Recent progress in research and application of engineered implanted cells for biomedical applications
Tianying Chen, Xue Zhang, Qiong Wu
Recent progress in research and application of engineered implanted cells for biomedical applications
Background: The core concept of cell engineering is the use of synthetic biological methods to engineer and design genetically modified cells with specific functions, which has revolutionized the biotechnology industry and cell therapy. Implanted cells play an important role in the cell therapy, but the currently used implanted cells are unable to fully meet the needs of researchers and clinicians. Therefore, the construction of engineered implanted cells has become a new research area, with many groups exploring the working principles of implanted cells, allowing them to better exert their repair function.
Results: Based on the existing cell engineering platforms, this paper summarizes the main types of chassis cells used in implanted cell engineering, progress in the development of gene editing tools and delivery systems, as well as strategies for the construction of engineered implanted cells.
Conclusions: The rational use of synthetic biology methods to program and control the function of implanted cells with high spatiotemporal accuracy provides new ideas for the development of cell therapy, and opens up new possibilities for exploring the mechanism of implanted cell action to allow them to better exert their role in promoting the progress of repair.
The engineering transformation allows implanted cells to achieve optimal therapeutic effect in cell therapy. This review introduces the application of engineered implanted cells in the cell therapy, and how to equip the chassis cell with new functions to enhance or redirect their natural ability to achieve corresponding medical effects. We expect this review to draw attention to the use of synthetic biology ideas in the field of cell therapy that the rational use of synthetic biology methods provides new ideas for the development of cell therapy and new possibilities for exploring the mechanism of the implanted cell.
chassis cells / cell therapy / engineered implanted cells / synthetic biology
[1] |
Ahrlund-Richter, L., De Luca, M., Marshak, D. R., Munsie, M., Veiga, A. and Rao, M. (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell, 4, 20–26
CrossRef
Pubmed
Google scholar
|
[2] |
Wood, J. A., Colletti, E., Mead, L. E., Ingram, D., Porada, C. D., Zanjani, E. D., Yoder, M. C. and Almeida-Porada, G. (2012) Distinct contribution of human cord blood-derived endothelial colony forming cells to liver and gut in a fetal sheep model. Hepatology, 56, 1086–1096
CrossRef
Pubmed
Google scholar
|
[3] |
Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., Hoskins, E. E., Kalinichenko, V. V., Wells, S. I., Zorn, A. M.,
CrossRef
Pubmed
Google scholar
|
[4] |
Fan, C., Jia, L., Zheng, Y., Jin, C., Liu, Y., Liu, H. and Zhou, Y. (2016) Mir-34a promotes osteogenic differentiation of human adipose-derived stem cells via the rbp2/notch1/cyclin d1 coregulatory network. Stem Cell Reports, 7, 236–248
CrossRef
Pubmed
Google scholar
|
[5] |
Li, Y., Liu, W., Liu, F., Zeng, Y., Zuo, S., Feng, S., Qi, C., Wang, B., Yan, X., Khademhosseini, A.,
CrossRef
Pubmed
Google scholar
|
[6] |
Plein, A., Fantin, A., Denti, L., Pollard, J. W. and Ruhrberg, C. (2018) Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature, 562, 223–228
CrossRef
Pubmed
Google scholar
|
[7] |
Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S. S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M.,
CrossRef
Pubmed
Google scholar
|
[8] |
Garfall, A. L., Maus, M. V., Hwang, W. T., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Zheng, Z., Vogl, D. T., Cohen, A. D., Weiss, B. M.,
CrossRef
Pubmed
Google scholar
|
[9] |
Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., Sommermeyer, D., Melville, K., Pender, B., Budiarto, T. M.,
CrossRef
Pubmed
Google scholar
|
[10] |
Posey, A. D. Jr, Schwab, R. D., Boesteanu, A. C., Steentoft, C., Mandel, U., Engels, B., Stone, J. D., Madsen, T. D., Schreiber, K., Haines, K. M.,
CrossRef
Pubmed
Google scholar
|
[11] |
Fry, T. J., Shah, N. N., Orentas, R. J., Stetler-Stevenson, M., Yuan, C. M., Ramakrishna, S., Wolters, P., Martin, S., Delbrook, C., Yates, B.,
CrossRef
Pubmed
Google scholar
|
[12] |
Kim, M. Y., Yu, K. R., Kenderian, S. S., Ruella, M., Chen, S., Shin, T. H., Aljanahi, A. A., Schreeder, D., Klichinsky, M., Shestova, O.,
CrossRef
Pubmed
Google scholar
|
[13] |
Li, Y., Hermanson, D. L., Moriarity, B. S. and Kaufman, D. S. (2018) Human ipsc-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 23, 181–192.e5
CrossRef
Pubmed
Google scholar
|
[14] |
Chen, J., López-Moyado, I. F., Seo, H., Lio, C. J., Hempleman, L. J., Sekiya, T., Yoshimura, A., Scott-Browne, J. P. and Rao, A. (2019) NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 567, 530–534
CrossRef
Pubmed
Google scholar
|
[15] |
Xie, Y. J., Dougan, M., Jailkhani, N., Ingram, J., Fang, T., Kummer, L., Momin, N., Pishesha, N., Rickelt, S., Hynes, R. O.,
CrossRef
Pubmed
Google scholar
|
[16] |
Al-Hasani, K., Pfeifer, A., Courtney, M., Ben-Othman, N., Gjernes, E., Vieira, A., Druelle, N., Avolio, F., Ravassard, P., Leuckx, G.,
CrossRef
Pubmed
Google scholar
|
[17] |
Hsieh, M. M., Fitzhugh, C. D., Weitzel, R. P., Link, M. E., Coles, W. A., Zhao, X., Rodgers, G. P., Powell, J. D. and Tisdale, J. F. (2014) Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA, 312, 48–56
CrossRef
Pubmed
Google scholar
|
[18] |
Epelman, S., Lavine, K. J., Beaudin, A. E., Sojka, D. K., Carrero, J. A., Calderon, B., Brija, T., Gautier, E. L., Ivanov, S., Satpathy, A. T.,
CrossRef
Pubmed
Google scholar
|
[19] |
Leibman, R. S., Richardson, M. W., Ellebrecht, C. T., Maldini, C. R., Glover, J. A., Secreto, A. J., Kulikovskaya, I., Lacey, S. F., Akkina, S. R., Yi, Y.,
CrossRef
Pubmed
Google scholar
|
[20] |
Kou, X., Xu, X., Chen, C., Sanmillan, M. L., Cai, T., Zhou, Y., Giraudo, C., Le, A. and Shi, S. (2018) The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med., 10, eaai8524
CrossRef
Pubmed
Google scholar
|
[21] |
Kansal, R., Richardson, N., Neeli, I., Khawaja, S., Chamberlain, D., Ghani, M., Ghani, Q. U., Balazs, L., Beranova-Giorgianni, S., Giorgianni, F.,
CrossRef
Pubmed
Google scholar
|
[22] |
Weick, J. P., Liu, Y. and Zhang, S. C. (2011) Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proc. Natl. Acad. Sci. USA, 108, 20189–20194
CrossRef
Pubmed
Google scholar
|
[23] |
Xu, J., Wang, D., Liu, D., Fan, Z., Zhang, H., Liu, O., Ding, G., Gao, R., Zhang, C., Ding, Y.,
CrossRef
Pubmed
Google scholar
|
[24] |
Gupta, N., Henry, R. G., Strober, J., Kang, S. M., Lim, D. A., Bucci, M., Caverzasi, E., Gaetano, L., Mandelli, M. L., Ryan, T.,
CrossRef
Pubmed
Google scholar
|
[25] |
Corti, S., Nizzardo, M., Simone, C., Falcone, M., Nardini, M., Ronchi, D., Donadoni, C., Salani, S., Riboldi, G., Magri, F.,
CrossRef
Pubmed
Google scholar
|
[26] |
Aloisio, G. M., Nakada, Y., Saatcioglu, H. D., Peña, C. G., Baker, M. D., Tarnawa, E. D., Mukherjee, J., Manjunath, H., Bugde, A., Sengupta, A. L.,
CrossRef
Pubmed
Google scholar
|
[27] |
Kang, X., Xu, H., Teng, S., Zhang, X., Deng, Z., Zhou, L., Zuo, P., Liu, B., Liu, B., Wu, Q.,
CrossRef
Pubmed
Google scholar
|
[28] |
Cyranoski, D. (2018) ‘Reprogrammed’ stem cells implanted into patient with parkinson’s disease. Nature, doi: 10.1038/d41586-018-07407-9
|
[29] |
Atala, A. (2008) Advances in tissue and organ replacement. Curr. Stem Cell Res. Ther., 3, 21–31
CrossRef
Pubmed
Google scholar
|
[30] |
Berthiaume, F., Maguire, T. J. and Yarmush, M. L. (2011) Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomol. Eng., 2, 403–430
CrossRef
Pubmed
Google scholar
|
[31] |
Stoltz, J. F., de Isla, N., Li, Y. P., Bensoussan, D., Zhang, L., Huselstein, C., Chen, Y., Decot, V., Magdalou, J., Li, N.,
CrossRef
Pubmed
Google scholar
|
[32] |
Zhao, Z., Zhu, X., Cui, K., Mancuso, J., Federley, R., Fischer, K., Teng, G., Mittal, V., Gao, D., Zhao, H.,
CrossRef
Pubmed
Google scholar
|
[33] |
Guan, X., Avci-Adali, M., Alarçin, E., Cheng, H., Kashaf, S. S., Li, Y., Chawla, A., Jang, H. L. and Khademhosseini, A. (2017) Development of hydrogels for regenerative engineering. Biotechnol. J., 12, 1600394
CrossRef
Pubmed
Google scholar
|
[34] |
Gkountela, S., Castro-Giner, F., Szczerba, B. M., Vetter, M., Landin, J., Scherrer, R., Krol, I., Scheidmann, M. C., Beisel, C., Stirnimann, C. U.,
CrossRef
Pubmed
Google scholar
|
[35] |
Gomes, M. E. and Reis, R. L. (2004) Tissue engineering: key elements and some trends. Macromol. Biosci., 4, 737–742
CrossRef
Pubmed
Google scholar
|
[36] |
Chocholata, P., Kulda, V. and Babuska, V. (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel), 12, 568
CrossRef
Pubmed
Google scholar
|
[37] |
Schwarz, K. A. and Leonard, J. N. (2016) Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev., 105, 55–65
CrossRef
Pubmed
Google scholar
|
[38] |
Lim, W. A. and June, C. H. (2017) The principles of engineering immune cells to treat cancer. Cell, 168, 724–740
CrossRef
Pubmed
Google scholar
|
[39] |
Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K.,
CrossRef
Pubmed
Google scholar
|
[40] |
Hoggatt, J. (2016) Gene therapy for “bubble boy” disease. Cell, 166, 263
CrossRef
Pubmed
Google scholar
|
[41] |
de Lorenzo, V., Krasnogor, N. and Schmidt, M. (2021) For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! N. Biotechnol., 60, 44–51
CrossRef
Pubmed
Google scholar
|
[42] |
Li, M. D., Atkins, H. and Bubela, T. (2014) The global landscape of stem cell clinical trials. Regen. Med., 9, 27–39
CrossRef
Pubmed
Google scholar
|
[43] |
Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O. and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med., 331, 889–895
CrossRef
Pubmed
Google scholar
|
[44] |
Mcheik, J. N., Barrault, C., Levard, G., Morel, F., Bernard, F. X. and Lecron, J. C. (2014) Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast. Reconstr. Surg. Glob. Open, 2, e218
CrossRef
Pubmed
Google scholar
|
[45] |
Weissman, I. L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 287, 1442–1446
CrossRef
Pubmed
Google scholar
|
[46] |
Garbern, J. C. and Lee, R. T. (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell, 12, 689–698
CrossRef
Pubmed
Google scholar
|
[47] |
Ellison, G. M., Vicinanza, C., Smith, A. J., Aquila, I., Leone, A., Waring, C. D., Henning, B. J., Stirparo, G. G., Papait, R., Scarfò, M.,
CrossRef
Pubmed
Google scholar
|
[48] |
Huch, M., Gehart, H., van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M. M., Ellis, E., van Wenum, M., Fuchs, S. A., de Ligt, J.,
CrossRef
Pubmed
Google scholar
|
[49] |
Godfrey, K. J., Mathew, B., Bulman, J. C., Shah, O., Clement, S. and Gallicano, G. I. (2012) Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet. Med., 29, 14–23
CrossRef
Pubmed
Google scholar
|
[50] |
De Trizio, E. and Brennan, C. S. (2004) The business of human embryonic stem cell research and an international analysis of relevant laws. J Biolaw Bus, 7, 14–22
Pubmed
|
[51] |
Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O. and Jaenisch, R. (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 105, 5856–5861
CrossRef
Pubmed
Google scholar
|
[52] |
Blasco, M. A., Serrano, M. and Fernandez-Capetillo, O. (2011) Genomic instability in iPS: time for a break. EMBO J., 30, 991–993
CrossRef
Pubmed
Google scholar
|
[53] |
Wang, X., Zhang, Z. and Yao, C. (2010) Survivin is upregulated in myeloma cell lines cocultured with mesenchymal stem cells. Leuk. Res., 34, 1325–1329
CrossRef
Pubmed
Google scholar
|
[54] |
Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M. and Rameshwar, P. (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol., 184, 5885–5894
CrossRef
Pubmed
Google scholar
|
[55] |
Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M. and Stojkovic, M. (2018) Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci., 15, 36–45
CrossRef
Pubmed
Google scholar
|
[56] |
Vormittag, P., Gunn, R., Ghorashian, S. and Veraitch, F. S. (2018) A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol., 53, 164–181
CrossRef
Pubmed
Google scholar
|
[57] |
Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. and June, C. H. (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med., 365, 725–733
CrossRef
Pubmed
Google scholar
|
[58] |
Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Ye, C. J., Lim, W. A. and Marson, A. (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep., 7, 737
CrossRef
Pubmed
Google scholar
|
[59] |
Legut, M., Dolton, G., Mian, A. A., Ottmann, O. G. and Sewell, A. K. (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood, 131, 311–322
CrossRef
Pubmed
Google scholar
|
[60] |
Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S. J., Hamieh, M., Cunanan, K. M., Odak, A., Gönen, M. and Sadelain, M. (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature, 543, 113–117
CrossRef
Pubmed
Google scholar
|
[61] |
Rafiq, S., Yeku, O. O., Jackson, H. J., Purdon, T. J., van Leeuwen, D. G., Drakes, D. J., Song, M., Miele, M. M., Li, Z., Wang, P.,
CrossRef
Pubmed
Google scholar
|
[62] |
Raj, D., Yang, M. H., Rodgers, D., Hampton, E. N., Begum, J., Mustafa, A., Lorizio, D., Garces, I., Propper, D., Kench, J. G.,
CrossRef
Pubmed
Google scholar
|
[63] |
Wu, X., Shi, B., Zhang, J., Shi, Z., Di, S., Fan, M., Gao, H., Wang, H., Gu, J., Jiang, H.,
CrossRef
Pubmed
Google scholar
|
[64] |
Sukumaran, S., Watanabe, N., Bajgain, P., Raja, K., Mohammed, S., Fisher, W. E., Brenner, M. K., Leen, A. M. and Vera, J. F. (2018) Enhancing the potency and specificity of engineered t cells for cancer treatment. Cancer Discov., 8, 972–987
CrossRef
Pubmed
Google scholar
|
[65] |
Adachi, K., Kano, Y., Nagai, T., Okuyama, N., Sakoda, Y. and Tamada, K. (2018) IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol., 36, 346–351
CrossRef
Pubmed
Google scholar
|
[66] |
Arabi, F., Torabi-Rahvar, M., Shariati, A., Ahmadbeigi, N. and Naderi, M. (2018) Antigenic targets of CAR T Cell Therapy. A retrospective view on clinical trials. Exp. Cell Res., 369, 1–10
CrossRef
Pubmed
Google scholar
|
[67] |
Hartmann, J., Schüßler-Lenz, M., Bondanza, A. and Buchholz, C. J. (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med., 9, 1183–1197
CrossRef
Pubmed
Google scholar
|
[68] |
Rezvani, K., Rouce, R., Liu, E. and Shpall, E. (2017) Engineering natural killer cells for cancer immunotherapy. Mol. Ther., 25, 1769–1781
CrossRef
Pubmed
Google scholar
|
[69] |
Hermanson, D. L., Bendzick, L., Pribyl, L., McCullar, V., Vogel, R. I., Miller, J. S., Geller, M. A. and Kaufman, D. S. (2016) Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells, 34, 93–101
CrossRef
Pubmed
Google scholar
|
[70] |
Bhargava, A., Mishra, D., Banerjee, S. and Mishra, P. K. (2012) Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy, 4, 703–718
CrossRef
Pubmed
Google scholar
|
[71] |
Um, S.-J., Choi, Y. J., Shin, H.-J., Son, C. H., Park, Y.-S., Roh, M. S., Kim, Y. S., Kim, Y. D., Lee, S.-K., Jung, M. H.,
CrossRef
Pubmed
Google scholar
|
[72] |
Alshamsan, A., Haddadi, A., Hamdy, S., Samuel, J., El-Kadi, A. O. S., Uludağ, H. and Lavasanifar, A. (2010) STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm., 7, 1643–1654
CrossRef
Pubmed
Google scholar
|
[73] |
Hobo, W., Maas, F., Adisty, N., de Witte, T., Schaap, N., van der Voort, R. and Dolstra, H. (2010) siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood, 116, 4501–4511
CrossRef
Pubmed
Google scholar
|
[74] |
Alvey, C. M., Spinler, K. R., Irianto, J., Pfeifer, C. R., Hayes, B., Xia, Y., Cho, S., Dingal, P. C. P. D., Hsu, J., Smith, L.,
CrossRef
Pubmed
Google scholar
|
[75] |
Rodell, C. B., Arlauckas, S. P., Cuccarese, M. F., Garris, C. S., Li, R., Ahmed, M. S., Kohler, R. H., Pittet, M. J. and Weissleder, R. (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng., 2, 578–588
CrossRef
Pubmed
Google scholar
|
[76] |
Kulkarni, A., Chandrasekar, V., Natarajan, S. K., Ramesh, A., Pandey, P., Nirgud, J., Bhatnagar, H., Ashok, D., Ajay, A. K. and Sengupta, S. (2018) A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng., 2, 589–599
CrossRef
Pubmed
Google scholar
|
[77] |
Scharenberg, S. G., Poletto, E., Lucot, K. L., Colella, P., Sheikali, A., Montine, T. J., Porteus, M. H. and Gomez-Ospina, N. (2020) Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing. Nat. Commun., 11, 3327
CrossRef
Pubmed
Google scholar
|
[78] |
Mescher, A. L. and Neff, A. W. (2005) Regenerative Capacity and The Developing Immune System. In: Regenerative medicine, pp. 39–66. Springer
|
[79] |
Ward, P. A., Warren, J. S. and Johnson, K. J. (1988) Oxygen radicals, inflammation, and tissue injury. Free Radic. Biol. Med., 5, 403–408
CrossRef
Pubmed
Google scholar
|
[80] |
Julier, Z., Park, A. J., Briquez, P. S. and Martino, M. M. (2017) Promoting tissue regeneration by modulating the immune system. Acta Biomater., 53, 13–28
CrossRef
Pubmed
Google scholar
|
[81] |
Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156
CrossRef
Pubmed
Google scholar
|
[82] |
Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676
CrossRef
Pubmed
Google scholar
|
[83] |
Kinnaird, T., Stabile, E., Burnett, M. S., Shou, M., Lee, C. W., Barr, S., Fuchs, S. and Epstein, S. E. (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549
CrossRef
Pubmed
Google scholar
|
[84] |
Nagaishi, K., Mizue, Y., Chikenji, T., Otani, M., Nakano, M., Konari, N. and Fujimiya, M. (2016) Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep., 6, 34842
CrossRef
Pubmed
Google scholar
|
[85] |
Schweitzer, K. S., Johnstone, B. H., Garrison, J., Rush, N. I., Cooper, S., Traktuev, D. O., Feng, D., Adamowicz, J. J., Van Demark, M., Fisher, A. J.,
CrossRef
Pubmed
Google scholar
|
[86] |
Choi, J. B., Uchino, H., Azuma, K., Iwashita, N., Tanaka, Y., Mochizuki, H., Migita, M., Shimada, T., Kawamori, R. and Watada, H. (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia, 46, 1366–1374
CrossRef
Pubmed
Google scholar
|
[87] |
Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B. S., Virag, J. I., Bartelmez, S. H., Poppa, V.,
CrossRef
Pubmed
Google scholar
|
[88] |
Castro, R. F., Jackson, K. A., Goodell, M. A., Robertson, C. S., Liu, H. and Shine, H. D. (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science, 297, 1299
CrossRef
Pubmed
Google scholar
|
[89] |
Gu, S., Huang, H., Bi, J., Yao, Y. and Wen, T. (2009) Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res., 1257, 1–9
CrossRef
Pubmed
Google scholar
|
[90] |
Kumagai, G., Tsoulfas, P., Toh, S., McNiece, I., Bramlett, H. M. and Dietrich, W. D. (2013) Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp. Neurol., 248, 369–380
CrossRef
Pubmed
Google scholar
|
[91] |
Deuse, T., Peter, C., Fedak, P. W. M., Doyle, T., Reichenspurner, H., Zimmermann, W. H., Eschenhagen, T., Stein, W., Wu, J. C., Robbins, R. C.,
CrossRef
Pubmed
Google scholar
|
[92] |
Guo, Y. H., He, J. G., Wu, J. L., Yang, L., Zhang, D. S., Tan, X. Y. and Qi, R. D. (2008) Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy, 10, 857–867
CrossRef
Pubmed
Google scholar
|
[93] |
Cho, Y. H., Park, H., Cho, E. S., Kim, W. J., Kang, B. S., Park, B. Y., Kim, Y. J., Lee, Y. I., Chang, S. I. and Park, K. (2007) A novel way of therapeutic angiogenesis using an adeno-associated virus-mediated angiogenin gene transfer. Exp. Mol. Med., 39, 412–418
CrossRef
Pubmed
Google scholar
|
[94] |
Smirnoff, P., Roiz, L., Angelkovitch, B., Schwartz, B. and Shoseyov, O. (2006) A recombinant human RNASET2 glycoprotein with antitumorigenic and antiangiogenic characteristics: expression, purification, and characterization. Cancer, 107, 2760–2769
CrossRef
Pubmed
Google scholar
|
[95] |
Wilson, C. G., Martín-Saavedra, F. M., Vilaboa, N. and Franceschi, R. T. (2013) Advanced BMP gene therapies for temporal and spatial control of bone regeneration. J. Dent. Res., 92, 409–417
CrossRef
Pubmed
Google scholar
|
[96] |
Virk, M. S., Sugiyama, O., Park, S. H., Gambhir, S. S., Adams, D. J., Drissi, H. and Lieberman, J. R. (2011) “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol. Ther., 19, 960–968
CrossRef
Pubmed
Google scholar
|
[97] |
Wei, D., Qiao, R., Dao, J., Su, J., Jiang, C., Wang, X., Gao, M. and Zhong, J. (2018) Soybean lecithin-mediated nanoporous plga microspheres with highly entrapped and controlled released bmp-2 as a stem cell platform. Small, 14, 1800063
CrossRef
Pubmed
Google scholar
|
[98] |
Park, J. S., Yang, H. N., Woo, D. G., Jeon, S. Y., Do, H. J., Lim, H. Y., Kim, J. H. and Park, K. H. (2011) Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials, 32, 3679–3688
CrossRef
Pubmed
Google scholar
|
[99] |
Im, G. I., Kim, H. J. and Lee, J. H. (2011) Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials, 32, 4385–4392
CrossRef
Pubmed
Google scholar
|
[100] |
Wojtowicz, A. M., Templeman, K. L., Hutmacher, D. W., Guldberg, R. E. and García, A. J. (2010) Runx2 overexpression in bone marrow stromal cells accelerates bone formation in critical-sized femoral defects. Tissue Eng. Part A, 16, 2795–2808
CrossRef
Pubmed
Google scholar
|
[101] |
Yao, Y., He, Y., Guan, Q. and Wu, Q. (2014) A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials, 35, 1898–1906
CrossRef
Pubmed
Google scholar
|
[102] |
Ma, Y., Li, J., Yao, Y., Wei, D., Wang, R. and Wu, Q. (2016) A controlled double-duration inducible gene expression system for cartilage tissue engineering. Sci. Rep., 6, 26617
CrossRef
Pubmed
Google scholar
|
[103] |
Darabi, R., Gehlbach, K., Bachoo, R. M., Kamath, S., Osawa, M., Kamm, K. E., Kyba, M. and Perlingeiro, R. C. R. (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med., 14, 134–143
CrossRef
Pubmed
Google scholar
|
[104] |
Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M. and Lassar, A. B. (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell, 89, 139–148
|
[105] |
Hwang, D. H., Kim, B. G., Kim, E. J., Lee, S. I., Joo, I. S., Suh-Kim, H., Sohn, S. and Kim, S. U. (2009) Transplantation of human neural stem cells transduced with olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci., 10, 1–16
|
[106] |
Hu, J. G., Shen, L., Wang, R., Wang, Q. Y., Zhang, C., Xi, J., Ma, S. F., Zhou, J. S. and Lü, H. Z. (2012) Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury. Neurotherapeutics, 9, 422–445
CrossRef
Pubmed
Google scholar
|
[107] |
Wang, Y., Feng, C., Xue, J., Sun, A., Li, J. and Wu, J. (2009) Adenovirus-mediated hypoxia-inducible factor 1α double-mutant promotes differentiation of bone marrow stem cells to cardiomyocytes. J. Physiol. Sci., 59, 413–420
CrossRef
Pubmed
Google scholar
|
[108] |
Wang, Y., Sun, A., Xue, J., Feng, C., Li, J. and Wu, J. (2009) Bone marrow derived stromal cells modified by adenovirus-mediated HIF-1α double mutant protect cardiac myocytes against CoCl2-induced apoptosis. Toxicol. In Vitro, 23, 1069–1075
CrossRef
Pubmed
Google scholar
|
[109] |
Teague, B. P., Guye, P. and Weiss, R. (2016) Synthetic morphogenesis. Cold Spring Harb. Perspect. Biol., 8, a023929
CrossRef
Pubmed
Google scholar
|
[110] |
Nakashima, H., Kaur, B. and Chiocca, E. A. (2010) Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev., 21, 119–126
CrossRef
Pubmed
Google scholar
|
[111] |
van Eekelen, M., Sasportas, L. S., Kasmieh, R., Yip, S., Figueiredo, J. L., Louis, D. N., Weissleder, R. and Shah, K. (2010) Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene, 29, 3185–3195
CrossRef
Pubmed
Google scholar
|
[112] |
Xu, G., Jiang, X. D., Xu, Y., Zhang, J., Huang, F. H., Chen, Z. Z., Zhou, D. X., Shang, J. H., Zou, Y. X. and Cai, Y. Q. (2009) Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int., 33, 466–474
CrossRef
Pubmed
Google scholar
|
[113] |
Kanehira, M., Xin, H., Hoshino, K., Maemondo, M., Mizuguchi, H., Hayakawa, T., Matsumoto, K., Nakamura, T., Nukiwa, T. and Saijo, Y. (2007) Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther., 14, 894–903
CrossRef
Pubmed
Google scholar
|
[114] |
Seo, S. H., Kim, K. S., Park, S. H., Suh, Y. S., Kim, S. J., Jeun, S. S. and Sung, Y. C. (2011) The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther., 18, 488–495
CrossRef
Pubmed
Google scholar
|
[115] |
Kosaka, H., Ichikawa, T., Kurozumi, K., Kambara, H., Inoue, S., Maruo, T., Nakamura, K., Hamada, H. and Date, I. (2012) Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther., 19, 572–578
CrossRef
Pubmed
Google scholar
|
[116] |
Zhao, Y., Lam, D. H., Yang, J., Lin, J., Tham, C. K., Ng, W. H. and Wang, S. (2012) Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther., 19, 189–200
CrossRef
Pubmed
Google scholar
|
[117] |
Altaner, C., Altanerova, V., Cihova, M., Ondicova, K., Rychly, B., Baciak, L. and Mravec, B. (2014) Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int. J. Cancer, 134, 1458–1465
CrossRef
Pubmed
Google scholar
|
[118] |
Fritz, V. and Jorgensen, C. (2008) Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr. Stem Cell Res. Ther., 3, 32–42
CrossRef
Pubmed
Google scholar
|
[119] |
Li, L., Guan, Y., Liu, H., Hao, N., Liu, T., Meng, X., Fu, C., Li, Y., Qu, Q., Zhang, Y.,
CrossRef
Pubmed
Google scholar
|
[120] |
Gonçalves, M. A. F. V., de Vries, A. A. F., Holkers, M., van de Watering, M. J. M., van der Velde, I., van Nierop, G. P., Valerio, D. and Knaän-Shanzer, S. (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum. Mol. Genet., 15, 213–221
CrossRef
Pubmed
Google scholar
|
[121] |
Jia, Z., Valiunas, V., Lu, Z., Bien, H., Liu, H., Wang, H. Z., Rosati, B., Brink, P. R., Cohen, I. S. and Entcheva, E. (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol., 4, 753–760
CrossRef
Pubmed
Google scholar
|
[122] |
Zitvogel, L., Tahara, H., Robbins, P. D., Storkus, W. J., Clarke, M. R., Nalesnik, M. A. and Lotze, M. T. (1995) Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts. J. Immunol., 155, 1393–1403
Pubmed
|
[123] |
Lin, X., He, Y., Hou, X., Zhang, Z., Wang, R. and Wu, Q. (2016) Endothelial cells can regulate smooth muscle cells in contractile phenotype through the mir-206/arf6&ncx1/exosome axis. PLoS One, 11, e0152959
CrossRef
Pubmed
Google scholar
|
[124] |
Schukur, L., Geering, B., Charpin-El Hamri, G. and Fussenegger, M. (2015) Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med., 7, 318ra201
CrossRef
Pubmed
Google scholar
|
[125] |
Bai, P., Ye, H., Xie, M., Saxena, P., Zulewski, H., Charpin-El Hamri, G., Djonov, V. and Fussenegger, M. (2016) A synthetic biology-based device prevents liver injury in mice. J. Hepatol., 65, 84–94
CrossRef
Pubmed
Google scholar
|
[126] |
Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360
CrossRef
Pubmed
Google scholar
|
[127] |
Rössger, K., Charpin-El Hamri, G. and Fussenegger, M. (2013) Reward-based hypertension control by a synthetic brain-dopamine interface. Proc. Natl. Acad. Sci. USA, 110, 18150–18155
CrossRef
Pubmed
Google scholar
|
[128] |
Ausländer, D., Ausländer, S., Charpin-El Hamri, G., Sedlmayer, F., Müller, M., Frey, O., Hierlemann, A., Stelling, J. and Fussenegger, M. (2014) A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell, 55, 397–408
CrossRef
Pubmed
Google scholar
|
[129] |
Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2013) A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun., 4, 2825
CrossRef
Pubmed
Google scholar
|
[130] |
Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H. and Fussenegger, M. (2016) Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc. Natl. Acad. Sci. USA, 113, 1244–1249
CrossRef
Pubmed
Google scholar
|
[131] |
Gaj, T., Gersbach, C. A. and Barbas, C. F. 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397–405
CrossRef
Pubmed
Google scholar
|
[132] |
Kim, H. and Kim, J. S. (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15, 321–334
CrossRef
Pubmed
Google scholar
|
[133] |
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
CrossRef
Pubmed
Google scholar
|
[134] |
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A.,
CrossRef
Pubmed
Google scholar
|
[135] |
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31, 839–843
CrossRef
Pubmed
Google scholar
|
[136] |
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31, 822–826
CrossRef
Pubmed
Google scholar
|
[137] |
Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y.,
CrossRef
Pubmed
Google scholar
|
[138] |
Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., Hwang, J., Kim, J. I., and Kim, J. S. (2015) Digenome-seq: Genome-wide profiling of crispr-cas9 off-target effects in human cells. Nat. Methods. 12, 237–243
|
[139] |
Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J. and Root, D. E. (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol., 32, 1262–1267
CrossRef
Pubmed
Google scholar
|
[140] |
Kiani, S., Chavez, A., Tuttle, M., Hall, R. N., Chari, R., Ter-Ovanesyan, D., Qian, J., Pruitt, B. W., Beal, J., Vora, S.,
CrossRef
Pubmed
Google scholar
|
[141] |
Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification. Nat. Methods, 11, 122–123
CrossRef
Pubmed
Google scholar
|
[142] |
Xu, H., Xiao, T., Chen, C. H., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S.,
CrossRef
Pubmed
Google scholar
|
[143] |
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838
CrossRef
Pubmed
Google scholar
|
[144] |
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 24, 132–141
CrossRef
Pubmed
Google scholar
|
[145] |
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32, 279–284
CrossRef
Pubmed
Google scholar
|
[146] |
Kim, S., Kim, D., Cho, S. W., Kim, J. and Kim, J. S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 24, 1012–1019
CrossRef
Pubmed
Google scholar
|
[147] |
Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K. and Kim, H. (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res., 24, 1020–1027
CrossRef
Pubmed
Google scholar
|
[148] |
Duportet, X., Wroblewska, L., Guye, P., Li, Y., Eyquem, J., Rieders, J., Rimchala, T., Batt, G. and Weiss, R. (2014) A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res., 42, 13440–13451
CrossRef
Pubmed
Google scholar
|
[149] |
Tebas, P., Stein, D., Tang, W. W., Frank, I., Wang, S. Q., Lee, G., Spratt, S. K., Surosky, R. T., Giedlin, M. A., Nichol, G.,
CrossRef
Pubmed
Google scholar
|
[150] |
Menger, L., Sledzinska, A., Bergerhoff, K., Vargas, F. A., Smith, J., Poirot, L., Pule, M., Herrero, J., Peggs, K. S. and Quezada, S. A. (2016) Talen-mediated inactivation of pd-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Cancer Res., 76, 2087–2093
CrossRef
Pubmed
Google scholar
|
[151] |
Cyranoski, D. (2016) Chinese scientists to pioneer first human CRISPR trial. Nature, 535, 476–477
CrossRef
Pubmed
Google scholar
|
[152] |
Kazuki, Y. and Oshimura, M. (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol. Ther., 19, 1591–1601
CrossRef
Pubmed
Google scholar
|
[153] |
Thomas, C. E., Ehrhardt, A. and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 4, 346–358
CrossRef
Pubmed
Google scholar
|
[154] |
Rios, H. F., Lin, Z., Oh, B., Park, C. H. and Giannobile, W. V. (2011) Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J. Periodontol., 82, 1223–1237
CrossRef
Pubmed
Google scholar
|
[155] |
Gabriel, R., Schmidt, M. and von Kalle, C. (2012) Integration of retroviral vectors. Curr. Opin. Immunol., 24, 592–597
CrossRef
Pubmed
Google scholar
|
[156] |
Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R. and Wixon, J. (2013) Gene therapy clinical trials worldwide to 2012‒an update. J. Gene Med., 15, 65–77
CrossRef
Pubmed
Google scholar
|
[157] |
Kumar, M., Keller, B., Makalou, N. and Sutton, R. E. (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther., 12, 1893–1905
CrossRef
Pubmed
Google scholar
|
[158] |
Sinn, P. L., Sauter, S. L. and McCray, P. B. Jr. (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors–design, biosafety, and production. Gene Ther., 12, 1089–1098
CrossRef
Pubmed
Google scholar
|
[159] |
Mátrai, J., Chuah, M. K. and VandenDriessche, T. (2010) Recent advances in lentiviral vector development and applications. Mol. Ther., 18, 477–490
CrossRef
Pubmed
Google scholar
|
[160] |
Breckpot, K., Aerts, J. L. and Thielemans, K. (2007) Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther., 14, 847–862
CrossRef
Pubmed
Google scholar
|
[161] |
Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Ponzoni, M., Bartholomae, C., Sergi, L. S., Benedicenti, F., Ambrosi, A., Di Serio, C.,
CrossRef
Pubmed
Google scholar
|
[162] |
Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K.,
CrossRef
Pubmed
Google scholar
|
[163] |
Winslow, M. M., Dayton, T. L., Verhaak, R. G. W., Kim-Kiselak, C., Snyder, E. L., Feldser, D. M., Hubbard, D. D., DuPage, M. J., Whittaker, C. A., Hoersch, S.,
CrossRef
Pubmed
Google scholar
|
[164] |
Santoni de Sio, F. R., Cascio, P., Zingale, A., Gasparini, M. and Naldini, L. (2006) Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood, 107, 4257–4265
CrossRef
Pubmed
Google scholar
|
[165] |
Kay, M. A. (2011) State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet., 12, 316–328
CrossRef
Pubmed
Google scholar
|
[166] |
Partridge, K. A. and Oreffo, R. O. C. (2004) Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng., 10, 295–307
CrossRef
Pubmed
Google scholar
|
[167] |
Douglas, J. T. (2007) Adenoviral vectors for gene therapy. Mol. Biotechnol., 36, 71–80
CrossRef
Pubmed
Google scholar
|
[168] |
Brunetti-Pierri, N. and Ng, P. (2009) Progress towards liver and lung-directed gene therapy with helper-dependent adenoviral vectors. Curr. Gene Ther., 9, 329–340
CrossRef
Pubmed
Google scholar
|
[169] |
McCaffrey, A. P., Fawcett, P., Nakai, H., McCaffrey, R. L., Ehrhardt, A., Pham, T. T. T., Pandey, K., Xu, H., Feuss, S., Storm, T. A.,
CrossRef
Pubmed
Google scholar
|
[170] |
Ramseier, C. A., Abramson, Z. R., Jin, Q. and Giannobile, W. V. (2006) Gene therapeutics for periodontal regenerative medicine. Dent. Clin. North Am., 50, 245–263
CrossRef
Pubmed
Google scholar
|
[171] |
Wu, Z., Yang, H. and Colosi, P. (2010) Effect of genome size on AAV vector packaging. Mol. Ther., 18, 80–86
CrossRef
Pubmed
Google scholar
|
[172] |
Samulski, R. J. and Muzyczka, N. (2014) Aav-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol., 1, 427–451
CrossRef
Pubmed
Google scholar
|
[173] |
Inagaki, K., Piao, C., Kotchey, N. M., Wu, X. and Nakai, H. (2008) Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J. Virol., 82, 9513–9524
CrossRef
Pubmed
Google scholar
|
[174] |
Cossu, G. and Sampaolesi, M. (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol. Med., 13, 520–526
CrossRef
Pubmed
Google scholar
|
[175] |
McCarty, D. M., Monahan, P. E. and Samulski, R. J. (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther., 8, 1248–1254
CrossRef
Pubmed
Google scholar
|
[176] |
Donsante, A., Miller, D. G., Li, Y., Vogler, C., Brunt, E. M., Russell, D. W. and Sands, M. S. (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science, 317, 477
CrossRef
Pubmed
Google scholar
|
[177] |
Nathwani, A. C., Tuddenham, E. G. D., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D. C., Chowdary, P., Riddell, A., Pie, A. J., Harrington, C.,
CrossRef
Pubmed
Google scholar
|
[178] |
Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R. and Anderson, D. G. (2014) Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 15, 541–555
CrossRef
Pubmed
Google scholar
|
[179] |
Pack, D. W., Hoffman, A. S., Pun, S. and Stayton, P. S. (2005) Design and development of polymers for gene delivery. Nat. Rev. Drug Discov., 4, 581–593
CrossRef
Pubmed
Google scholar
|
[180] |
Mintzer, M. A. and Simanek, E. E. (2009) Nonviral vectors for gene delivery. Chem. Rev., 109, 259–302
CrossRef
Pubmed
Google scholar
|
[181] |
Lee, D. E., Koo, H., Sun, I. C., Ryu, J. H., Kim, K. and Kwon, I. C. (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 41, 2656–2672
CrossRef
Pubmed
Google scholar
|
[182] |
Alexis, F., Pridgen, E. M., Langer, R. and Farokhzad, O. C. (2010) Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 197, 55–86
CrossRef
Pubmed
Google scholar
|
[183] |
Putnam, D. (2006) Polymers for gene delivery across length scales. Nat. Mater., 5, 439–451
CrossRef
Pubmed
Google scholar
|
[184] |
Graf, T. and Enver, T. (2009) Forcing cells to change lineages. Nature, 462, 587–594
CrossRef
Pubmed
Google scholar
|
[185] |
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147
CrossRef
Pubmed
Google scholar
|
[186] |
Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676
CrossRef
Pubmed
Google scholar
|
[187] |
Tabar, V. and Studer, L. (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet., 15, 82–92
CrossRef
Pubmed
Google scholar
|
[188] |
Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. and Speck, N. A. (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457, 887–891
CrossRef
Pubmed
Google scholar
|
[189] |
Ieda, M., Fu, J.-D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G. and Srivastava, D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386
CrossRef
Pubmed
Google scholar
|
[190] |
Saxena, P., Heng, B. C., Bai, P., Folcher, M., Zulewski, H. and Fussenegger, M. (2016) A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat. Commun., 7, 11247
CrossRef
Pubmed
Google scholar
|
[191] |
Wright, C. M., Wright, R. C., Eshleman, J. R. and Ostermeier, M. (2011) A protein therapeutic modality founded on molecular regulation. Proc. Natl. Acad. Sci. USA, 108, 16206–16211
CrossRef
Pubmed
Google scholar
|
[192] |
Culler, S. J., Hoff, K. G. and Smolke, C. D. (2010) Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science, 330, 1251–1255
CrossRef
Pubmed
Google scholar
|
[193] |
Xie, M. and Fussenegger, M. (2018) Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol., 19, 507–525
CrossRef
Pubmed
Google scholar
|
[194] |
Wang, X. W., Hu, L. F., Hao, J., Liao, L. Q., Chiu, Y. T., Shi, M. and Wang, Y. (2019) A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol., 21, 522–530
CrossRef
Pubmed
Google scholar
|
[195] |
Zhang, M. X., Hong, S. S., Cai, Q. Q., Zhang, M., Chen, J., Zhang, X. Y. and Xu, C. J. (2018) Transcriptional control of the MUC16 promoter facilitates follicle-stimulating hormone peptide-conjugated shRNA nanoparticle-mediated inhibition of ovarian carcinoma in vivo. Drug Deliv., 25, 797–806
CrossRef
Pubmed
Google scholar
|
[196] |
Nissim, L., Wu, M. R., Pery, E., Binder-Nissim, A., Suzuki, H. I., Stupp, D., Wehrspaun, C., Tabach, Y., Sharp, P. A. and Lu, T. K. (2017) Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell, 171, 1138–1150.e15
CrossRef
Pubmed
Google scholar
|
[197] |
Angelici, B., Mailand, E., Haefliger, B. and Benenson, Y. (2016) Synthetic biology platform for sensing and integrating endogenous transcriptional inputs in mammalian cells. Cell Rep., 16, 2525–2537
CrossRef
Pubmed
Google scholar
|
[198] |
Jüttner, J., Szabo, A., Gross-Scherf, B., Morikawa, R. K., Rompani, S. B., Hantz, P., Szikra, T., Esposti, F., Cowan, C. S., Bharioke, A.,
CrossRef
Pubmed
Google scholar
|
[199] |
Wu, M. R., Nissim, L., Stupp, D., Pery, E., Binder-Nissim, A., Weisinger, K., Enghuus, C., Palacios, S. R., Humphrey, M., Zhang, Z.,
CrossRef
Pubmed
Google scholar
|
[200] |
Cheng, J. K., Morse, N. J., Wagner, J. M., Tucker, S. K. and Alper, H. S. (2019) Design and evaluation of synthetic terminators for regulating mammalian cell transgene expression. ACS Synth. Biol., 8, 1263–1275
CrossRef
Pubmed
Google scholar
|
[201] |
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef
Pubmed
Google scholar
|
[202] |
Greber, D., El-Baba, M. D. and Fussenegger, M. (2008) Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res., 36, e101
CrossRef
Pubmed
Google scholar
|
[203] |
Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R. and Collins, J. J. (2004) Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA, 101, 8414–8419
CrossRef
Pubmed
Google scholar
|
[204] |
Kramer, B. P., Viretta, A. U., Baba, M. D.-E., Aubel, D., Weber, W. and Fussenegger, M. (2004) An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol., 22, 867–870
CrossRef
Pubmed
Google scholar
|
[205] |
Wroblewska, L., Kitada, T., Endo, K., Siciliano, V., Stillo, B., Saito, H. and Weiss, R. (2015) Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol., 33, 839–841
CrossRef
Pubmed
Google scholar
|
[206] |
Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311
CrossRef
Pubmed
Google scholar
|
[207] |
Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311
CrossRef
Pubmed
Google scholar
|
[208] |
Liu, P. Q., Rebar, E. J., Zhang, L., Liu, Q., Jamieson, A. C., Liang, Y., Qi, H., Li, P. X., Chen, B., Mendel, M. C.,
CrossRef
Pubmed
Google scholar
|
[209] |
Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W.,
CrossRef
Pubmed
Google scholar
|
[210] |
Perez-Pinera, P., Ousterout, D. G., Brunger, J. M., Farin, A. M., Glass, K. A., Guilak, F., Crawford, G. E., Hartemink, A. J. and Gersbach, C. A. (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods, 10, 239–242
CrossRef
Pubmed
Google scholar
|
[211] |
Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P. and Knoblich, J. A. (2013) Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379
CrossRef
Pubmed
Google scholar
|
[212] |
Kalos, M. and June, C. H. (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity, 39, 49–60
CrossRef
Pubmed
Google scholar
|
[213] |
Miller, J. F. A. P. and Sadelain, M. (2015) The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell, 27, 439–449
CrossRef
Pubmed
Google scholar
|
[214] |
Savoldo, B., Ramos, C. A., Liu, E., Mims, M. P., Keating, M. J., Carrum, G., Kamble, R. T., Bollard, C. M., Gee, A. P., Mei, Z.,
CrossRef
Pubmed
Google scholar
|
[215] |
Finney, H. M., Lawson, A. D. G., Bebbington, C. R. and Weir, A. N. C. (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol, 161, 2791–2797
Pubmed
|
[216] |
Kochenderfer, J. N., Dudley, M. E., Feldman, S. A., Wilson, W. H., Spaner, D. E., Maric, I., Stetler-Stevenson, M., Phan, G. Q., Hughes, M. S., Sherry, R. M.,
CrossRef
Pubmed
Google scholar
|
[217] |
Brentjens, R. J., Rivière, I., Park, J. H., Davila, M. L., Wang, X., Stefanski, J., Taylor, C., Yeh, R., Bartido, S., Borquez-Ojeda, O.,
CrossRef
Pubmed
Google scholar
|
[218] |
Duval, L., Schmidt, H., Kaltoft, K., Fode, K., Jensen, J. J., Sorensen, S. M., Nishimura, M. I. and von der Maase, H. (2006) Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma. Clin. Cancer Res., 12, 1229–1236
CrossRef
Pubmed
Google scholar
|
[219] |
Ma, Q., Safar, M., Holmes, E., Wang, Y., Boynton, A. L. and Junghans, R. P. (2004) Anti-prostate specific membrane antigen designer T cells for prostate cancer therapy. Prostate, 61, 12–25
CrossRef
Pubmed
Google scholar
|
[220] |
Westwood, J. A., Smyth, M. J., Teng, M. W. L., Moeller, M., Trapani, J. A., Scott, A. M., Smyth, F. E., Cartwright, G. A., Power, B. E., Hönemann, D.,
CrossRef
Pubmed
Google scholar
|
[221] |
Sharifzadeh, Z., Rahbarizadeh, F., Shokrgozar, M. A., Ahmadvand, D., Mahboudi, F., Jamnani, F. R. and Moghimi, S. M. (2013) Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett., 334, 237–244
CrossRef
Pubmed
Google scholar
|
[222] |
Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F.,
CrossRef
Pubmed
Google scholar
|
[223] |
Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S. S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M.,
CrossRef
Pubmed
Google scholar
|
[224] |
Fedorov, V. D., Themeli, M. and Sadelain, M. (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med., 5, 215ra172
CrossRef
Pubmed
Google scholar
|
[225] |
Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. and Lim, W. A. (2015) Remote control of therapeutic t cells through a small molecule-gated chimeric receptor. Science, 350, aab4077
|
[226] |
Straathof, K. C., Pulè, M. A., Yotnda, P., Dotti, G., Vanin, E. F., Brenner, M. K., Heslop, H. E., Spencer, D. M. and Rooney, C. M. (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood, 105, 4247–4254
CrossRef
Pubmed
Google scholar
|
[227] |
Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. and Sadelain, M. (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol., 31, 71–75
CrossRef
Pubmed
Google scholar
|
[228] |
Zhang, L., Kerkar, S. P., Yu, Z., Zheng, Z., Yang, S., Restifo, N. P., Rosenberg, S. A. and Morgan, R. A. (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol. Ther., 19, 751–759
CrossRef
Pubmed
Google scholar
|
[229] |
John, L. B., Kershaw, M. H. and Darcy, P. K. (2013) Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. OncoImmunology, 2, e26286
CrossRef
Pubmed
Google scholar
|
[230] |
Tamada, K., Geng, D., Sakoda, Y., Bansal, N., Srivastava, R. and Li, Z. (2013) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res., 19, 951
|
[231] |
Urbanska, K., Lanitis, E., Poussin, M., Lynn, R. C., Gavin, B. P., Kelderman, S., Yu, J., Scholler, N. and Powell, D. J. Jr. (2012) A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res., 72, 1844–1852
CrossRef
Pubmed
Google scholar
|
[232] |
Morsut, L., Roybal, K. T., Xiong, X., Gordley, R. M., Coyle, S. M., Thomson, M. and Lim, W. A. (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell, 164, 780–791
CrossRef
Pubmed
Google scholar
|
[233] |
Daringer, N. M., Dudek, R. M., Schwarz, K. A. and Leonard, J. N. (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth. Biol., 3, 892–902
CrossRef
Pubmed
Google scholar
|
[234] |
Roybal, K. T., Rupp, L. J., Morsut, L., Walker, W. J., McNally, K. A., Park, J. S. and Lim, W. A. (2016) Precision tumor recognition by t cells with combinatorial antigen-sensing circuits. Cell, 164, 770–779
CrossRef
Pubmed
Google scholar
|
[235] |
Qudrat, A., Mosabbir, A. A. and Truong, K. (2017) Engineered proteins program mammalian cells to target inflammatory disease sites. Cell Chem. Biol., 24, 703–711.e2
CrossRef
Pubmed
Google scholar
|
[236] |
Ye, H., Xie, M., Xue, S., Charpin-El Hamri, G., Yin, J., Zulewski, H., and Fussenegger, M. (2017) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng., 1, 0005
|
[237] |
Barnea, G., Strapps, W., Herrada, G., Berman, Y., Ong, J., Kloss, B., Axel, R. and Lee, K. J. (2008) The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA, 105, 64–69
CrossRef
Pubmed
Google scholar
|
[238] |
Baeumler, T. A., Ahmed, A. A. and Fulga, T. A. (2017) Engineering synthetic signaling pathways with programmable dcas9-based chimeric receptors. Cell Rep., 20, 2639–2653
CrossRef
Pubmed
Google scholar
|
[239] |
Daringer, N. M., Dudek, R. M., Schwarz, K. A. and Leonard, J. N. (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth. Biol., 3, 892–902
CrossRef
Pubmed
Google scholar
|
[240] |
Schwarz, K. A., Daringer, N. M., Dolberg, T. B. and Leonard, J. N. (2017) Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol., 13, 202–209
CrossRef
Pubmed
Google scholar
|
[241] |
Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360
CrossRef
Pubmed
Google scholar
|
[242] |
Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2013) A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun., 4, 2825
CrossRef
Pubmed
Google scholar
|
[243] |
Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2014) Bile acid-controlled transgene expression in mammalian cells and mice. Metab. Eng., 21, 81–90
CrossRef
Pubmed
Google scholar
|
[244] |
Wright, C. M., Wright, R. C., Eshleman, J. R. and Ostermeier, M. (2011) A protein therapeutic modality founded on molecular regulation. Proc. Natl. Acad. Sci. USA, 108, 16206–16211
CrossRef
Pubmed
Google scholar
|
[245] |
Deisseroth, K. (2011) Optogenetics. Nat. Methods, 8, 26–29
CrossRef
Pubmed
Google scholar
|
[246] |
Ye, H., Daoud-El Baba, M., Peng, R. W. and Fussenegger, M. (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science, 332, 1565–1568
CrossRef
Pubmed
Google scholar
|
[247] |
Kim, T., Folcher, M., Doaud-El Baba, M. and Fussenegger, M. (2015) A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. Int. Ed. Engl., 54, 5933–5938
CrossRef
Pubmed
Google scholar
|
[248] |
Levin, M. (2014) Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell, 25, 3835–3850
CrossRef
Pubmed
Google scholar
|
[249] |
Krawczyk, K., Xue, S., Buchmann, P., Charpin-El-Hamri, G., Saxena, P., Hussherr, M.-D., Shao, J., Ye, H., Xie, M. and Fussenegger, M. (2020) Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science, 368, 993–1001
CrossRef
Pubmed
Google scholar
|
[250] |
Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S.,Friedman, J.M. (2015) Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92– 98
|
[251] |
Shao, J., Xue, S., Yu, G., Yu, Y., Yang, X., Bai, Y., Zhu, S., Yang, L., Yin, J., Wang, Y.,
CrossRef
Pubmed
Google scholar
|
[252] |
Brophy, J. A. and Voigt, C. A. (2014) Principles of genetic circuit design. Nat. Methods, 11, 508–520
CrossRef
Pubmed
Google scholar
|
[253] |
Wei, D.-X., Dao, J.-W. and Chen, G.-Q. (2018) A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater., 30, 1802273
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |