Will the large-scale vaccination succeed in containing the COVID-19 pandemic and how soon?

Shilei Zhao , Tong Sha , Chung-I Wu , Yongbiao Xue , Hua Chen

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 304 -316.

PDF (1327KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 304 -316. DOI: 10.15302/J-QB-021-0256
RESEARCH ARTICLE
RESEARCH ARTICLE

Will the large-scale vaccination succeed in containing the COVID-19 pandemic and how soon?

Author information +
History +
PDF (1327KB)

Abstract

Background: The availability of vaccines provides a promising solution to contain the COVID-19 pandemic. However, it remains unclear whether the large-scale vaccination can succeed in containing the COVID-19 pandemic and how soon. We developed an epidemiological model named SUVQC (Suceptible-Unquarantined-Vaccined-Quarantined-Confirmed) to quantitatively analyze and predict the epidemic dynamics of COVID-19 under vaccination.

Methods: In addition to the impact of non-pharmaceutical interventions (NPIs), our model explicitly parameterizes key factors related to vaccination, including the duration of immunity, vaccine efficacy, and daily vaccination rate etc. The model was applied to the daily reported numbers of confirmed cases of Israel and the USA to explore and predict trends under vaccination based on their current epidemic statuses and intervention measures. We further provided a formula for designing a practical vaccination strategy, which simultaneously considers the effects of the basic reproductive number of COVID-19, intensity of NPIs, duration of immunological memory after vaccination, vaccine efficacy and daily vaccination rate.

Results: In Israel, 53.83% of the population is fully vaccinated, and under the current NPI intensity and vaccination scheme, the pandemic is predicted to end between May 14, 2021, and May 16, 2021, assuming immunity persists for 180 days to 365 days. If NPIs are not implemented after March 24, 2021, the pandemic will end later, between July 4, 2021, and August 26, 2021. For the USA, if we assume the current vaccination rate (0.268% per day) and intensity of NPIs, the pandemic will end between January 20, 2022, and October 19, 2024, assuming immunity persists for 180 days to 365 days. However, assuming immunity persists for 180 days and no NPIs are implemented, the pandemic will not end and instead reach an equilibrium state, with a proportion of the population remaining actively infected.

Conclusions: Overall, the daily vaccination rate should be decided according to vaccine efficacy and immunity duration to achieve herd immunity. In some situations, vaccination alone cannot stop the pandemic, and NPIs are necessary to supplement vaccination and accelerate the end of the pandemic. Considering that vaccine efficacy and duration of immunity may be reduced for new mutant strains, it is necessary to remain cautiously optimistic about the prospect of ending the pandemic under vaccination.

Graphical abstract

Keywords

COVID-19 / vaccination / pandemic / epidemic dynamics / epidemiological model

Cite this article

Download citation ▾
Shilei Zhao, Tong Sha, Chung-I Wu, Yongbiao Xue, Hua Chen. Will the large-scale vaccination succeed in containing the COVID-19 pandemic and how soon?. Quant. Biol., 2021, 9(3): 304-316 DOI:10.15302/J-QB-021-0256

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., Druckenmiller, H., Huang, L. Y., Hultgren, A., Krasovich, E., (2020) The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature, 584, 262–267

[2]

Flaxman, S., Mishra, S., Gandy, A., Unwin, H. J. T., Mellan, T. A., Coupland, H., Whittaker, C., Zhu, H., Berah, T., Eaton, J. W., (2020) Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature, 584, 257–261

[3]

Zhao, S. and Chen, H. (2020) Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quant. Biol., 8, 11–19

[4]

Krammer, F. (2020) SARS-CoV-2 vaccines in development. Nature, 586, 516–527

[5]

Kim, J.H., Marks, F., Clemens, J.D. (2021) Looking beyond COVID-19 vaccine phase 3 trials. Nat. Med.,27, 205–211

[6]

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., (2020) Safety and efficacy of the bnt162b2 mRNA COVID-19 vaccine. N. Engl. J. Med., 383, 2603–2615

[7]

Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., Dzharullaeva, A. S., Kovyrshina, A. V., Lubenets, N. L., Grousova, D. M., Erokhova, A. S., (2021) Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 397, 671–681

[8]

Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., (2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 384, 403–416

[9]

Voysey, M., Clemens, S. A. C., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., (2021) Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 397, 99–111

[10]

China grants conditional market approval for Sinopharm CNBG’s COVID-19 vaccine.

[11]

Sinovac announces phase iii results of its COVID-19 vaccine.

[12]

Mullard, A. (2020) How COVID vaccines are being divvied up around the world. Nature. doi: 10.1038/d41586-020-03370-6

[13]

Dan, J. M., Mateus, J., Kato, Y., Hastie, K. M., Yu, E. D., Faliti, C. E., Grifoni, A., Ramirez, S. I., Haupt, S., Frazier, A., (2021) Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 371, eabf4063

[14]

Aur’elien, S., Chappert, P., Barba-Spaeth, G., Roeser, A., Fourati, S., Azzaoui, I., Vandenberghe, A., Fernandez, I., Meola, A., Bouvier-Alias, M., (2021) Maturation and persistence of the anti-SARS-CoV-2 memory b cell response. Cell,184, 1201–1213.e14

[15]

Abu-Raddad, L. J., Chemaitelly, H., Coyle, P., Malek, J. A., Ahmed, A. A., Mohamoud, Y. A., Younuskunju, S., Ayoub, H. H., Kanaani, Z., Kuwari, E., (2021) SARS-COV-2 reinfection in a cohort of 43,000 antibody-positive individuals followed for up to 35 weeks. medRxiv,

[16]

He, Z., Ren, L., Yang, J., Guo, L., Feng, L., Ma, C., Wang, X., Leng, Z., Tong, X., Zhou, W., (2021) Seroprevalence and humoral immune durability of anti-SARS-COV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. Lancet, 397, 1075–1084

[17]

Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., (2020) SARS-COV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med., 382, 1177–1179

[18]

Lewnard, J.A., Liu, V.X., Jackson, M.L., Schmidt, M.A., Jewell, B.L., Flores, J.P., Jentz, C., Northrup, G.R., Mahmud, A., Reingold, A.L. (2020) Incidence, clinical outcomes, and transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective cohort study. BMJ, 369, m1923

[19]

oxcgrt: An Interface to the Oxford COVID-19 Government Response Tracker API.R package version 0.1.0

[20]

Oxford COVID-19 Government Response Tracker, Blavatnik School of Government.

[21]

Buitrago-Garcia, D., Egli-Gany, D., Counotte, M. J., Hossmann, S., Imeri, H., Ipekci, A. M., Salanti, G. and Low, N. (2020) Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med., 17, e1003346

[22]

Gardner, L. D. E. and Du, H. (2020) An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis., 20, 533–534

[23]

Angulo, F. J., Finelli, L. and Swerdlow, D. L. (2021) Estimation of us SARS-CoV-2 infections, symptomatic infections, hospitalizations, and deaths using seroprevalence surveys. JAMA Netw. Open, 4, e2033706

[24]

Wu, K., Werner, A. P., Moliva, J. I., Koch, M., Choi, A., Stewart-Jones, G. B. E., Bennett, H., Boyoglu-Barnum, S., Shi, W., Graham, B. S., (2021) mRNA 1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2. variants. bioRxiv, doi:

[25]

Collier, D. A., De Marco, A., Ferreira, I. A. T. M., Meng, B., Datir, R.,Walls, A. C.Kemp S, S.A., Bassi, J., Pinto, D., Fregni, C.S. (2021) Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 593, 136–141

[26]

Moore, J.P., and Offit, P. A. (2021) SARS-CoV-2 vaccines and the growing threat of viral variants. JAMA, 325, 821–822

[27]

Wang, Z., Schmidt, F., Weisblum, Y., Muecksch, F., Barnes, C. O., Finkin, S., Schaefer-Babajew, D., Cipolla, M., Gaebler, C., Lieberman, J. A., (2021) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature. Nature, 592, 616–622

[28]

Fontanet, A., Autran, B., Lina, B., Kieny, M. P., Karim, S. S. A. and Sridhar, D. (2021) SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet, 397, 952–954

[29]

Zhang, J., Ding, N., Ren, L., Song, R., Chen, D., Zhao, X., Chen, B., Han J., Li, J., Song, Y., (2021) COVID-19 reinfection in the presence of neutralizing antibodies. Natl. Sci. Rev., 8, nwab006

[30]

Dao, T. L., Hoang, V. T. and Gautret, P. (2021) Recurrence of SARS-CoV-2 viral RNA in recovered COVID-19 patients: a narrative review. Eur. J. Clin. Microbiol. Infect. Dis., 40, 13–25

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press

AI Summary AI Mindmap
PDF (1327KB)

Supplementary files

QB-21256-OF-CH_suppl_1

QB-21256-OF-CH_suppl_10

QB-21256-OF-CH_suppl_2

QB-21256-OF-CH_suppl_3

QB-21256-OF-CH_suppl_4

QB-21256-OF-CH_suppl_5

QB-21256-OF-CH_suppl_6

QB-21256-OF-CH_suppl_7

QB-21256-OF-CH_suppl_8

QB-21256-OF-CH_suppl_9

5906

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/