. H. and Xu, Y. (2020) Correntropy-based hypergraph regularized NMF for clustering and feature selection on multi-cancer integrated data. IEEE Trans. Cybern.,
CrossRef
Pubmed
Google scholar
|
[16] |
Gao, Z., Wang, Y.-T., Wu, Q.-W., Ni, J.-C. and Zheng, C.-H. (2020) Graph regularized L2,1-nonnegative matrix factorization for miRNA-disease association prediction. BMC Bioinformatics, 21, 61
CrossRef
Pubmed
Google scholar
|
[17] |
Zhu, X., Ching, T., Pan, X., Weissman, S. M. and Garmire, L. (2017) Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization. PeerJ, 5, e2888
CrossRef
Pubmed
Google scholar
|
[18] |
Moon, K. R., Stanley, J. S. III, Burkhardt, D., van Dijk, D., Wolf, G. and Krishnaswamy, S. (2018) Manifold learning-based methods for analyzing single-cell RNA-sequencing data. Curr. Opin. Syst. Biol., 7, 36–46.
CrossRef
Google scholar
|
[19] |
Cai, D., He, X., Han, J. and Huang, T. S. (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell., 33, 1548–1560.
CrossRef
Pubmed
Google scholar
|
[20] |
Zeng, K., Yu, J., Li, C., You, J. and Jin, T. (2014) Image clustering by hyper-graph regularized non-negative matrix factorization. Neurocomputing, 138, 209–217.
CrossRef
Google scholar
|
[21] |
Rudin, L. I., Osher, S. and Fatemi, E. (1992) Nonlinear total variation based noise removal algorithms. Physica. D, 60, 259–268.
CrossRef
Google scholar
|
[22] |
Leng, C., Cai, G., Yu, D. and Wang, Z. (2017) Adaptive total-variation for non-negative matrix factorization on manifold. Pattern Recognit. Lett., 98, 68–74.
CrossRef
Google scholar
|
[23] |
Darmanis, S., Sloan, S. A., Zhang, Y., Enge, M., Caneda, C., Shuer, L. M., Hayden Gephart, M. G., Barres, B. A. and Quake, S. R. (2015) A survey of human brain transcriptome diversity at the single cell level. Proc. Natl. Acad. Sci. USA, 112, 7285–7290.
CrossRef
Pubmed
Google scholar
|
[24] |
Goolam, M., Scialdone, A., Graham, S. J. L., Macaulay, I. C., Jedrusik, A., Hupalowska, A., Voet, T., Marioni, J. C. and Zernicka-Goetz, M. (2016) Heterogeneity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos. Cell, 165, 61–74.
CrossRef
Pubmed
Google scholar
|
[25] |
Treutlein, B., Brownfield, D. G., Wu, A. R., Neff, N. F., Mantalas, G. L., Espinoza, F. H., Desai, T. J., Krasnow, M. A. and Quake, S. R. (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 509, 371–375.
CrossRef
Pubmed
Google scholar
|
[26] |
Grover, A., Sanjuan-Pla, A., Thongjuea, S., Carrelha, J., Giustacchini, A., Gambardella, A., Macaulay, I., Mancini, E., Luis, T. C., Mead, A.,
CrossRef
Pubmed
Google scholar
|
[27] |
Breton, G., Zheng, S., Valieris, R., Tojal da Silva, I., Satija, R. and Nussenzweig, M. C. (2016) Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med., 213, 2861–2870.
CrossRef
Pubmed
Google scholar
|
[28] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504.doi:10.1101/gr.1239303.
Pubmed
|
[29] |
Yamada, N., Horikawa, Y., Oda, N., Iizuka, K., Shihara, N., Kishi, S. and Takeda, J. (2005) Genetic variation in the hypoxia-inducible factor-1α gene is associated with type 2 diabetes in Japanese. J. Clin. Endocrinol. Metab., 90, 5841–5847.
CrossRef
Pubmed
Google scholar
|
[30] |
Zhou, J.-C., Zhou, J., Su, L., Huang, K. and Lei, X. G. (2018) Selenium and Diabetes. In: Selenium. MICHALKE, B, 317–344. Cham: Springer International Publishing
|
[31] |
Brina, D., Miluzio, A., Ricciardi, S., Clarke, K., Davidsen, P. K., Viero, G., Tebaldi, T., Offenhäuser, N., Rozman, J., Rathkolb, B.,
CrossRef
Pubmed
Google scholar
|
[32] |
Olsson, A. H., Yang, B. T., Hall, E., Taneera, J., Salehi, A., Dekker Nitert, M. and Ling, C.. (2011) Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur. J. Endocrinol., 165, 589–595.
CrossRef
Pubmed
Google scholar
|
[33] |
Molina, M. F., Qu, H.-Q., Rentfro, A. R., Nair, S., Lu, Y., Hanis, C. L., McCormick, J. B. and Fisher-Hoch, S. P. (2011) Decreased expression of ATP6V1H in type 2 diabetes: a pilot report on the diabetes risk study in Mexican Americans. Biochem. Biophys. Res. Commun., 412, 728–731.
CrossRef
Pubmed
Google scholar
|
[34] |
Crétien, A., Proust, A., Delaunay, J., Rincé, P., Leblanc, T., Ducrocq, R., Simansour, M., Marie, I., Tamary, H., Meerpohl, J.,
Pubmed
|
[35] |
Liu, S., Kim, T.-H., Franklin, D. A. and Zhang, Y. (2017) Protection against high-fat-diet-induced obesity in mdm2c305f mice due to reduced p53 activity and enhanced energy expenditure. Cell Rep., 18, 1005–1018.
CrossRef
Pubmed
Google scholar
|
[36] |
Chen, H., Fang, X., Zhu, H., Li, S., He, J., Gu, P., Fan, D., Han, F., Zeng, Y., Yu, X.,
CrossRef
Pubmed
Google scholar
|
[37] |
Gharbi-Ayachi, A., Labbé, J. C., Burgess, A., Vigneron, S., Strub, J. M., Brioudes, E., Van-Dorsselaer, A., Castro, A. and Lorca, T. (2010) The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science, 330, 1673–1677.
CrossRef
Pubmed
Google scholar
|
[38] |
Gong, Y., Wu, W., Zou, X., Liu, F., Wei, T. and Zhu, J. (2018) MiR-26a inhibits thyroid cancer cell proliferation by targeting ARPP19. Am J Cancer Res, 8, 1030–1039
Pubmed
|
[39] |
Miyazaki, H., Patel, V., Wang, H., Edmunds, R. K., Gutkind, J. S. and Yeudall, W. A. (2006) Down-regulation of CXCL5 inhibits squamous carcinogenesis. Cancer Res., 66, 4279–4284.
CrossRef
Pubmed
Google scholar
|
[40] |
Begley, L. A., Kasina, S., Mehra, R., Adsule, S., Admon, A. J., Lonigro, R. J., Chinnaiyan, A. M. and Macoska, J. A. (2008) CXCL5 promotes prostate cancer progression. Neoplasia, 10, 244–254.
CrossRef
Pubmed
Google scholar
|
[41] |
Plowman, J., Bolderson, E., Burgess, J., Richard, D. and O’Byrne, K. (2019) Banf1 as a marker of lung cancer cell sensitivity to cisplatin. Lung Cancer, 127, S3
CrossRef
Google scholar
|
[42] |
Hu, J., Yang, D., Zhang, H., Liu, W., Zhao, Y., Lu, H., Meng, Q., Pang, H., Chen, X., Liu, Y.,
CrossRef
Pubmed
Google scholar
|
[43] |
Levine, S., Chen, Y., and Stanich, J. (2004) Image restoration via nonstandard diffusion. Duquesne University, Department of Mathematics and Computer Science Technical Report. 04-01
|
[44] |
Huang, S., Wang, H., Ge, Y., Huangfu, L., Zhang, X. and Yang, D. (2018) Improved hypergraph regularized nonnegative matrix factorization with sparse representation. Pattern Recognit. Lett., 102, 8–14.
CrossRef
Google scholar
|
[45] |
Jin, T., Yu, Z., Gao, Y., Gao, S., Sun, X. and Li, C. (2019) Robust ℓ2− hypergraph and its applications. Inf. Sci., 501, 708–723.
CrossRef
Google scholar
|
[46] |
Yin, H. and Liu, H. (2010) Nonnegative matrix factorization with bounded total variational regularization for face recognition. Pattern Recognit. Lett., 31, 2468–2473.
CrossRef
Google scholar
|
[47] |
Hong, M., Razaviyayn, M., Luo, Z.-Q. and Pang, J.-S. (2016) A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing. IEEE Signal Proc. Mag ., 33, 57–77
|
/
〈 | 〉 |