Significance of differential allelic expression in phenotypic plasticity and evolutionary potential of microbial eukaryotes
Ben P. Tatman, Thomas Mock, Taoyang Wu, Cock van Oosterhout
Significance of differential allelic expression in phenotypic plasticity and evolutionary potential of microbial eukaryotes
Background: Differential allelic expression (DAE) plays a key role in the regulation of many biological processes, and it may also play a role in adaptive evolution. Recently, environment-dependent DAE has been observed in species of marine phytoplankton, and most remarkably, alleles that showed the highest level of DAE also showed the fastest rate of evolution.
Methods: To better understand the role of DAE in adaptive evolution and phenotypic plasticity, we developed a 2-D cellular automata model “DAEsy-World” that builds on the classical Daisyworld model.
Results: Simulations show that DAE delineates the evolution of alternative alleles of a gene, enabling the two alleles to adapt to different environmental conditions and sub-functionalize. With DAE, the build-up of genetic polymorphisms within genes is driven by positive selection rather than strict neutral evolution, and this can enhance phenotypic plasticity. Moreover, in sexually reproducing organisms, DAE also increased the standing genetic variation, augmenting a species’ adaptive evolutionary potential and ability to respond to fluctuating and/or changing conditions (cf. genetic assimilation). We furthermore show that DAE is likely to evolve in fluctuating environmental conditions.
Conclusions: DAE increases the adaptive evolutionary potential of both sexual and asexually reproducing organisms, and it may affect the pattern of nucleotide substitutions of genes.
In diploid organisms, the differential expression of the two alleles of a gene gives individuals more opportunities to adapt to fluctuating environmental conditions, which is particularly beneficial for clonally reproducing species.
differential allelic expression / daisyworld model / adaptive evolution / phenotypic plasticity
[1] |
Keane, T. M., Goodstadt, L., Danecek, P., White, M. A., Wong, K., Yalcin, B., Heger, A., Agam, A., Slater, G., Goodson, M.,
CrossRef
Pubmed
Google scholar
|
[2] |
Paaby, A. B. and Rockman, M. V. (2014) Cryptic genetic variation: evolution’s hidden substrate. Nat. Rev. Genet., 15, 247–258
CrossRef
Pubmed
Google scholar
|
[3] |
Dobzhansky, T. (1941) Genetics and the Origin of Species. 2nd. New York: Columbia University Press
|
[4] |
Siegal, M. L. (2013) Crouching variation revealed. Mol. Ecol., 22, 1187–1189
CrossRef
Pubmed
Google scholar
|
[5] |
Snell-Rood, E. C., Van Dyken, J. D., Cruickshank, T., Wade, M. J. and Moczek, A. P. (2010) Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. BioEssays, 32, 71–81
CrossRef
Pubmed
Google scholar
|
[6] |
Mathers, T. C., Chen, Y., Kaithakottil, G., Legeai, F., Mugford, S. T., Baa-Puyoulet, P., Bretaudeau, A., Clavijo, B., Colella, S., Collin, O.,
CrossRef
Pubmed
Google scholar
|
[7] |
Dayan, D. I., Crawford, D. L. and Oleksiak, M. F. (2015) Phenotypic plasticity in gene expression contributes to divergence of locally adapted populations of Fundulus heteroclitus. Mol. Ecol., 24, 3345–3359
CrossRef
Pubmed
Google scholar
|
[8] |
Baldwin, J. M. (1902) Development and Evolution. New York: Macmillan
|
[9] |
Crispo, E. (2007) The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61, 2469–2479
CrossRef
Pubmed
Google scholar
|
[10] |
Steige, K. A., Laenen, B., Reimegård, J., Scofield, D. G. and Slotte, T. (2017) Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora. Proc. Natl. Acad. Sci. USA, 114, 1087–1092
CrossRef
Pubmed
Google scholar
|
[11] |
Harris, G. P. (1987) Phytoplankton Ecology: Structure, Function, and Fluctuation. London: Chapman and Hall Ltd
|
[12] |
Reynolds, C. S. (1990) Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshw. Biol., 23, 25–53
CrossRef
Google scholar
|
[13] |
