Significance of differential allelic expression in phenotypic plasticity and evolutionary potential of microbial eukaryotes

Ben P. Tatman , Thomas Mock , Taoyang Wu , Cock van Oosterhout

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 400 -410.

PDF (789KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 400 -410. DOI: 10.15302/J-QB-021-0258
RESEARCH ARTICLE
RESEARCH ARTICLE

Significance of differential allelic expression in phenotypic plasticity and evolutionary potential of microbial eukaryotes

Author information +
History +
PDF (789KB)

Abstract

Background: Differential allelic expression (DAE) plays a key role in the regulation of many biological processes, and it may also play a role in adaptive evolution. Recently, environment-dependent DAE has been observed in species of marine phytoplankton, and most remarkably, alleles that showed the highest level of DAE also showed the fastest rate of evolution.

Methods: To better understand the role of DAE in adaptive evolution and phenotypic plasticity, we developed a 2-D cellular automata model “DAEsy-World” that builds on the classical Daisyworld model.

Results: Simulations show that DAE delineates the evolution of alternative alleles of a gene, enabling the two alleles to adapt to different environmental conditions and sub-functionalize. With DAE, the build-up of genetic polymorphisms within genes is driven by positive selection rather than strict neutral evolution, and this can enhance phenotypic plasticity. Moreover, in sexually reproducing organisms, DAE also increased the standing genetic variation, augmenting a species’ adaptive evolutionary potential and ability to respond to fluctuating and/or changing conditions (cf. genetic assimilation). We furthermore show that DAE is likely to evolve in fluctuating environmental conditions.

Conclusions: DAE increases the adaptive evolutionary potential of both sexual and asexually reproducing organisms, and it may affect the pattern of nucleotide substitutions of genes.

Graphical abstract

Keywords

differential allelic expression / daisyworld model / adaptive evolution / phenotypic plasticity

Cite this article

Download citation ▾
Ben P. Tatman, Thomas Mock, Taoyang Wu, Cock van Oosterhout. Significance of differential allelic expression in phenotypic plasticity and evolutionary potential of microbial eukaryotes. Quant. Biol., 2021, 9(4): 400-410 DOI:10.15302/J-QB-021-0258

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Keane, T. M., Goodstadt, L., Danecek, P., White, M. A., Wong, K., Yalcin, B., Heger, A., Agam, A., Slater, G., Goodson, M., (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature, 477, 289–294

[2]

Paaby, A. B. and Rockman, M. V. (2014) Cryptic genetic variation: evolution’s hidden substrate. Nat. Rev. Genet., 15, 247–258

[3]

Dobzhansky, T. (1941)  Genetics and the Origin of Species.  2nd. New York: Columbia University Press

[4]

Siegal, M. L. (2013) Crouching variation revealed. Mol. Ecol., 22, 1187–1189

[5]

Snell-Rood, E. C., Van Dyken, J. D., Cruickshank, T., Wade, M. J. and Moczek, A. P. (2010) Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. BioEssays, 32, 71–81

[6]

Mathers, T. C., Chen, Y., Kaithakottil, G., Legeai, F., Mugford, S. T., Baa-Puyoulet, P., Bretaudeau, A., Clavijo, B., Colella, S., Collin, O., (2017) Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol., 18, 27

[7]

Dayan, D. I., Crawford, D. L. and Oleksiak, M. F. (2015) Phenotypic plasticity in gene expression contributes to divergence of locally adapted populations of Fundulus heteroclitus. Mol. Ecol., 24, 3345–3359

[8]

Baldwin, J. M. (1902) Development and Evolution. New York: Macmillan

[9]

Crispo, E. (2007) The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61, 2469–2479

[10]

Steige, K. A., Laenen, B., Reimegård, J., Scofield, D. G. and Slotte, T. (2017) Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora. Proc. Natl. Acad. Sci. USA, 114, 1087–1092

[11]

Harris, G. P. (1987) Phytoplankton Ecology: Structure, Function, and Fluctuation. London: Chapman and Hall Ltd

[12]

Reynolds, C. S. (1990) Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshw. Biol., 23, 25–53

[13]

d’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. and Lévy, M. (2010) Fluid dynamical niches of phytoplankton types. Proc. Natl. Acad. Sci. USA, 107, 18366–18370

[14]

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Seferian, R., (2013) Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225–6245

[15]

Boyd, P. W., Dillingham, P. W., Mcgraw, C. M., Armstrong, E. A., Cornwall, C. E., Feng, Y., Hurd, C. L., Gault-Ringold, M., Roleda, M. Y., Timmins-Schiffman, E., (2016) Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nat. Clim. Chang., 6, 207–213

[16]

Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K., Bindoff, N. L., Boyd, P. W., Brandt, A., Costa, D. P., (2014) Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol., 20, 3004–3025

[17]

Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L. and Tremblay, J. É. (2014) Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett., 41, 6207–6212

[18]

Keeling, P.J., Burki, F., Wilcox, H.M., Allam, B., Allen, E.E., Amaral-Zettler, L.A., Armbrust, E.V., Archibald, J.M., Bharti, A.K., Bell, C.J., (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biology 24, e1001889

[19]

Mock, T., Otillar, R. P., Strauss, J., McMullan, M., Paajanen, P., Schmutz, J., Salamov, A., Sanges, R., Toseland, A., Ward, B. J., (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature, 541, 536–540

[20]

Crowley, J. J., Zhabotynsky, V., Sun, W., Huang, S., Pakatci, I. K., Kim, Y., Wang, J. R., Morgan, A. P., Calaway, J. D., Aylor, D. L., (2015) Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance. Nat. Genet., 47, 353–360

[21]

Laso-Jadart, R., Sugier, K., Petit, E., Labadie, K., Peterlongo, P., Ambroise, C., Wincker, P., Jamet, J. L. and Madoui, M. A. (2020) Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol. Evol., 10, 8894–8905

[22]

Fraser, H. B. (2013) Gene expression drives local adaptation in humans. Genome Res., 23, 1089–1096

[23]

Tian, L., Khan, A., Ning, Z., Yuan, K., Zhang, C., Lou, H., Yuan, Y. and Xu, S. (2018) Genome-wide comparison of allele-specific gene expression between African and European populations. Hum. Mol. Genet., 27, 1067–1077

[24]

Litchman, E., de Tezanos Pinto, P., Edwards, K. F., Klausmeier, C. A., Kremer, C. T. and Thomas, M. K. (2015) Global biogeochemical impacts of phytoplankton: a trait-based perspective. J. Ecol., 103, 1384–1396

[25]

Lovelock, J. E. (1983) Daisy world: A cybernetic proof of the Gaia hypothesis. Coevol. Q., 38, 66–72

[26]

Free, A. and Barton, N. H. (2007) Do evolution and ecology need the Gaia hypothesis? Trends Ecol. Evol., 22, 611–619

[27]

Doolittle, W. F. (2017) Darwinizing Gaia. J. Theor. Biol., 434, 11–19

[28]

Lenton, T. M., Daines, S. J., Dyke, J. G., Nicholson, A. E., Wilkinson, D. M. and Williams, H. T. P. (2018) Selection for Gaia across multiple scales. Trends Ecol. Evol., 33, 633–645

[29]

Watson, A. J. and Lovelock, J. E. (1983) Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B. Chemi. Phys. Meteorol., 35, 284–289

[30]

Lenton, T. M. (1998) Gaia and natural selection. Nature, 394, 439–447

[31]

Wood, A. J., Ackland, G. J. and Lenton, T. M. (2006) Mutation of albedo and growth response produces oscillations in a spatial Daisyworld. J. Theor. Biol., 242, 188–198

[32]

Wood, A. J., Ackland, G. J., Dyke, J. G., Williams, H. T. and Lenton, T. M. (2008) Daisyworld: a review. Rev. Geophys., 46, 1–23

[33]

Sun, G. Q. (2016) Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn., 85, 1–12

[34]

Waddington, C. H. (1953) Genetic assimilation of an acquired character. Evolution, 7, 118–126

[35]

Pigliucci, M., Murren, C. J. and Schlichting, C. D. (2006) Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol., 209, 2362–2367

[36]

Lynch, M. (1988) The rate of polygenic mutation. Genet. Res., 51, 137–148

RIGHTS & PERMISSIONS

The Authors 2021. Published by Higher Education Press

AI Summary AI Mindmap
PDF (789KB)

Supplementary files

QB-21258-OF-WTY_suppl_1

1825

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/