Interpretable prediction of drug-cell line response by triple matrix factorization

Xiao-Ying Yan , Shao-Wu Zhang , Siu-Ming Yiu , Jian-Yu Shi

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 426 -439.

PDF (1757KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 426 -439. DOI: 10.15302/J-QB-021-0259
RESEARCH ARTICLE
RESEARCH ARTICLE

Interpretable prediction of drug-cell line response by triple matrix factorization

Author information +
History +
PDF (1757KB)

Abstract

Background: One of the challenges in personalized medicine is to determine specific drugs and their dosages for patient individuals who are undergoing a common disease. The technique of cell lines provides a safe approach to capture the drug responses of patient individuals when given specific drugs with varied dosages. However, it is still costly to determine drug responses in cells w.r.t dosages by biological assays. Computational methods provide a promising screening to infer possible drug responses in the cells of patient individuals on a large scale. Nevertheless, existing computational approaches are insufficient to interpret the underlying reason for drug responses.

Methods: In this work, we propose an interpretable model for analyzing and predicting drug responses across cell lines. The proposed model bridges drug features (e.g., chemical structure fingerprints), cell features (e.g., gene expression profiles), and drug responses across cells (measured by IC50) by a triple matrix factorization (TMF), such that the underlying reason for drug responses in specific cells is possibly interpreted.

Results: The comparison with state-of-the-art computational approaches demonstrates the superiority of our TMF. More importantly, a case study of drug responses in lung-related cell lines shows its interpretable ability to find out highly occurring drug substructures, crucial mutated genes, as well as significant pairs between substructures and mutated genes in terms of drug sensitivity and resistance.

Conclusion: TMF is an effective and interpretable approach for predicting cell lines responses to drugs, and can dig out crucial pairs of chemical substructures and genes, which uncovers the underlying reason for drug responses in specific cells.

Graphical abstract

Keywords

drug response / drug sensitivity / drug resistance / triple matrix factorization

Cite this article

Download citation ▾
Xiao-Ying Yan, Shao-Wu Zhang, Siu-Ming Yiu, Jian-Yu Shi. Interpretable prediction of drug-cell line response by triple matrix factorization. Quant. Biol., 2021, 9(4): 426-439 DOI:10.15302/J-QB-021-0259

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mirnezami, R., Nicholson, J. and Darzi, A. (2012) Preparing for precision medicine. N. Engl. J. Med., 366, 489–491

[2]

Mcdermott, U., Sharma, S. V., Dowell, L., Greninger, P., Montagut, C., Lamb, J., Archibald, H., Raudales, R., Tam, A., Lee, D., (2007) Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl. Acad. Sci., USA 104, 19936–19941

[3]

Shoemaker, R. H. (2006) The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 6, 813–823

[4]

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483, 603–607

[5]

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith, J. A., Thompson, I. R., (2013) Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res., 41, D955–D961

[6]

Iorio, F., Knijnenburg, T. A., Vis, D. J., Bignell, G. R., Menden, M. P., Schubert, M., Aben, N., Gonçalves, E., Barthorpe, S., Lightfoot, H., (2016) A landscape of pharmacogenomic interactions in cancer. Cell, 166, 740–754

[7]

Ammad-Ud-Din, M., Khan, S. A., Wennerberg, K. and Aittokallio, T. (2017) Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics, 33, i359–i368

[8]

Geeleher, P., Cox, N. J., Huang, R. S. (2014) Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol.,15, R47

[9]

Kim, S., Sundaresan, V., Zhou, L. and Kahveci, T. (2016) Integrating domain specific knowledge and network analysis to predict drug sensitivity of cancer cell lines. PLoS One, 11, e0162173

[10]

Zhang, N., Wang, H., Fang, Y., Wang, J., Zheng, X. and Liu, X. S. (2015) Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLOS Comput. Biol., 11, e1004498

[11]

Zhang, F., Wang, M., Xi, J. (2018) A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci. Rep., 8, 3355

[12]

Greene, C. S., Krishnan, A., Wong, A. K., Ricciotti, E., Zelaya, R. A., Himmelstein, D. S., Zhang, R., Hartmann, B. M., Zaslavsky, E., Sealfon, S. C., (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet., 47, 569–576

[13]

Yang, J., Li, A., Li, Y., Guo, X. and Wang, M. (2019) A novel approach for drug response prediction in cancer cell lines via network representation learning. Bioinformatics, 35, 1527–1535

[14]

Ammad-ud-din, M., Georgii, E., Gönen, M., Laitinen, T., Kallioniemi, O., Wennerberg, K., Poso, A. and Kaski, S. (2014) Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization. J. Chem. Inf. Model., 54, 2347–2359

[15]

Wang, L., Li, X., Zhang, L. and Gao, Q. (2017) Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer, 17, 513

[16]

Zhang, L., Chen, X., Guan, N. N., Liu, H. and Li, J. Q. (2018) A hybrid interpolation weighted collaborative filtering method for anti-cancer drug response prediction. Front. Pharmacol., 9, 1017

[17]

Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A., Thiessen, P. A., He, S. and Zhang, J. (2017) PubChem BioAssay: 2017 update. Nucleic Acids Res., 45, D955–D963

[18]

Forbes, S. A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., Kok, C. Y., Jia, M., Ewing, R., Menzies, A., (2010) COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res., 38, D652–D657

[19]

Chen, J. and Zhang, S. (2016) Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics, 32, 1724–1732

[20]

Sebaugh, J. L. (2011) Guidelines for accurate EC50/IC50 estimation. Pharm. Stat., 10, 128–134

[21]

Porta, C., Paglino, C. and Mosca, A. (2014) Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol., 4, 64

[22]

Shi, J. Y., Zhang, A. Q., Zhang, S. W., Mao, K. T. and Yiu, S. M. (2018) A unified solution for different scenarios of predicting drug-target interactions via triple matrix factorization. BMC Syst. Biol., 12, 136

[23]

Shi, J. Y., Huang, H., Li, J. X., Lei, P., Zhang, Y. N., Dong, K. and Yiu, S. M. (2018) TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs. BMC Bioinformatics, 19, 411

[24]

Guan, N., Tao, D., Luo, Z., Yuan B. (2011) Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent . IEEE Trans. Image Process., 20, 2030–2048

[25]

Lee, D. D. and Seung, H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791

[26]

Marcotte, R., Sayad, A., Brown, K. R., Sanchez-Garcia, F., Reimand, J., Haider, M., Virtanen, C., Bradner, J. E., Bader, G. D., Mills, G. B., (2016) Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell, 164, 293–309

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press

AI Summary AI Mindmap
PDF (1757KB)

Supplementary files

QB-21259-OF-ZSW_suppl_1

1692

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/