d’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. and Lévy, M. (2010) Fluid dynamical niches of phytoplankton types. Proc. Natl. Acad. Sci. USA, 107, 18366–18370
CrossRef
Pubmed
Google scholar
|
[14] |
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Seferian, R.,
CrossRef
Google scholar
|
[15] |
Boyd, P. W., Dillingham, P. W., Mcgraw, C. M., Armstrong, E. A., Cornwall, C. E., Feng, Y., Hurd, C. L., Gault-Ringold, M., Roleda, M. Y., Timmins-Schiffman, E.,
CrossRef
Google scholar
|
[16] |
Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C., Barnes, D. K., Bindoff, N. L., Boyd, P. W., Brandt, A., Costa, D. P.,
CrossRef
Pubmed
Google scholar
|
[17] |
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L. and Tremblay, J. É. (2014) Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett., 41, 6207–6212
CrossRef
Google scholar
|
[18] |
Keeling, P.J., Burki, F., Wilcox, H.M., Allam, B., Allen, E.E., Amaral-Zettler, L.A., Armbrust, E.V., Archibald, J.M., Bharti, A.K., Bell, C.J.,
|
[19] |
Mock, T., Otillar, R. P., Strauss, J., McMullan, M., Paajanen, P., Schmutz, J., Salamov, A., Sanges, R., Toseland, A., Ward, B. J.,
CrossRef
Pubmed
Google scholar
|
[20] |
Crowley, J. J., Zhabotynsky, V., Sun, W., Huang, S., Pakatci, I. K., Kim, Y., Wang, J. R., Morgan, A. P., Calaway, J. D., Aylor, D. L.,
CrossRef
Pubmed
Google scholar
|
[21] |
Laso-Jadart, R., Sugier, K., Petit, E., Labadie, K., Peterlongo, P., Ambroise, C., Wincker, P., Jamet, J. L. and Madoui, M. A. (2020) Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol. Evol., 10, 8894–8905
CrossRef
Pubmed
Google scholar
|
[22] |
Fraser, H. B. (2013) Gene expression drives local adaptation in humans. Genome Res., 23, 1089–1096
CrossRef
Pubmed
Google scholar
|
[23] |
Tian, L., Khan, A., Ning, Z., Yuan, K., Zhang, C., Lou, H., Yuan, Y. and Xu, S. (2018) Genome-wide comparison of allele-specific gene expression between African and European populations. Hum. Mol. Genet., 27, 1067–1077
CrossRef
Pubmed
Google scholar
|
[24] |
Litchman, E., de Tezanos Pinto, P., Edwards, K. F., Klausmeier, C. A., Kremer, C. T. and Thomas, M. K. (2015) Global biogeochemical impacts of phytoplankton: a trait-based perspective. J. Ecol., 103, 1384–1396
CrossRef
Google scholar
|
[25] |
Lovelock, J. E. (1983) Daisy world: A cybernetic proof of the Gaia hypothesis. Coevol. Q., 38, 66–72
|
[26] |
Free, A. and Barton, N. H. (2007) Do evolution and ecology need the Gaia hypothesis? Trends Ecol. Evol., 22, 611–619
CrossRef
Pubmed
Google scholar
|
[27] |
Doolittle, W. F. (2017) Darwinizing Gaia. J. Theor. Biol., 434, 11–19
CrossRef
Pubmed
Google scholar
|
[28] |
Lenton, T. M., Daines, S. J., Dyke, J. G., Nicholson, A. E., Wilkinson, D. M. and Williams, H. T. P. (2018) Selection for Gaia across multiple scales. Trends Ecol. Evol., 33, 633–645
CrossRef
Pubmed
Google scholar
|
[29] |
Watson, A. J. and Lovelock, J. E. (1983) Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B. Chemi. Phys. Meteorol., 35, 284–289
|
[30] |
Lenton, T. M. (1998) Gaia and natural selection. Nature, 394, 439–447
CrossRef
Pubmed
Google scholar
|
[31] |
Wood, A. J., Ackland, G. J. and Lenton, T. M. (2006) Mutation of albedo and growth response produces oscillations in a spatial Daisyworld. J. Theor. Biol., 242, 188–198
CrossRef
Pubmed
Google scholar
|
[32] |
Wood, A. J., Ackland, G. J., Dyke, J. G., Williams, H. T. and Lenton, T. M. (2008) Daisyworld: a review. Rev. Geophys., 46, 1–23
CrossRef
Google scholar
|
[33] |
Sun, G. Q. (2016) Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn., 85, 1–12
CrossRef
Google scholar
|
[34] |
Waddington, C. H. (1953) Genetic assimilation of an acquired character. Evolution, 7, 118–126
CrossRef
Google scholar
|
[35] |
Pigliucci, M., Murren, C. J. and Schlichting, C. D. (2006) Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol., 209, 2362–2367
CrossRef
Pubmed
Google scholar
|
[36] |
Lynch, M. (1988) The rate of polygenic mutation. Genet. Res., 51, 137–148
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |