Recent progress in research and application of engineered implanted cells for biomedical applications

Tianying Chen, Xue Zhang, Qiong Wu

PDF(2103 KB)
PDF(2103 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 267-291. DOI: 10.15302/J-QB-021-0253
REVIEW
REVIEW

Recent progress in research and application of engineered implanted cells for biomedical applications

Author information +
History +

Abstract

Background: The core concept of cell engineering is the use of synthetic biological methods to engineer and design genetically modified cells with specific functions, which has revolutionized the biotechnology industry and cell therapy. Implanted cells play an important role in the cell therapy, but the currently used implanted cells are unable to fully meet the needs of researchers and clinicians. Therefore, the construction of engineered implanted cells has become a new research area, with many groups exploring the working principles of implanted cells, allowing them to better exert their repair function.

Results: Based on the existing cell engineering platforms, this paper summarizes the main types of chassis cells used in implanted cell engineering, progress in the development of gene editing tools and delivery systems, as well as strategies for the construction of engineered implanted cells.

Conclusions: The rational use of synthetic biology methods to program and control the function of implanted cells with high spatiotemporal accuracy provides new ideas for the development of cell therapy, and opens up new possibilities for exploring the mechanism of implanted cell action to allow them to better exert their role in promoting the progress of repair.

Author summary

The engineering transformation allows implanted cells to achieve optimal therapeutic effect in cell therapy. This review introduces the application of engineered implanted cells in the cell therapy, and how to equip the chassis cell with new functions to enhance or redirect their natural ability to achieve corresponding medical effects. We expect this review to draw attention to the use of synthetic biology ideas in the field of cell therapy that the rational use of synthetic biology methods provides new ideas for the development of cell therapy and new possibilities for exploring the mechanism of the implanted cell.

Graphical abstract

Keywords

chassis cells / cell therapy / engineered implanted cells / synthetic biology

Cite this article

Download citation ▾
Tianying Chen, Xue Zhang, Qiong Wu. Recent progress in research and application of engineered implanted cells for biomedical applications. Quant. Biol., 2021, 9(3): 267‒291 https://doi.org/10.15302/J-QB-021-0253

References

[1]
Ahrlund-Richter, L., De Luca, M., Marshak, D. R., Munsie, M., Veiga, A. and Rao, M. (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell, 4, 20–26
CrossRef Pubmed Google scholar
[2]
Wood, J. A., Colletti, E., Mead, L. E., Ingram, D., Porada, C. D., Zanjani, E. D., Yoder, M. C. and Almeida-Porada, G. (2012) Distinct contribution of human cord blood-derived endothelial colony forming cells to liver and gut in a fetal sheep model. Hepatology, 56, 1086–1096
CrossRef Pubmed Google scholar
[3]
Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., Hoskins, E. E., Kalinichenko, V. V., Wells, S. I., Zorn, A. M., (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470, 105–109
CrossRef Pubmed Google scholar
[4]
Fan, C., Jia, L., Zheng, Y., Jin, C., Liu, Y., Liu, H. and Zhou, Y. (2016) Mir-34a promotes osteogenic differentiation of human adipose-derived stem cells via the rbp2/notch1/cyclin d1 coregulatory network. Stem Cell Reports, 7, 236–248
CrossRef Pubmed Google scholar
[5]
Li, Y., Liu, W., Liu, F., Zeng, Y., Zuo, S., Feng, S., Qi, C., Wang, B., Yan, X., Khademhosseini, A., (2014) Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proc. Natl. Acad. Sci. USA, 111, 13511–13516
CrossRef Pubmed Google scholar
[6]
Plein, A., Fantin, A., Denti, L., Pollard, J. W. and Ruhrberg, C. (2018) Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature, 562, 223–228
CrossRef Pubmed Google scholar
[7]
Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S. S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M., (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 6, 224ra25
CrossRef Pubmed Google scholar
[8]
Garfall, A. L., Maus, M. V., Hwang, W. T., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Zheng, Z., Vogl, D. T., Cohen, A. D., Weiss, B. M., (2015) Chimeric antigen receptor T cells against cd19 for multiple myeloma. N. Engl. J. Med., 373, 1040–1047
CrossRef Pubmed Google scholar
[9]
Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., Sommermeyer, D., Melville, K., Pender, B., Budiarto, T. M., (2016) CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest., 126, 2123–2138
CrossRef Pubmed Google scholar
[10]
Posey, A. D. Jr, Schwab, R. D., Boesteanu, A. C., Steentoft, C., Mandel, U., Engels, B., Stone, J. D., Madsen, T. D., Schreiber, K., Haines, K. M., (2016) Engineered CAR T cells targeting the cancer-associated tn-glycoform of the membrane mucin muc1 control adenocarcinoma. Immunity, 44, 1444–1454
CrossRef Pubmed Google scholar
[11]
Fry, T. J., Shah, N. N., Orentas, R. J., Stetler-Stevenson, M., Yuan, C. M., Ramakrishna, S., Wolters, P., Martin, S., Delbrook, C., Yates, B., (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med., 24, 20–28
CrossRef Pubmed Google scholar
[12]
Kim, M. Y., Yu, K. R., Kenderian, S. S., Ruella, M., Chen, S., Shin, T. H., Aljanahi, A. A., Schreeder, D., Klichinsky, M., Shestova, O., (2018) Genetic inactivation of cd33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell, 173, 1439–1453.e19
CrossRef Pubmed Google scholar
[13]
Li, Y., Hermanson, D. L., Moriarity, B. S. and Kaufman, D. S. (2018) Human ipsc-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 23, 181–192.e5
CrossRef Pubmed Google scholar
[14]
Chen, J., López-Moyado, I. F., Seo, H., Lio, C. J., Hempleman, L. J., Sekiya, T., Yoshimura, A., Scott-Browne, J. P. and Rao, A. (2019) NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 567, 530–534
CrossRef Pubmed Google scholar
[15]
Xie, Y. J., Dougan, M., Jailkhani, N., Ingram, J., Fang, T., Kummer, L., Momin, N., Pishesha, N., Rickelt, S., Hynes, R. O., (2019) Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl. Acad. Sci. USA, 116, 7624–7631
CrossRef Pubmed Google scholar
[16]
Al-Hasani, K., Pfeifer, A., Courtney, M., Ben-Othman, N., Gjernes, E., Vieira, A., Druelle, N., Avolio, F., Ravassard, P., Leuckx, G., (2013) Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev. Cell, 26, 86–100
CrossRef Pubmed Google scholar
[17]
Hsieh, M. M., Fitzhugh, C. D., Weitzel, R. P., Link, M. E., Coles, W. A., Zhao, X., Rodgers, G. P., Powell, J. D. and Tisdale, J. F. (2014) Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA, 312, 48–56
CrossRef Pubmed Google scholar
[18]
Epelman, S., Lavine, K. J., Beaudin, A. E., Sojka, D. K., Carrero, J. A., Calderon, B., Brija, T., Gautier, E. L., Ivanov, S., Satpathy, A. T., (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity, 40, 91–104
CrossRef Pubmed Google scholar
[19]
Leibman, R. S., Richardson, M. W., Ellebrecht, C. T., Maldini, C. R., Glover, J. A., Secreto, A. J., Kulikovskaya, I., Lacey, S. F., Akkina, S. R., Yi, Y., (2017) Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog., 13, e1006613
CrossRef Pubmed Google scholar
[20]
Kou, X., Xu, X., Chen, C., Sanmillan, M. L., Cai, T., Zhou, Y., Giraudo, C., Le, A. and Shi, S. (2018) The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med., 10, eaai8524
CrossRef Pubmed Google scholar
[21]
Kansal, R., Richardson, N., Neeli, I., Khawaja, S., Chamberlain, D., Ghani, M., Ghani, Q. U., Balazs, L., Beranova-Giorgianni, S., Giorgianni, F., (2019) Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med., 11, eaav1648
CrossRef Pubmed Google scholar
[22]
Weick, J. P., Liu, Y. and Zhang, S. C. (2011) Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proc. Natl. Acad. Sci. USA, 108, 20189–20194
CrossRef Pubmed Google scholar
[23]
Xu, J., Wang, D., Liu, D., Fan, Z., Zhang, H., Liu, O., Ding, G., Gao, R., Zhang, C., Ding, Y., (2012) Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood, 120, 3142–3151
CrossRef Pubmed Google scholar
[24]
Gupta, N., Henry, R. G., Strober, J., Kang, S. M., Lim, D. A., Bucci, M., Caverzasi, E., Gaetano, L., Mandelli, M. L., Ryan, T., (2012) Neural stem cell engraftment and myelination in the human brain. Sci. Transl. Med., 4, 155ra137
CrossRef Pubmed Google scholar
[25]
Corti, S., Nizzardo, M., Simone, C., Falcone, M., Nardini, M., Ronchi, D., Donadoni, C., Salani, S., Riboldi, G., Magri, F., (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci. Transl. Med., 4, 165ra162
CrossRef Pubmed Google scholar
[26]
Aloisio, G. M., Nakada, Y., Saatcioglu, H. D., Peña, C. G., Baker, M. D., Tarnawa, E. D., Mukherjee, J., Manjunath, H., Bugde, A., Sengupta, A. L., (2014) PAX7 expression defines germline stem cells in the adult testis. J. Clin. Invest., 124, 3929–3944
CrossRef Pubmed Google scholar
[27]
Kang, X., Xu, H., Teng, S., Zhang, X., Deng, Z., Zhou, L., Zuo, P., Liu, B., Liu, B., Wu, Q., (2014) Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo. Proc. Natl. Acad. Sci. USA., 111, 15804–15809
CrossRef Pubmed Google scholar
[28]
Cyranoski, D. (2018) ‘Reprogrammed’ stem cells implanted into patient with parkinson’s disease. Nature, doi: 10.1038/d41586-018-07407-9
[29]
Atala, A. (2008) Advances in tissue and organ replacement. Curr. Stem Cell Res. Ther., 3, 21–31
CrossRef Pubmed Google scholar
[30]
Berthiaume, F., Maguire, T. J. and Yarmush, M. L. (2011) Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomol. Eng., 2, 403–430
CrossRef Pubmed Google scholar
[31]
Stoltz, J. F., de Isla, N., Li, Y. P., Bensoussan, D., Zhang, L., Huselstein, C., Chen, Y., Decot, V., Magdalou, J., Li, N., (2015) Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells Int., 2015, 734731
CrossRef Pubmed Google scholar
[32]
Zhao, Z., Zhu, X., Cui, K., Mancuso, J., Federley, R., Fischer, K., Teng, G., Mittal, V., Gao, D., Zhao, H., (2016) In vivo visualization and characterization of epithelial–mesenchymal transition in breast tumors. Cancer Res., 76, 2094–2104
CrossRef Pubmed Google scholar
[33]
Guan, X., Avci-Adali, M., Alarçin, E., Cheng, H., Kashaf, S. S., Li, Y., Chawla, A., Jang, H. L. and Khademhosseini, A. (2017) Development of hydrogels for regenerative engineering. Biotechnol. J., 12, 1600394
CrossRef Pubmed Google scholar
[34]
Gkountela, S., Castro-Giner, F., Szczerba, B. M., Vetter, M., Landin, J., Scherrer, R., Krol, I., Scheidmann, M. C., Beisel, C., Stirnimann, C. U., (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell, 176, 98–112.e14
CrossRef Pubmed Google scholar
[35]
Gomes, M. E. and Reis, R. L. (2004) Tissue engineering: key elements and some trends. Macromol. Biosci., 4, 737–742
CrossRef Pubmed Google scholar
[36]
Chocholata, P., Kulda, V. and Babuska, V. (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel), 12, 568
CrossRef Pubmed Google scholar
[37]
Schwarz, K. A. and Leonard, J. N. (2016) Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev., 105, 55–65
CrossRef Pubmed Google scholar
[38]
Lim, W. A. and June, C. H. (2017) The principles of engineering immune cells to treat cancer. Cell, 168, 724–740
CrossRef Pubmed Google scholar
[39]
Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 467, 318–322
CrossRef Pubmed Google scholar
[40]
Hoggatt, J. (2016) Gene therapy for “bubble boy” disease. Cell, 166, 263
CrossRef Pubmed Google scholar
[41]
de Lorenzo, V., Krasnogor, N. and Schmidt, M. (2021) For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! N. Biotechnol., 60, 44–51
CrossRef Pubmed Google scholar
[42]
Li, M. D., Atkins, H. and Bubela, T. (2014) The global landscape of stem cell clinical trials. Regen. Med., 9, 27–39
CrossRef Pubmed Google scholar
[43]
Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O. and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med., 331, 889–895
CrossRef Pubmed Google scholar
[44]
Mcheik, J. N., Barrault, C., Levard, G., Morel, F., Bernard, F. X. and Lecron, J. C. (2014) Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast. Reconstr. Surg. Glob. Open, 2, e218
CrossRef Pubmed Google scholar
[45]
Weissman, I. L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 287, 1442–1446
CrossRef Pubmed Google scholar
[46]
Garbern, J. C. and Lee, R. T. (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell, 12, 689–698
CrossRef Pubmed Google scholar
[47]
Ellison, G. M., Vicinanza, C., Smith, A. J., Aquila, I., Leone, A., Waring, C. D., Henning, B. J., Stirparo, G. G., Papait, R., Scarfò, M., (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell, 154, 827–842
CrossRef Pubmed Google scholar
[48]
Huch, M., Gehart, H., van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M. M., Ellis, E., van Wenum, M., Fuchs, S. A., de Ligt, J., (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 160, 299–312
CrossRef Pubmed Google scholar
[49]
Godfrey, K. J., Mathew, B., Bulman, J. C., Shah, O., Clement, S. and Gallicano, G. I. (2012) Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet. Med., 29, 14–23
CrossRef Pubmed Google scholar
[50]
De Trizio, E. and Brennan, C. S. (2004) The business of human embryonic stem cell research and an international analysis of relevant laws. J Biolaw Bus, 7, 14–22
Pubmed
[51]
Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O. and Jaenisch, R. (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 105, 5856–5861
CrossRef Pubmed Google scholar
[52]
Blasco, M. A., Serrano, M. and Fernandez-Capetillo, O. (2011) Genomic instability in iPS: time for a break. EMBO J., 30, 991–993
CrossRef Pubmed Google scholar
[53]
Wang, X., Zhang, Z. and Yao, C. (2010) Survivin is upregulated in myeloma cell lines cocultured with mesenchymal stem cells. Leuk. Res., 34, 1325–1329
CrossRef Pubmed Google scholar
[54]
Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M. and Rameshwar, P. (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol., 184, 5885–5894
CrossRef Pubmed Google scholar
[55]
Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M. and Stojkovic, M. (2018) Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci., 15, 36–45
CrossRef Pubmed Google scholar
[56]
Vormittag, P., Gunn, R., Ghorashian, S. and Veraitch, F. S. (2018) A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol., 53, 164–181
CrossRef Pubmed Google scholar
[57]
Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. and June, C. H. (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med., 365, 725–733
CrossRef Pubmed Google scholar
[58]
Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Ye, C. J., Lim, W. A. and Marson, A. (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep., 7, 737
CrossRef Pubmed Google scholar
[59]
Legut, M., Dolton, G., Mian, A. A., Ottmann, O. G. and Sewell, A. K. (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood, 131, 311–322
CrossRef Pubmed Google scholar
[60]
Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S. J., Hamieh, M., Cunanan, K. M., Odak, A., Gönen, M. and Sadelain, M. (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature, 543, 113–117
CrossRef Pubmed Google scholar
[61]
Rafiq, S., Yeku, O. O., Jackson, H. J., Purdon, T. J., van Leeuwen, D. G., Drakes, D. J., Song, M., Miele, M. M., Li, Z., Wang, P., (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol., 36, 847–856
CrossRef Pubmed Google scholar
[62]
Raj, D., Yang, M. H., Rodgers, D., Hampton, E. N., Begum, J., Mustafa, A., Lorizio, D., Garces, I., Propper, D., Kench, J. G., (2019) Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut, 68, 1052–1064
CrossRef Pubmed Google scholar
[63]
Wu, X., Shi, B., Zhang, J., Shi, Z., Di, S., Fan, M., Gao, H., Wang, H., Gu, J., Jiang, H., (2017) A fusion receptor as a safety switch, detection, and purification biomarker for adoptive transferred t cells. Mol. Ther., 25, 2270–2279
CrossRef Pubmed Google scholar
[64]
Sukumaran, S., Watanabe, N., Bajgain, P., Raja, K., Mohammed, S., Fisher, W. E., Brenner, M. K., Leen, A. M. and Vera, J. F. (2018) Enhancing the potency and specificity of engineered t cells for cancer treatment. Cancer Discov., 8, 972–987
CrossRef Pubmed Google scholar
[65]
Adachi, K., Kano, Y., Nagai, T., Okuyama, N., Sakoda, Y. and Tamada, K. (2018) IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol., 36, 346–351
CrossRef Pubmed Google scholar
[66]
Arabi, F., Torabi-Rahvar, M., Shariati, A., Ahmadbeigi, N. and Naderi, M. (2018) Antigenic targets of CAR T Cell Therapy. A retrospective view on clinical trials. Exp. Cell Res., 369, 1–10
CrossRef Pubmed Google scholar
[67]
Hartmann, J., Schüßler-Lenz, M., Bondanza, A. and Buchholz, C. J. (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med., 9, 1183–1197
CrossRef Pubmed Google scholar
[68]
Rezvani, K., Rouce, R., Liu, E. and Shpall, E. (2017) Engineering natural killer cells for cancer immunotherapy. Mol. Ther., 25, 1769–1781
CrossRef Pubmed Google scholar
[69]
Hermanson, D. L., Bendzick, L., Pribyl, L., McCullar, V., Vogel, R. I., Miller, J. S., Geller, M. A. and Kaufman, D. S. (2016) Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells, 34, 93–101
CrossRef Pubmed Google scholar
[70]
Bhargava, A., Mishra, D., Banerjee, S. and Mishra, P. K. (2012) Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy, 4, 703–718
CrossRef Pubmed Google scholar
[71]
Um, S.-J., Choi, Y. J., Shin, H.-J., Son, C. H., Park, Y.-S., Roh, M. S., Kim, Y. S., Kim, Y. D., Lee, S.-K., Jung, M. H., (2010) Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer. Lung Cancer, 70, 188–194
CrossRef Pubmed Google scholar
[72]
Alshamsan, A., Haddadi, A., Hamdy, S., Samuel, J., El-Kadi, A. O. S., Uludağ, H. and Lavasanifar, A. (2010) STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm., 7, 1643–1654
CrossRef Pubmed Google scholar
[73]
Hobo, W., Maas, F., Adisty, N., de Witte, T., Schaap, N., van der Voort, R. and Dolstra, H. (2010) siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood, 116, 4501–4511
CrossRef Pubmed Google scholar
[74]
Alvey, C. M., Spinler, K. R., Irianto, J., Pfeifer, C. R., Hayes, B., Xia, Y., Cho, S., Dingal, P. C. P. D., Hsu, J., Smith, L., (2017) Sirpa-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors. Curr. Biol., 27, 2065–2077.e6
CrossRef Pubmed Google scholar
[75]
Rodell, C. B., Arlauckas, S. P., Cuccarese, M. F., Garris, C. S., Li, R., Ahmed, M. S., Kohler, R. H., Pittet, M. J. and Weissleder, R. (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng., 2, 578–588
CrossRef Pubmed Google scholar
[76]
Kulkarni, A., Chandrasekar, V., Natarajan, S. K., Ramesh, A., Pandey, P., Nirgud, J., Bhatnagar, H., Ashok, D., Ajay, A. K. and Sengupta, S. (2018) A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng., 2, 589–599
CrossRef Pubmed Google scholar
[77]
Scharenberg, S. G., Poletto, E., Lucot, K. L., Colella, P., Sheikali, A., Montine, T. J., Porteus, M. H. and Gomez-Ospina, N. (2020) Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing. Nat. Commun., 11, 3327
CrossRef Pubmed Google scholar
[78]
Mescher, A. L. and Neff, A. W. (2005) Regenerative Capacity and The Developing Immune System. In: Regenerative medicine, pp. 39–66. Springer
[79]
Ward, P. A., Warren, J. S. and Johnson, K. J. (1988) Oxygen radicals, inflammation, and tissue injury. Free Radic. Biol. Med., 5, 403–408
CrossRef Pubmed Google scholar
[80]
Julier, Z., Park, A. J., Briquez, P. S. and Martino, M. M. (2017) Promoting tissue regeneration by modulating the immune system. Acta Biomater., 53, 13–28
CrossRef Pubmed Google scholar
[81]
Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156
CrossRef Pubmed Google scholar
[82]
Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676
CrossRef Pubmed Google scholar
[83]
Kinnaird, T., Stabile, E., Burnett, M. S., Shou, M., Lee, C. W., Barr, S., Fuchs, S. and Epstein, S. E. (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549
CrossRef Pubmed Google scholar
[84]
Nagaishi, K., Mizue, Y., Chikenji, T., Otani, M., Nakano, M., Konari, N. and Fujimiya, M. (2016) Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep., 6, 34842
CrossRef Pubmed Google scholar
[85]
Schweitzer, K. S., Johnstone, B. H., Garrison, J., Rush, N. I., Cooper, S., Traktuev, D. O., Feng, D., Adamowicz, J. J., Van Demark, M., Fisher, A. J., (2011) Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am. J. Respir. Crit. Care Med., 183, 215–225
CrossRef Pubmed Google scholar
[86]
Choi, J. B., Uchino, H., Azuma, K., Iwashita, N., Tanaka, Y., Mochizuki, H., Migita, M., Shimada, T., Kawamori, R. and Watada, H. (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia, 46, 1366–1374
CrossRef Pubmed Google scholar
[87]
Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B. S., Virag, J. I., Bartelmez, S. H., Poppa, V., (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668
CrossRef Pubmed Google scholar
[88]
Castro, R. F., Jackson, K. A., Goodell, M. A., Robertson, C. S., Liu, H. and Shine, H. D. (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science, 297, 1299
CrossRef Pubmed Google scholar
[89]
Gu, S., Huang, H., Bi, J., Yao, Y. and Wen, T. (2009) Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res., 1257, 1–9
CrossRef Pubmed Google scholar
[90]
Kumagai, G., Tsoulfas, P., Toh, S., McNiece, I., Bramlett, H. M. and Dietrich, W. D. (2013) Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp. Neurol., 248, 369–380
CrossRef Pubmed Google scholar
[91]
Deuse, T., Peter, C., Fedak, P. W. M., Doyle, T., Reichenspurner, H., Zimmermann, W. H., Eschenhagen, T., Stein, W., Wu, J. C., Robbins, R. C., (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation, 120, S247–S254
CrossRef Pubmed Google scholar
[92]
Guo, Y. H., He, J. G., Wu, J. L., Yang, L., Zhang, D. S., Tan, X. Y. and Qi, R. D. (2008) Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy, 10, 857–867
CrossRef Pubmed Google scholar
[93]
Cho, Y. H., Park, H., Cho, E. S., Kim, W. J., Kang, B. S., Park, B. Y., Kim, Y. J., Lee, Y. I., Chang, S. I. and Park, K. (2007) A novel way of therapeutic angiogenesis using an adeno-associated virus-mediated angiogenin gene transfer. Exp. Mol. Med., 39, 412–418
CrossRef Pubmed Google scholar
[94]
Smirnoff, P., Roiz, L., Angelkovitch, B., Schwartz, B. and Shoseyov, O. (2006) A recombinant human RNASET2 glycoprotein with antitumorigenic and antiangiogenic characteristics: expression, purification, and characterization. Cancer, 107, 2760–2769
CrossRef Pubmed Google scholar
[95]
Wilson, C. G., Martín-Saavedra, F. M., Vilaboa, N. and Franceschi, R. T. (2013) Advanced BMP gene therapies for temporal and spatial control of bone regeneration. J. Dent. Res., 92, 409–417
CrossRef Pubmed Google scholar
[96]
Virk, M. S., Sugiyama, O., Park, S. H., Gambhir, S. S., Adams, D. J., Drissi, H. and Lieberman, J. R. (2011) “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol. Ther., 19, 960–968
CrossRef Pubmed Google scholar
[97]
Wei, D., Qiao, R., Dao, J., Su, J., Jiang, C., Wang, X., Gao, M. and Zhong, J. (2018) Soybean lecithin-mediated nanoporous plga microspheres with highly entrapped and controlled released bmp-2 as a stem cell platform. Small, 14, 1800063
CrossRef Pubmed Google scholar
[98]
Park, J. S., Yang, H. N., Woo, D. G., Jeon, S. Y., Do, H. J., Lim, H. Y., Kim, J. H. and Park, K. H. (2011) Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials, 32, 3679–3688
CrossRef Pubmed Google scholar
[99]
Im, G. I., Kim, H. J. and Lee, J. H. (2011) Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials, 32, 4385–4392
CrossRef Pubmed Google scholar
[100]
Wojtowicz, A. M., Templeman, K. L., Hutmacher, D. W., Guldberg, R. E. and García, A. J. (2010) Runx2 overexpression in bone marrow stromal cells accelerates bone formation in critical-sized femoral defects. Tissue Eng. Part A, 16, 2795–2808
CrossRef Pubmed Google scholar
[101]
Yao, Y., He, Y., Guan, Q. and Wu, Q. (2014) A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials, 35, 1898–1906
CrossRef Pubmed Google scholar
[102]
Ma, Y., Li, J., Yao, Y., Wei, D., Wang, R. and Wu, Q. (2016) A controlled double-duration inducible gene expression system for cartilage tissue engineering. Sci. Rep., 6, 26617
CrossRef Pubmed Google scholar
[103]
Darabi, R., Gehlbach, K., Bachoo, R. M., Kamath, S., Osawa, M., Kamm, K. E., Kyba, M. and Perlingeiro, R. C. R. (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med., 14, 134–143
CrossRef Pubmed Google scholar
[104]
Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M. and Lassar, A. B. (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell, 89, 139–148
[105]
Hwang, D. H., Kim, B. G., Kim, E. J., Lee, S. I., Joo, I. S., Suh-Kim, H., Sohn, S. and Kim, S. U. (2009) Transplantation of human neural stem cells transduced with olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci., 10, 1–16
[106]
Hu, J. G., Shen, L., Wang, R., Wang, Q. Y., Zhang, C., Xi, J., Ma, S. F., Zhou, J. S. and Lü, H. Z. (2012) Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury. Neurotherapeutics, 9, 422–445
CrossRef Pubmed Google scholar
[107]
Wang, Y., Feng, C., Xue, J., Sun, A., Li, J. and Wu, J. (2009) Adenovirus-mediated hypoxia-inducible factor 1α double-mutant promotes differentiation of bone marrow stem cells to cardiomyocytes. J. Physiol. Sci., 59, 413–420
CrossRef Pubmed Google scholar
[108]
Wang, Y., Sun, A., Xue, J., Feng, C., Li, J. and Wu, J. (2009) Bone marrow derived stromal cells modified by adenovirus-mediated HIF-1α double mutant protect cardiac myocytes against CoCl2-induced apoptosis. Toxicol. In Vitro, 23, 1069–1075
CrossRef Pubmed Google scholar
[109]
Teague, B. P., Guye, P. and Weiss, R. (2016) Synthetic morphogenesis. Cold Spring Harb. Perspect. Biol., 8, a023929
CrossRef Pubmed Google scholar
[110]
Nakashima, H., Kaur, B. and Chiocca, E. A. (2010) Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev., 21, 119–126
CrossRef Pubmed Google scholar
[111]
van Eekelen, M., Sasportas, L. S., Kasmieh, R., Yip, S., Figueiredo, J. L., Louis, D. N., Weissleder, R. and Shah, K. (2010) Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene, 29, 3185–3195
CrossRef Pubmed Google scholar
[112]
Xu, G., Jiang, X. D., Xu, Y., Zhang, J., Huang, F. H., Chen, Z. Z., Zhou, D. X., Shang, J. H., Zou, Y. X. and Cai, Y. Q. (2009) Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int., 33, 466–474
CrossRef Pubmed Google scholar
[113]
Kanehira, M., Xin, H., Hoshino, K., Maemondo, M., Mizuguchi, H., Hayakawa, T., Matsumoto, K., Nakamura, T., Nukiwa, T. and Saijo, Y. (2007) Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther., 14, 894–903
CrossRef Pubmed Google scholar
[114]
Seo, S. H., Kim, K. S., Park, S. H., Suh, Y. S., Kim, S. J., Jeun, S. S. and Sung, Y. C. (2011) The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther., 18, 488–495
CrossRef Pubmed Google scholar
[115]
Kosaka, H., Ichikawa, T., Kurozumi, K., Kambara, H., Inoue, S., Maruo, T., Nakamura, K., Hamada, H. and Date, I. (2012) Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther., 19, 572–578
CrossRef Pubmed Google scholar
[116]
Zhao, Y., Lam, D. H., Yang, J., Lin, J., Tham, C. K., Ng, W. H. and Wang, S. (2012) Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther., 19, 189–200
CrossRef Pubmed Google scholar
[117]
Altaner, C., Altanerova, V., Cihova, M., Ondicova, K., Rychly, B., Baciak, L. and Mravec, B. (2014) Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int. J. Cancer, 134, 1458–1465
CrossRef Pubmed Google scholar
[118]
Fritz, V. and Jorgensen, C. (2008) Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr. Stem Cell Res. Ther., 3, 32–42
CrossRef Pubmed Google scholar
[119]
Li, L., Guan, Y., Liu, H., Hao, N., Liu, T., Meng, X., Fu, C., Li, Y., Qu, Q., Zhang, Y., (2011) Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano, 5, 7462–7470
CrossRef Pubmed Google scholar
[120]
Gonçalves, M. A. F. V., de Vries, A. A. F., Holkers, M., van de Watering, M. J. M., van der Velde, I., van Nierop, G. P., Valerio, D. and Knaän-Shanzer, S. (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum. Mol. Genet., 15, 213–221
CrossRef Pubmed Google scholar
[121]
Jia, Z., Valiunas, V., Lu, Z., Bien, H., Liu, H., Wang, H. Z., Rosati, B., Brink, P. R., Cohen, I. S. and Entcheva, E. (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol., 4, 753–760
CrossRef Pubmed Google scholar
[122]
Zitvogel, L., Tahara, H., Robbins, P. D., Storkus, W. J., Clarke, M. R., Nalesnik, M. A. and Lotze, M. T. (1995) Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts. J. Immunol., 155, 1393–1403
Pubmed
[123]
Lin, X., He, Y., Hou, X., Zhang, Z., Wang, R. and Wu, Q. (2016) Endothelial cells can regulate smooth muscle cells in contractile phenotype through the mir-206/arf6&ncx1/exosome axis. PLoS One, 11, e0152959
CrossRef Pubmed Google scholar
[124]
Schukur, L., Geering, B., Charpin-El Hamri, G. and Fussenegger, M. (2015) Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med., 7, 318ra201
CrossRef Pubmed Google scholar
[125]
Bai, P., Ye, H., Xie, M., Saxena, P., Zulewski, H., Charpin-El Hamri, G., Djonov, V. and Fussenegger, M. (2016) A synthetic biology-based device prevents liver injury in mice. J. Hepatol., 65, 84–94
CrossRef Pubmed Google scholar
[126]
Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360
CrossRef Pubmed Google scholar
[127]
Rössger, K., Charpin-El Hamri, G. and Fussenegger, M. (2013) Reward-based hypertension control by a synthetic brain-dopamine interface. Proc. Natl. Acad. Sci. USA, 110, 18150–18155
CrossRef Pubmed Google scholar
[128]
Ausländer, D., Ausländer, S., Charpin-El Hamri, G., Sedlmayer, F., Müller, M., Frey, O., Hierlemann, A., Stelling, J. and Fussenegger, M. (2014) A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell, 55, 397–408
CrossRef Pubmed Google scholar
[129]
Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2013) A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun., 4, 2825
CrossRef Pubmed Google scholar
[130]
Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H. and Fussenegger, M. (2016) Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc. Natl. Acad. Sci. USA, 113, 1244–1249
CrossRef Pubmed Google scholar
[131]
Gaj, T., Gersbach, C. A. and Barbas, C. F. 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397–405
CrossRef Pubmed Google scholar
[132]
Kim, H. and Kim, J. S. (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15, 321–334
CrossRef Pubmed Google scholar
[133]
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
CrossRef Pubmed Google scholar
[134]
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823
CrossRef Pubmed Google scholar
[135]
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31, 839–843
CrossRef Pubmed Google scholar
[136]
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31, 822–826
CrossRef Pubmed Google scholar
[137]
Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389
CrossRef Pubmed Google scholar
[138]
Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., Hwang, J., Kim, J. I., and Kim, J. S. (2015) Digenome-seq: Genome-wide profiling of crispr-cas9 off-target effects in human cells. Nat. Methods. 12, 237–243
[139]
Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J. and Root, D. E. (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol., 32, 1262–1267
CrossRef Pubmed Google scholar
[140]
Kiani, S., Chavez, A., Tuttle, M., Hall, R. N., Chari, R., Ter-Ovanesyan, D., Qian, J., Pruitt, B. W., Beal, J., Vora, S., (2015) Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods, 12, 1051–1054
CrossRef Pubmed Google scholar
[141]
Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification. Nat. Methods, 11, 122–123
CrossRef Pubmed Google scholar
[142]
Xu, H., Xiao, T., Chen, C. H., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S., (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res., 25, 1147–1157
CrossRef Pubmed Google scholar
[143]
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838
CrossRef Pubmed Google scholar
[144]
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 24, 132–141
CrossRef Pubmed Google scholar
[145]
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32, 279–284
CrossRef Pubmed Google scholar
[146]
Kim, S., Kim, D., Cho, S. W., Kim, J. and Kim, J. S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 24, 1012–1019
CrossRef Pubmed Google scholar
[147]
Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K. and Kim, H. (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res., 24, 1020–1027
CrossRef Pubmed Google scholar
[148]
Duportet, X., Wroblewska, L., Guye, P., Li, Y., Eyquem, J., Rieders, J., Rimchala, T., Batt, G. and Weiss, R. (2014) A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res., 42, 13440–13451
CrossRef Pubmed Google scholar
[149]
Tebas, P., Stein, D., Tang, W. W., Frank, I., Wang, S. Q., Lee, G., Spratt, S. K., Surosky, R. T., Giedlin, M. A., Nichol, G., (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med., 370, 901–910
CrossRef Pubmed Google scholar
[150]
Menger, L., Sledzinska, A., Bergerhoff, K., Vargas, F. A., Smith, J., Poirot, L., Pule, M., Herrero, J., Peggs, K. S. and Quezada, S. A. (2016) Talen-mediated inactivation of pd-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Cancer Res., 76, 2087–2093
CrossRef Pubmed Google scholar
[151]
Cyranoski, D. (2016) Chinese scientists to pioneer first human CRISPR trial. Nature, 535, 476–477
CrossRef Pubmed Google scholar
[152]
Kazuki, Y. and Oshimura, M. (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol. Ther., 19, 1591–1601
CrossRef Pubmed Google scholar
[153]
Thomas, C. E., Ehrhardt, A. and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 4, 346–358
CrossRef Pubmed Google scholar
[154]
Rios, H. F., Lin, Z., Oh, B., Park, C. H. and Giannobile, W. V. (2011) Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J. Periodontol., 82, 1223–1237
CrossRef Pubmed Google scholar
[155]
Gabriel, R., Schmidt, M. and von Kalle, C. (2012) Integration of retroviral vectors. Curr. Opin. Immunol., 24, 592–597
CrossRef Pubmed Google scholar
[156]
Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R. and Wixon, J. (2013) Gene therapy clinical trials worldwide to 2012‒an update. J. Gene Med., 15, 65–77
CrossRef Pubmed Google scholar
[157]
Kumar, M., Keller, B., Makalou, N. and Sutton, R. E. (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther., 12, 1893–1905
CrossRef Pubmed Google scholar
[158]
Sinn, P. L., Sauter, S. L. and McCray, P. B. Jr. (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors–design, biosafety, and production. Gene Ther., 12, 1089–1098
CrossRef Pubmed Google scholar
[159]
Mátrai, J., Chuah, M. K. and VandenDriessche, T. (2010) Recent advances in lentiviral vector development and applications. Mol. Ther., 18, 477–490
CrossRef Pubmed Google scholar
[160]
Breckpot, K., Aerts, J. L. and Thielemans, K. (2007) Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther., 14, 847–862
CrossRef Pubmed Google scholar
[161]
Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Ponzoni, M., Bartholomae, C., Sergi, L. S., Benedicenti, F., Ambrosi, A., Di Serio, C., (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol., 24, 687–696
CrossRef Pubmed Google scholar
[162]
Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 467, 318–322
CrossRef Pubmed Google scholar
[163]
Winslow, M. M., Dayton, T. L., Verhaak, R. G. W., Kim-Kiselak, C., Snyder, E. L., Feldser, D. M., Hubbard, D. D., DuPage, M. J., Whittaker, C. A., Hoersch, S., (2011) Suppression of lung adenocarcinoma progression by Nkx2-1. Nature, 473, 101–104
CrossRef Pubmed Google scholar
[164]
Santoni de Sio, F. R., Cascio, P., Zingale, A., Gasparini, M. and Naldini, L. (2006) Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood, 107, 4257–4265
CrossRef Pubmed Google scholar
[165]
Kay, M. A. (2011) State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet., 12, 316–328
CrossRef Pubmed Google scholar
[166]
Partridge, K. A. and Oreffo, R. O. C. (2004) Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng., 10, 295–307
CrossRef Pubmed Google scholar
[167]
Douglas, J. T. (2007) Adenoviral vectors for gene therapy. Mol. Biotechnol., 36, 71–80
CrossRef Pubmed Google scholar
[168]
Brunetti-Pierri, N. and Ng, P. (2009) Progress towards liver and lung-directed gene therapy with helper-dependent adenoviral vectors. Curr. Gene Ther., 9, 329–340
CrossRef Pubmed Google scholar
[169]
McCaffrey, A. P., Fawcett, P., Nakai, H., McCaffrey, R. L., Ehrhardt, A., Pham, T. T. T., Pandey, K., Xu, H., Feuss, S., Storm, T. A., (2008) The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol. Ther., 16, 931–941
CrossRef Pubmed Google scholar
[170]
Ramseier, C. A., Abramson, Z. R., Jin, Q. and Giannobile, W. V. (2006) Gene therapeutics for periodontal regenerative medicine. Dent. Clin. North Am., 50, 245–263
CrossRef Pubmed Google scholar
[171]
Wu, Z., Yang, H. and Colosi, P. (2010) Effect of genome size on AAV vector packaging. Mol. Ther., 18, 80–86
CrossRef Pubmed Google scholar
[172]
Samulski, R. J. and Muzyczka, N. (2014) Aav-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol., 1, 427–451
CrossRef Pubmed Google scholar
[173]
Inagaki, K., Piao, C., Kotchey, N. M., Wu, X. and Nakai, H. (2008) Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J. Virol., 82, 9513–9524
CrossRef Pubmed Google scholar
[174]
Cossu, G. and Sampaolesi, M. (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol. Med., 13, 520–526
CrossRef Pubmed Google scholar
[175]
McCarty, D. M., Monahan, P. E. and Samulski, R. J. (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther., 8, 1248–1254
CrossRef Pubmed Google scholar
[176]
Donsante, A., Miller, D. G., Li, Y., Vogler, C., Brunt, E. M., Russell, D. W. and Sands, M. S. (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science, 317, 477
CrossRef Pubmed Google scholar
[177]
Nathwani, A. C., Tuddenham, E. G. D., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D. C., Chowdary, P., Riddell, A., Pie, A. J., Harrington, C., (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med., 365, 2357–2365
CrossRef Pubmed Google scholar
[178]
Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R. and Anderson, D. G. (2014) Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 15, 541–555
CrossRef Pubmed Google scholar
[179]
Pack, D. W., Hoffman, A. S., Pun, S. and Stayton, P. S. (2005) Design and development of polymers for gene delivery. Nat. Rev. Drug Discov., 4, 581–593
CrossRef Pubmed Google scholar
[180]
Mintzer, M. A. and Simanek, E. E. (2009) Nonviral vectors for gene delivery. Chem. Rev., 109, 259–302
CrossRef Pubmed Google scholar
[181]
Lee, D. E., Koo, H., Sun, I. C., Ryu, J. H., Kim, K. and Kwon, I. C. (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 41, 2656–2672
CrossRef Pubmed Google scholar
[182]
Alexis, F., Pridgen, E. M., Langer, R. and Farokhzad, O. C. (2010) Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 197, 55–86
CrossRef Pubmed Google scholar
[183]
Putnam, D. (2006) Polymers for gene delivery across length scales. Nat. Mater., 5, 439–451
CrossRef Pubmed Google scholar
[184]
Graf, T. and Enver, T. (2009) Forcing cells to change lineages. Nature, 462, 587–594
CrossRef Pubmed Google scholar
[185]
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147
CrossRef Pubmed Google scholar
[186]
Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676
CrossRef Pubmed Google scholar
[187]
Tabar, V. and Studer, L. (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet., 15, 82–92
CrossRef Pubmed Google scholar
[188]
Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. and Speck, N. A. (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457, 887–891
CrossRef Pubmed Google scholar
[189]
Ieda, M., Fu, J.-D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G. and Srivastava, D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386
CrossRef Pubmed Google scholar
[190]
Saxena, P., Heng, B. C., Bai, P., Folcher, M., Zulewski, H. and Fussenegger, M. (2016) A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat. Commun., 7, 11247
CrossRef Pubmed Google scholar
[191]
Wright, C. M., Wright, R. C., Eshleman, J. R. and Ostermeier, M. (2011) A protein therapeutic modality founded on molecular regulation. Proc. Natl. Acad. Sci. USA, 108, 16206–16211
CrossRef Pubmed Google scholar
[192]
Culler, S. J., Hoff, K. G. and Smolke, C. D. (2010) Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science, 330, 1251–1255
CrossRef Pubmed Google scholar
[193]
Xie, M. and Fussenegger, M. (2018) Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol., 19, 507–525
CrossRef Pubmed Google scholar
[194]
Wang, X. W., Hu, L. F., Hao, J., Liao, L. Q., Chiu, Y. T., Shi, M. and Wang, Y. (2019) A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol., 21, 522–530
CrossRef Pubmed Google scholar
[195]
Zhang, M. X., Hong, S. S., Cai, Q. Q., Zhang, M., Chen, J., Zhang, X. Y. and Xu, C. J. (2018) Transcriptional control of the MUC16 promoter facilitates follicle-stimulating hormone peptide-conjugated shRNA nanoparticle-mediated inhibition of ovarian carcinoma in vivo. Drug Deliv., 25, 797–806
CrossRef Pubmed Google scholar
[196]
Nissim, L., Wu, M. R., Pery, E., Binder-Nissim, A., Suzuki, H. I., Stupp, D., Wehrspaun, C., Tabach, Y., Sharp, P. A. and Lu, T. K. (2017) Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell, 171, 1138–1150.e15
CrossRef Pubmed Google scholar
[197]
Angelici, B., Mailand, E., Haefliger, B. and Benenson, Y. (2016) Synthetic biology platform for sensing and integrating endogenous transcriptional inputs in mammalian cells. Cell Rep., 16, 2525–2537
CrossRef Pubmed Google scholar
[198]
Jüttner, J., Szabo, A., Gross-Scherf, B., Morikawa, R. K., Rompani, S. B., Hantz, P., Szikra, T., Esposti, F., Cowan, C. S., Bharioke, A., (2019) Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat. Neurosci., 22, 1345–1356
CrossRef Pubmed Google scholar
[199]
Wu, M. R., Nissim, L., Stupp, D., Pery, E., Binder-Nissim, A., Weisinger, K., Enghuus, C., Palacios, S. R., Humphrey, M., Zhang, Z., (2019) A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nat. Commun., 10, 2880
CrossRef Pubmed Google scholar
[200]
Cheng, J. K., Morse, N. J., Wagner, J. M., Tucker, S. K. and Alper, H. S. (2019) Design and evaluation of synthetic terminators for regulating mammalian cell transgene expression. ACS Synth. Biol., 8, 1263–1275
CrossRef Pubmed Google scholar
[201]
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef Pubmed Google scholar
[202]
Greber, D., El-Baba, M. D. and Fussenegger, M. (2008) Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res., 36, e101
CrossRef Pubmed Google scholar
[203]
Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R. and Collins, J. J. (2004) Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA, 101, 8414–8419
CrossRef Pubmed Google scholar
[204]
Kramer, B. P., Viretta, A. U., Baba, M. D.-E., Aubel, D., Weber, W. and Fussenegger, M. (2004) An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol., 22, 867–870
CrossRef Pubmed Google scholar
[205]
Wroblewska, L., Kitada, T., Endo, K., Siciliano, V., Stillo, B., Saito, H. and Weiss, R. (2015) Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol., 33, 839–841
CrossRef Pubmed Google scholar
[206]
Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311
CrossRef Pubmed Google scholar
[207]
Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311
CrossRef Pubmed Google scholar
[208]
Liu, P. Q., Rebar, E. J., Zhang, L., Liu, Q., Jamieson, A. C., Liang, Y., Qi, H., Li, P. X., Chen, B., Mendel, M. C., (2001) Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem., 276, 11323–11334
CrossRef Pubmed Google scholar
[209]
Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 10, 973–976
CrossRef Pubmed Google scholar
[210]
Perez-Pinera, P., Ousterout, D. G., Brunger, J. M., Farin, A. M., Glass, K. A., Guilak, F., Crawford, G. E., Hartemink, A. J. and Gersbach, C. A. (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods, 10, 239–242
CrossRef Pubmed Google scholar
[211]
Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P. and Knoblich, J. A. (2013) Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379
CrossRef Pubmed Google scholar
[212]
Kalos, M. and June, C. H. (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity, 39, 49–60
CrossRef Pubmed Google scholar
[213]
Miller, J. F. A. P. and Sadelain, M. (2015) The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell, 27, 439–449
CrossRef Pubmed Google scholar
[214]
Savoldo, B., Ramos, C. A., Liu, E., Mims, M. P., Keating, M. J., Carrum, G., Kamble, R. T., Bollard, C. M., Gee, A. P., Mei, Z., (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest., 121, 1822–1826
CrossRef Pubmed Google scholar
[215]
Finney, H. M., Lawson, A. D. G., Bebbington, C. R. and Weir, A. N. C. (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol, 161, 2791–2797
Pubmed
[216]
Kochenderfer, J. N., Dudley, M. E., Feldman, S. A., Wilson, W. H., Spaner, D. E., Maric, I., Stetler-Stevenson, M., Phan, G. Q., Hughes, M. S., Sherry, R. M., (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 119, 2709–2720
CrossRef Pubmed Google scholar
[217]
Brentjens, R. J., Rivière, I., Park, J. H., Davila, M. L., Wang, X., Stefanski, J., Taylor, C., Yeh, R., Bartido, S., Borquez-Ojeda, O., (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 118, 4817–4828
CrossRef Pubmed Google scholar
[218]
Duval, L., Schmidt, H., Kaltoft, K., Fode, K., Jensen, J. J., Sorensen, S. M., Nishimura, M. I. and von der Maase, H. (2006) Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma. Clin. Cancer Res., 12, 1229–1236
CrossRef Pubmed Google scholar
[219]
Ma, Q., Safar, M., Holmes, E., Wang, Y., Boynton, A. L. and Junghans, R. P. (2004) Anti-prostate specific membrane antigen designer T cells for prostate cancer therapy. Prostate, 61, 12–25
CrossRef Pubmed Google scholar
[220]
Westwood, J. A., Smyth, M. J., Teng, M. W. L., Moeller, M., Trapani, J. A., Scott, A. M., Smyth, F. E., Cartwright, G. A., Power, B. E., Hönemann, D., (2005) Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc. Natl. Acad. Sci. USA, 102, 19051–19056
CrossRef Pubmed Google scholar
[221]
Sharifzadeh, Z., Rahbarizadeh, F., Shokrgozar, M. A., Ahmadvand, D., Mahboudi, F., Jamnani, F. R. and Moghimi, S. M. (2013) Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett., 334, 237–244
CrossRef Pubmed Google scholar
[222]
Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F., (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 371, 1507–1517
CrossRef Pubmed Google scholar
[223]
Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S. S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M., (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 6, 224ra25
CrossRef Pubmed Google scholar
[224]
Fedorov, V. D., Themeli, M. and Sadelain, M. (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med., 5, 215ra172
CrossRef Pubmed Google scholar
[225]
Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. and Lim, W. A. (2015) Remote control of therapeutic t cells through a small molecule-gated chimeric receptor. Science, 350, aab4077
[226]
Straathof, K. C., Pulè, M. A., Yotnda, P., Dotti, G., Vanin, E. F., Brenner, M. K., Heslop, H. E., Spencer, D. M. and Rooney, C. M. (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood, 105, 4247–4254
CrossRef Pubmed Google scholar
[227]
Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. and Sadelain, M. (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol., 31, 71–75
CrossRef Pubmed Google scholar
[228]
Zhang, L., Kerkar, S. P., Yu, Z., Zheng, Z., Yang, S., Restifo, N. P., Rosenberg, S. A. and Morgan, R. A. (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol. Ther., 19, 751–759
CrossRef Pubmed Google scholar
[229]
John, L. B., Kershaw, M. H. and Darcy, P. K. (2013) Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. OncoImmunology, 2, e26286
CrossRef Pubmed Google scholar
[230]
Tamada, K., Geng, D., Sakoda, Y., Bansal, N., Srivastava, R. and Li, Z. (2013) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res., 19, 951
[231]
Urbanska, K., Lanitis, E., Poussin, M., Lynn, R. C., Gavin, B. P., Kelderman, S., Yu, J., Scholler, N. and Powell, D. J. Jr. (2012) A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res., 72, 1844–1852
CrossRef Pubmed Google scholar
[232]
Morsut, L., Roybal, K. T., Xiong, X., Gordley, R. M., Coyle, S. M., Thomson, M. and Lim, W. A. (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell, 164, 780–791
CrossRef Pubmed Google scholar
[233]
Daringer, N. M., Dudek, R. M., Schwarz, K. A. and Leonard, J. N. (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth. Biol., 3, 892–902
CrossRef Pubmed Google scholar
[234]
Roybal, K. T., Rupp, L. J., Morsut, L., Walker, W. J., McNally, K. A., Park, J. S. and Lim, W. A. (2016) Precision tumor recognition by t cells with combinatorial antigen-sensing circuits. Cell, 164, 770–779
CrossRef Pubmed Google scholar
[235]
Qudrat, A., Mosabbir, A. A. and Truong, K. (2017) Engineered proteins program mammalian cells to target inflammatory disease sites. Cell Chem. Biol., 24, 703–711.e2
CrossRef Pubmed Google scholar
[236]
Ye, H., Xie, M., Xue, S., Charpin-El Hamri, G., Yin, J., Zulewski, H., and Fussenegger, M. (2017) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng., 1, 0005
[237]
Barnea, G., Strapps, W., Herrada, G., Berman, Y., Ong, J., Kloss, B., Axel, R. and Lee, K. J. (2008) The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA, 105, 64–69
CrossRef Pubmed Google scholar
[238]
Baeumler, T. A., Ahmed, A. A. and Fulga, T. A. (2017) Engineering synthetic signaling pathways with programmable dcas9-based chimeric receptors. Cell Rep., 20, 2639–2653
CrossRef Pubmed Google scholar
[239]
Daringer, N. M., Dudek, R. M., Schwarz, K. A. and Leonard, J. N. (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth. Biol., 3, 892–902
CrossRef Pubmed Google scholar
[240]
Schwarz, K. A., Daringer, N. M., Dolberg, T. B. and Leonard, J. N. (2017) Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol., 13, 202–209
CrossRef Pubmed Google scholar
[241]
Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360
CrossRef Pubmed Google scholar
[242]
Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2013) A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun., 4, 2825
CrossRef Pubmed Google scholar
[243]
Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2014) Bile acid-controlled transgene expression in mammalian cells and mice. Metab. Eng., 21, 81–90
CrossRef Pubmed Google scholar
[244]
Wright, C. M., Wright, R. C., Eshleman, J. R. and Ostermeier, M. (2011) A protein therapeutic modality founded on molecular regulation. Proc. Natl. Acad. Sci. USA, 108, 16206–16211
CrossRef Pubmed Google scholar
[245]
Deisseroth, K. (2011) Optogenetics. Nat. Methods, 8, 26–29
CrossRef Pubmed Google scholar
[246]
Ye, H., Daoud-El Baba, M., Peng, R. W. and Fussenegger, M. (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science, 332, 1565–1568
CrossRef Pubmed Google scholar
[247]
Kim, T., Folcher, M., Doaud-El Baba, M. and Fussenegger, M. (2015) A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. Int. Ed. Engl., 54, 5933–5938
CrossRef Pubmed Google scholar
[248]
Levin, M. (2014) Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell, 25, 3835–3850
CrossRef Pubmed Google scholar
[249]
Krawczyk, K., Xue, S., Buchmann, P., Charpin-El-Hamri, G., Saxena, P., Hussherr, M.-D., Shao, J., Ye, H., Xie, M. and Fussenegger, M. (2020) Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science, 368, 993–1001
CrossRef Pubmed Google scholar
[250]
Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S.,Friedman, J.M. (2015) Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92– 98
[251]
Shao, J., Xue, S., Yu, G., Yu, Y., Yang, X., Bai, Y., Zhu, S., Yang, L., Yin, J., Wang, Y., (2017) Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med., 9, eaal2298
CrossRef Pubmed Google scholar
[252]
Brophy, J. A. and Voigt, C. A. (2014) Principles of genetic circuit design. Nat. Methods, 11, 508–520
CrossRef Pubmed Google scholar
[253]
Wei, D.-X., Dao, J.-W. and Chen, G.-Q. (2018) A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater., 30, 1802273
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was financially supported by National Key Research and Development Project of China (No. 2018YFA0900100), the National Natural Science Foundation of China (No. 31961133019), and National Natural Science Foundation of China (No. 31670091). The National Natural Science Foundation of China (No. 31961133019) is part of MIX-UP, a joint NSFC and EU H2020 collaboration. In Europe, MIX-UP has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870294.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Tianying Chen, Xue Zhang, and Qiong Wu declare that they have no conflict of interests.
All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press
AI Summary AI Mindmap
PDF(2103 KB)

Accesses

Citations

Detail

Sections
Recommended

/