Recent progress in research and application of engineered implanted cells for biomedical applications

Tianying Chen , Xue Zhang , Qiong Wu

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 267 -291.

PDF (2103KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 267 -291. DOI: 10.15302/J-QB-021-0253
REVIEW
REVIEW

Recent progress in research and application of engineered implanted cells for biomedical applications

Author information +
History +
PDF (2103KB)

Abstract

Background: The core concept of cell engineering is the use of synthetic biological methods to engineer and design genetically modified cells with specific functions, which has revolutionized the biotechnology industry and cell therapy. Implanted cells play an important role in the cell therapy, but the currently used implanted cells are unable to fully meet the needs of researchers and clinicians. Therefore, the construction of engineered implanted cells has become a new research area, with many groups exploring the working principles of implanted cells, allowing them to better exert their repair function.

Results: Based on the existing cell engineering platforms, this paper summarizes the main types of chassis cells used in implanted cell engineering, progress in the development of gene editing tools and delivery systems, as well as strategies for the construction of engineered implanted cells.

Conclusions: The rational use of synthetic biology methods to program and control the function of implanted cells with high spatiotemporal accuracy provides new ideas for the development of cell therapy, and opens up new possibilities for exploring the mechanism of implanted cell action to allow them to better exert their role in promoting the progress of repair.

Graphical abstract

Keywords

chassis cells / cell therapy / engineered implanted cells / synthetic biology

Cite this article

Download citation ▾
Tianying Chen, Xue Zhang, Qiong Wu. Recent progress in research and application of engineered implanted cells for biomedical applications. Quant. Biol., 2021, 9(3): 267-291 DOI:10.15302/J-QB-021-0253

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahrlund-Richter, L., De Luca, M., Marshak, D. R., Munsie, M., Veiga, A. and Rao, M. (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell, 4, 20–26

[2]

Wood, J. A., Colletti, E., Mead, L. E., Ingram, D., Porada, C. D., Zanjani, E. D., Yoder, M. C. and Almeida-Porada, G. (2012) Distinct contribution of human cord blood-derived endothelial colony forming cells to liver and gut in a fetal sheep model. Hepatology, 56, 1086–1096

[3]

Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., Hoskins, E. E., Kalinichenko, V. V., Wells, S. I., Zorn, A. M., (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470, 105–109

[4]

Fan, C., Jia, L., Zheng, Y., Jin, C., Liu, Y., Liu, H. and Zhou, Y. (2016) Mir-34a promotes osteogenic differentiation of human adipose-derived stem cells via the rbp2/notch1/cyclin d1 coregulatory network. Stem Cell Reports, 7, 236–248

[5]

Li, Y., Liu, W., Liu, F., Zeng, Y., Zuo, S., Feng, S., Qi, C., Wang, B., Yan, X., Khademhosseini, A., (2014) Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proc. Natl. Acad. Sci. USA, 111, 13511–13516

[6]

Plein, A., Fantin, A., Denti, L., Pollard, J. W. and Ruhrberg, C. (2018) Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature, 562, 223–228

[7]

Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S. S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M., (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 6, 224ra25

[8]

Garfall, A. L., Maus, M. V., Hwang, W. T., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Zheng, Z., Vogl, D. T., Cohen, A. D., Weiss, B. M., (2015) Chimeric antigen receptor T cells against cd19 for multiple myeloma. N. Engl. J. Med., 373, 1040–1047

[9]

Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., Sommermeyer, D., Melville, K., Pender, B., Budiarto, T. M., (2016) CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest., 126, 2123–2138

[10]

Posey, A. D. Jr, Schwab, R. D., Boesteanu, A. C., Steentoft, C., Mandel, U., Engels, B., Stone, J. D., Madsen, T. D., Schreiber, K., Haines, K. M., (2016) Engineered CAR T cells targeting the cancer-associated tn-glycoform of the membrane mucin muc1 control adenocarcinoma. Immunity, 44, 1444–1454

[11]

Fry, T. J., Shah, N. N., Orentas, R. J., Stetler-Stevenson, M., Yuan, C. M., Ramakrishna, S., Wolters, P., Martin, S., Delbrook, C., Yates, B., (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med., 24, 20–28

[12]

Kim, M. Y., Yu, K. R., Kenderian, S. S., Ruella, M., Chen, S., Shin, T. H., Aljanahi, A. A., Schreeder, D., Klichinsky, M., Shestova, O., (2018) Genetic inactivation of cd33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell, 173, 1439–1453.e19

[13]

Li, Y., Hermanson, D. L., Moriarity, B. S. and Kaufman, D. S. (2018) Human ipsc-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 23, 181–192.e5

[14]

Chen, J., López-Moyado, I. F., Seo, H., Lio, C. J., Hempleman, L. J., Sekiya, T., Yoshimura, A., Scott-Browne, J. P. and Rao, A. (2019) NR4A transcription factors limit CAR T cell function in solid tumours. Nature, 567, 530–534

[15]

Xie, Y. J., Dougan, M., Jailkhani, N., Ingram, J., Fang, T., Kummer, L., Momin, N., Pishesha, N., Rickelt, S., Hynes, R. O., (2019) Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl. Acad. Sci. USA, 116, 7624–7631

[16]

Al-Hasani, K., Pfeifer, A., Courtney, M., Ben-Othman, N., Gjernes, E., Vieira, A., Druelle, N., Avolio, F., Ravassard, P., Leuckx, G., (2013) Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev. Cell, 26, 86–100

[17]

Hsieh, M. M., Fitzhugh, C. D., Weitzel, R. P., Link, M. E., Coles, W. A., Zhao, X., Rodgers, G. P., Powell, J. D. and Tisdale, J. F. (2014) Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA, 312, 48–56

[18]

Epelman, S., Lavine, K. J., Beaudin, A. E., Sojka, D. K., Carrero, J. A., Calderon, B., Brija, T., Gautier, E. L., Ivanov, S., Satpathy, A. T., (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity, 40, 91–104

[19]

Leibman, R. S., Richardson, M. W., Ellebrecht, C. T., Maldini, C. R., Glover, J. A., Secreto, A. J., Kulikovskaya, I., Lacey, S. F., Akkina, S. R., Yi, Y., (2017) Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog., 13, e1006613

[20]

Kou, X., Xu, X., Chen, C., Sanmillan, M. L., Cai, T., Zhou, Y., Giraudo, C., Le, A. and Shi, S. (2018) The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med., 10, eaai8524

[21]

Kansal, R., Richardson, N., Neeli, I., Khawaja, S., Chamberlain, D., Ghani, M., Ghani, Q. U., Balazs, L., Beranova-Giorgianni, S., Giorgianni, F., (2019) Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med., 11, eaav1648

[22]

Weick, J. P., Liu, Y. and Zhang, S. C. (2011) Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proc. Natl. Acad. Sci. USA, 108, 20189–20194

[23]

Xu, J., Wang, D., Liu, D., Fan, Z., Zhang, H., Liu, O., Ding, G., Gao, R., Zhang, C., Ding, Y., (2012) Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood, 120, 3142–3151

[24]

Gupta, N., Henry, R. G., Strober, J., Kang, S. M., Lim, D. A., Bucci, M., Caverzasi, E., Gaetano, L., Mandelli, M. L., Ryan, T., (2012) Neural stem cell engraftment and myelination in the human brain. Sci. Transl. Med., 4, 155ra137

[25]

Corti, S., Nizzardo, M., Simone, C., Falcone, M., Nardini, M., Ronchi, D., Donadoni, C., Salani, S., Riboldi, G., Magri, F., (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci. Transl. Med., 4, 165ra162

[26]

Aloisio, G. M., Nakada, Y., Saatcioglu, H. D., Peña, C. G., Baker, M. D., Tarnawa, E. D., Mukherjee, J., Manjunath, H., Bugde, A., Sengupta, A. L., (2014) PAX7 expression defines germline stem cells in the adult testis. J. Clin. Invest., 124, 3929–3944

[27]

Kang, X., Xu, H., Teng, S., Zhang, X., Deng, Z., Zhou, L., Zuo, P., Liu, B., Liu, B., Wu, Q., (2014) Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo. Proc. Natl. Acad. Sci. USA., 111, 15804–15809

[28]

Cyranoski, D. (2018) ‘Reprogrammed’ stem cells implanted into patient with parkinson’s disease. Nature, doi: 10.1038/d41586-018-07407-9

[29]

Atala, A. (2008) Advances in tissue and organ replacement. Curr. Stem Cell Res. Ther., 3, 21–31

[30]

Berthiaume, F., Maguire, T. J. and Yarmush, M. L. (2011) Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomol. Eng., 2, 403–430

[31]

Stoltz, J. F., de Isla, N., Li, Y. P., Bensoussan, D., Zhang, L., Huselstein, C., Chen, Y., Decot, V., Magdalou, J., Li, N., (2015) Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells Int., 2015, 734731

[32]

Zhao, Z., Zhu, X., Cui, K., Mancuso, J., Federley, R., Fischer, K., Teng, G., Mittal, V., Gao, D., Zhao, H., (2016) In vivo visualization and characterization of epithelial–mesenchymal transition in breast tumors. Cancer Res., 76, 2094–2104

[33]

Guan, X., Avci-Adali, M., Alarçin, E., Cheng, H., Kashaf, S. S., Li, Y., Chawla, A., Jang, H. L. and Khademhosseini, A. (2017) Development of hydrogels for regenerative engineering. Biotechnol. J., 12, 1600394

[34]

Gkountela, S., Castro-Giner, F., Szczerba, B. M., Vetter, M., Landin, J., Scherrer, R., Krol, I., Scheidmann, M. C., Beisel, C., Stirnimann, C. U., (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell, 176, 98–112.e14

[35]

Gomes, M. E. and Reis, R. L. (2004) Tissue engineering: key elements and some trends. Macromol. Biosci., 4, 737–742

[36]

Chocholata, P., Kulda, V. and Babuska, V. (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel), 12, 568

[37]

Schwarz, K. A. and Leonard, J. N. (2016) Engineering cell-based therapies to interface robustly with host physiology. Adv. Drug Deliv. Rev., 105, 55–65

[38]

Lim, W. A. and June, C. H. (2017) The principles of engineering immune cells to treat cancer. Cell, 168, 724–740

[39]

Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 467, 318–322

[40]

Hoggatt, J. (2016) Gene therapy for “bubble boy” disease. Cell, 166, 263

[41]

de Lorenzo, V., Krasnogor, N. and Schmidt, M. (2021) For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! N. Biotechnol., 60, 44–51

[42]

Li, M. D., Atkins, H. and Bubela, T. (2014) The global landscape of stem cell clinical trials. Regen. Med., 9, 27–39

[43]

Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O. and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med., 331, 889–895

[44]

Mcheik, J. N., Barrault, C., Levard, G., Morel, F., Bernard, F. X. and Lecron, J. C. (2014) Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast. Reconstr. Surg. Glob. Open, 2, e218

[45]

Weissman, I. L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 287, 1442–1446

[46]

Garbern, J. C. and Lee, R. T. (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell, 12, 689–698

[47]

Ellison, G. M., Vicinanza, C., Smith, A. J., Aquila, I., Leone, A., Waring, C. D., Henning, B. J., Stirparo, G. G., Papait, R., Scarfò M., (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell, 154, 827–842

[48]

Huch, M., Gehart, H., van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M. M., Ellis, E., van Wenum, M., Fuchs, S. A., de Ligt, J., (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, 160, 299–312

[49]

Godfrey, K. J., Mathew, B., Bulman, J. C., Shah, O., Clement, S. and Gallicano, G. I. (2012) Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet. Med., 29, 14–23

[50]

De Trizio, E. and Brennan, C. S. (2004) The business of human embryonic stem cell research and an international analysis of relevant laws. J Biolaw Bus, 7, 14–22

[51]

Wernig, M., Zhao, J. P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O. and Jaenisch, R. (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 105, 5856–5861

[52]

Blasco, M. A., Serrano, M. and Fernandez-Capetillo, O. (2011) Genomic instability in iPS: time for a break. EMBO J., 30, 991–993

[53]

Wang, X., Zhang, Z. and Yao, C. (2010) Survivin is upregulated in myeloma cell lines cocultured with mesenchymal stem cells. Leuk. Res., 34, 1325–1329

[54]

Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M. and Rameshwar, P. (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol., 184, 5885–5894

[55]

Volarevic, V., Markovic, B. S., Gazdic, M., Volarevic, A., Jovicic, N., Arsenijevic, N., Armstrong, L., Djonov, V., Lako, M. and Stojkovic, M. (2018) Ethical and safety issues of stem cell-based therapy. Int. J. Med. Sci., 15, 36–45

[56]

Vormittag, P., Gunn, R., Ghorashian, S. and Veraitch, F. S. (2018) A guide to manufacturing CAR T cell therapies. Curr. Opin. Biotechnol., 53, 164–181

[57]

Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. and June, C. H. (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med., 365, 725–733

[58]

Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Ye, C. J., Lim, W. A. and Marson, A. (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep., 7, 737

[59]

Legut, M., Dolton, G., Mian, A. A., Ottmann, O. G. and Sewell, A. K. (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood, 131, 311–322

[60]

Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S. J., Hamieh, M., Cunanan, K. M., Odak, A., Gönen, M. and Sadelain, M. (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature, 543, 113–117

[61]

Rafiq, S., Yeku, O. O., Jackson, H. J., Purdon, T. J., van Leeuwen, D. G., Drakes, D. J., Song, M., Miele, M. M., Li, Z., Wang, P., (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol., 36, 847–856

[62]

Raj, D., Yang, M. H., Rodgers, D., Hampton, E. N., Begum, J., Mustafa, A., Lorizio, D., Garces, I., Propper, D., Kench, J. G., (2019) Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut, 68, 1052–1064

[63]

Wu, X., Shi, B., Zhang, J., Shi, Z., Di, S., Fan, M., Gao, H., Wang, H., Gu, J., Jiang, H., (2017) A fusion receptor as a safety switch, detection, and purification biomarker for adoptive transferred t cells. Mol. Ther., 25, 2270–2279

[64]

Sukumaran, S., Watanabe, N., Bajgain, P., Raja, K., Mohammed, S., Fisher, W. E., Brenner, M. K., Leen, A. M. and Vera, J. F. (2018) Enhancing the potency and specificity of engineered t cells for cancer treatment. Cancer Discov., 8, 972–987

[65]

Adachi, K., Kano, Y., Nagai, T., Okuyama, N., Sakoda, Y. and Tamada, K. (2018) IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol., 36, 346–351

[66]

Arabi, F., Torabi-Rahvar, M., Shariati, A., Ahmadbeigi, N. and Naderi, M. (2018) Antigenic targets of CAR T Cell Therapy. A retrospective view on clinical trials. Exp. Cell Res., 369, 1–10

[67]

Hartmann, J., Schüßler-Lenz, M., Bondanza, A. and Buchholz, C. J. (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med., 9, 1183–1197

[68]

Rezvani, K., Rouce, R., Liu, E. and Shpall, E. (2017) Engineering natural killer cells for cancer immunotherapy. Mol. Ther., 25, 1769–1781

[69]

Hermanson, D. L., Bendzick, L., Pribyl, L., McCullar, V., Vogel, R. I., Miller, J. S., Geller, M. A. and Kaufman, D. S. (2016) Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells, 34, 93–101

[70]

Bhargava, A., Mishra, D., Banerjee, S. and Mishra, P. K. (2012) Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy, 4, 703–718

[71]

Um, S.-J., Choi, Y. J., Shin, H.-J., Son, C. H., Park, Y.-S., Roh, M. S., Kim, Y. S., Kim, Y. D., Lee, S.-K., Jung, M. H., (2010) Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer. Lung Cancer, 70, 188–194

[72]

Alshamsan, A., Haddadi, A., Hamdy, S., Samuel, J., El-Kadi, A. O. S., Uludağ H. and Lavasanifar, A. (2010) STAT3 silencing in dendritic cells by siRNA polyplexes encapsulated in PLGA nanoparticles for the modulation of anticancer immune response. Mol. Pharm., 7, 1643–1654

[73]

Hobo, W., Maas, F., Adisty, N., de Witte, T., Schaap, N., van der Voort, R. and Dolstra, H. (2010) siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood, 116, 4501–4511

[74]

Alvey, C. M., Spinler, K. R., Irianto, J., Pfeifer, C. R., Hayes, B., Xia, Y., Cho, S., Dingal, P. C. P. D., Hsu, J., Smith, L., (2017) Sirpa-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors. Curr. Biol., 27, 2065–2077.e6

[75]

Rodell, C. B., Arlauckas, S. P., Cuccarese, M. F., Garris, C. S., Li, R., Ahmed, M. S., Kohler, R. H., Pittet, M. J. and Weissleder, R. (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng., 2, 578–588

[76]

Kulkarni, A., Chandrasekar, V., Natarajan, S. K., Ramesh, A., Pandey, P., Nirgud, J., Bhatnagar, H., Ashok, D., Ajay, A. K. and Sengupta, S. (2018) A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng., 2, 589–599

[77]

Scharenberg, S. G., Poletto, E., Lucot, K. L., Colella, P., Sheikali, A., Montine, T. J., Porteus, M. H. and Gomez-Ospina, N. (2020) Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing. Nat. Commun., 11, 3327

[78]

Mescher, A. L. and Neff, A. W. (2005) Regenerative Capacity and The Developing Immune System. In: Regenerative medicine, pp. 39–66. Springer

[79]

Ward, P. A., Warren, J. S. and Johnson, K. J. (1988) Oxygen radicals, inflammation, and tissue injury. Free Radic. Biol. Med., 5, 403–408

[80]

Julier, Z., Park, A. J., Briquez, P. S. and Martino, M. M. (2017) Promoting tissue regeneration by modulating the immune system. Acta Biomater., 53, 13–28

[81]

Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156

[82]

Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676

[83]

Kinnaird, T., Stabile, E., Burnett, M. S., Shou, M., Lee, C. W., Barr, S., Fuchs, S. and Epstein, S. E. (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–1549

[84]

Nagaishi, K., Mizue, Y., Chikenji, T., Otani, M., Nakano, M., Konari, N. and Fujimiya, M. (2016) Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep., 6, 34842

[85]

Schweitzer, K. S., Johnstone, B. H., Garrison, J., Rush, N. I., Cooper, S., Traktuev, D. O., Feng, D., Adamowicz, J. J., Van Demark, M., Fisher, A. J., (2011) Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am. J. Respir. Crit. Care Med., 183, 215–225

[86]

Choi, J. B., Uchino, H., Azuma, K., Iwashita, N., Tanaka, Y., Mochizuki, H., Migita, M., Shimada, T., Kawamori, R. and Watada, H. (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia, 46, 1366–1374

[87]

Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B. S., Virag, J. I., Bartelmez, S. H., Poppa, V., (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668

[88]

Castro, R. F., Jackson, K. A., Goodell, M. A., Robertson, C. S., Liu, H. and Shine, H. D. (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science, 297, 1299

[89]

Gu, S., Huang, H., Bi, J., Yao, Y. and Wen, T. (2009) Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res., 1257, 1–9

[90]

Kumagai, G., Tsoulfas, P., Toh, S., McNiece, I., Bramlett, H. M. and Dietrich, W. D. (2013) Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Exp. Neurol., 248, 369–380

[91]

Deuse, T., Peter, C., Fedak, P. W. M., Doyle, T., Reichenspurner, H., Zimmermann, W. H., Eschenhagen, T., Stein, W., Wu, J. C., Robbins, R. C., (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation, 120, S247–S254

[92]

Guo, Y. H., He, J. G., Wu, J. L., Yang, L., Zhang, D. S., Tan, X. Y. and Qi, R. D. (2008) Hepatocyte growth factor and granulocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. Cytotherapy, 10, 857–867

[93]

Cho, Y. H., Park, H., Cho, E. S., Kim, W. J., Kang, B. S., Park, B. Y., Kim, Y. J., Lee, Y. I., Chang, S. I. and Park, K. (2007) A novel way of therapeutic angiogenesis using an adeno-associated virus-mediated angiogenin gene transfer. Exp. Mol. Med., 39, 412–418

[94]

Smirnoff, P., Roiz, L., Angelkovitch, B., Schwartz, B. and Shoseyov, O. (2006) A recombinant human RNASET2 glycoprotein with antitumorigenic and antiangiogenic characteristics: expression, purification, and characterization. Cancer, 107, 2760–2769

[95]

Wilson, C. G., Martín-Saavedra, F. M., Vilaboa, N. and Franceschi, R. T. (2013) Advanced BMP gene therapies for temporal and spatial control of bone regeneration. J. Dent. Res., 92, 409–417

[96]

Virk, M. S., Sugiyama, O., Park, S. H., Gambhir, S. S., Adams, D. J., Drissi, H. and Lieberman, J. R. (2011) “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol. Ther., 19, 960–968

[97]

Wei, D., Qiao, R., Dao, J., Su, J., Jiang, C., Wang, X., Gao, M. and Zhong, J. (2018) Soybean lecithin-mediated nanoporous plga microspheres with highly entrapped and controlled released bmp-2 as a stem cell platform. Small, 14, 1800063

[98]

Park, J. S., Yang, H. N., Woo, D. G., Jeon, S. Y., Do, H. J., Lim, H. Y., Kim, J. H. and Park, K. H. (2011) Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials, 32, 3679–3688

[99]

Im, G. I., Kim, H. J. and Lee, J. H. (2011) Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials, 32, 4385–4392

[100]

Wojtowicz, A. M., Templeman, K. L., Hutmacher, D. W., Guldberg, R. E. and García, A. J. (2010) Runx2 overexpression in bone marrow stromal cells accelerates bone formation in critical-sized femoral defects. Tissue Eng. Part A, 16, 2795–2808

[101]

Yao, Y., He, Y., Guan, Q. and Wu, Q. (2014) A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials, 35, 1898–1906

[102]

Ma, Y., Li, J., Yao, Y., Wei, D., Wang, R. and Wu, Q. (2016) A controlled double-duration inducible gene expression system for cartilage tissue engineering. Sci. Rep., 6, 26617

[103]

Darabi, R., Gehlbach, K., Bachoo, R. M., Kamath, S., Osawa, M., Kamm, K. E., Kyba, M. and Perlingeiro, R. C. R. (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med., 14, 134–143

[104]

Maroto, M., Reshef, R., Munsterberg, A. E., Koester, S., Goulding, M. and Lassar, A. B. (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell, 89, 139–148

[105]

Hwang, D. H., Kim, B. G., Kim, E. J., Lee, S. I., Joo, I. S., Suh-Kim, H., Sohn, S. and Kim, S. U. (2009) Transplantation of human neural stem cells transduced with olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci., 10, 1–16

[106]

Hu, J. G., Shen, L., Wang, R., Wang, Q. Y., Zhang, C., Xi, J., Ma, S. F., Zhou, J. S. and H. Z. (2012) Effects of Olig2-overexpressing neural stem cells and myelin basic protein-activated T cells on recovery from spinal cord injury. Neurotherapeutics, 9, 422–445

[107]

Wang, Y., Feng, C., Xue, J., Sun, A., Li, J. and Wu, J. (2009) Adenovirus-mediated hypoxia-inducible factor 1α double-mutant promotes differentiation of bone marrow stem cells to cardiomyocytes. J. Physiol. Sci., 59, 413–420

[108]

Wang, Y., Sun, A., Xue, J., Feng, C., Li, J. and Wu, J. (2009) Bone marrow derived stromal cells modified by adenovirus-mediated HIF-1α double mutant protect cardiac myocytes against CoCl2-induced apoptosis. Toxicol. In Vitro, 23, 1069–1075

[109]

Teague, B. P., Guye, P. and Weiss, R. (2016) Synthetic morphogenesis. Cold Spring Harb. Perspect. Biol., 8, a023929

[110]

Nakashima, H., Kaur, B. and Chiocca, E. A. (2010) Directing systemic oncolytic viral delivery to tumors via carrier cells. Cytokine Growth Factor Rev., 21, 119–126

[111]

van Eekelen, M., Sasportas, L. S., Kasmieh, R., Yip, S., Figueiredo, J. L., Louis, D. N., Weissleder, R. and Shah, K. (2010) Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene, 29, 3185–3195

[112]

Xu, G., Jiang, X. D., Xu, Y., Zhang, J., Huang, F. H., Chen, Z. Z., Zhou, D. X., Shang, J. H., Zou, Y. X. and Cai, Y. Q. (2009) Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int., 33, 466–474

[113]

Kanehira, M., Xin, H., Hoshino, K., Maemondo, M., Mizuguchi, H., Hayakawa, T., Matsumoto, K., Nakamura, T., Nukiwa, T. and Saijo, Y. (2007) Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther., 14, 894–903

[114]

Seo, S. H., Kim, K. S., Park, S. H., Suh, Y. S., Kim, S. J., Jeun, S. S. and Sung, Y. C. (2011) The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther., 18, 488–495

[115]

Kosaka, H., Ichikawa, T., Kurozumi, K., Kambara, H., Inoue, S., Maruo, T., Nakamura, K., Hamada, H. and Date, I. (2012) Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther., 19, 572–578

[116]

Zhao, Y., Lam, D. H., Yang, J., Lin, J., Tham, C. K., Ng, W. H. and Wang, S. (2012) Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther., 19, 189–200

[117]

Altaner, C., Altanerova, V., Cihova, M., Ondicova, K., Rychly, B., Baciak, L. and Mravec, B. (2014) Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int. J. Cancer, 134, 1458–1465

[118]

Fritz, V. and Jorgensen, C. (2008) Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Curr. Stem Cell Res. Ther., 3, 32–42

[119]

Li, L., Guan, Y., Liu, H., Hao, N., Liu, T., Meng, X., Fu, C., Li, Y., Qu, Q., Zhang, Y., (2011) Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano, 5, 7462–7470

[120]

Gonçalves, M. A. F. V., de Vries, A. A. F., Holkers, M., van de Watering, M. J. M., van der Velde, I., van Nierop, G. P., Valerio, D. and Knaän-Shanzer, S. (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum. Mol. Genet., 15, 213–221

[121]

Jia, Z., Valiunas, V., Lu, Z., Bien, H., Liu, H., Wang, H. Z., Rosati, B., Brink, P. R., Cohen, I. S. and Entcheva, E. (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ. Arrhythm. Electrophysiol., 4, 753–760

[122]

Zitvogel, L., Tahara, H., Robbins, P. D., Storkus, W. J., Clarke, M. R., Nalesnik, M. A. and Lotze, M. T. (1995) Cancer immunotherapy of established tumors with IL-12. Effective delivery by genetically engineered fibroblasts. J. Immunol., 155, 1393–1403

[123]

Lin, X., He, Y., Hou, X., Zhang, Z., Wang, R. and Wu, Q. (2016) Endothelial cells can regulate smooth muscle cells in contractile phenotype through the mir-206/arf6&ncx1/exosome axis. PLoS One, 11, e0152959

[124]

Schukur, L., Geering, B., Charpin-El Hamri, G. and Fussenegger, M. (2015) Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med., 7, 318ra201

[125]

Bai, P., Ye, H., Xie, M., Saxena, P., Zulewski, H., Charpin-El Hamri, G., Djonov, V. and Fussenegger, M. (2016) A synthetic biology-based device prevents liver injury in mice. J. Hepatol., 65, 84–94

[126]

Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360

[127]

Rössger, K., Charpin-El Hamri, G. and Fussenegger, M. (2013) Reward-based hypertension control by a synthetic brain-dopamine interface. Proc. Natl. Acad. Sci. USA, 110, 18150–18155

[128]

Ausländer, D., Ausländer, S., Charpin-El Hamri, G., Sedlmayer, F., Müller, M., Frey, O., Hierlemann, A., Stelling, J. and Fussenegger, M. (2014) A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell, 55, 397–408

[129]

Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2013) A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun., 4, 2825

[130]

Saxena, P., Charpin-El Hamri, G., Folcher, M., Zulewski, H. and Fussenegger, M. (2016) Synthetic gene network restoring endogenous pituitary-thyroid feedback control in experimental Graves’ disease. Proc. Natl. Acad. Sci. USA, 113, 1244–1249

[131]

Gaj, T., Gersbach, C. A. and Barbas, C. F. 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397–405

[132]

Kim, H. and Kim, J. S. (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15, 321–334

[133]

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183

[134]

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823

[135]

Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31, 839–843

[136]

Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31, 822–826

[137]

Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389

[138]

Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., Hwang, J., Kim, J. I., and Kim, J. S. (2015) Digenome-seq: Genome-wide profiling of crispr-cas9 off-target effects in human cells. Nat. Methods. 12, 237–243

[139]

Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J. and Root, D. E. (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol., 32, 1262–1267

[140]

Kiani, S., Chavez, A., Tuttle, M., Hall, R. N., Chari, R., Ter-Ovanesyan, D., Qian, J., Pruitt, B. W., Beal, J., Vora, S., (2015) Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods, 12, 1051–1054

[141]

Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification. Nat. Methods, 11, 122–123

[142]

Xu, H., Xiao, T., Chen, C. H., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S., (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res., 25, 1147–1157

[143]

Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838

[144]

Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 24, 132–141

[145]

Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32, 279–284

[146]

Kim, S., Kim, D., Cho, S. W., Kim, J. and Kim, J. S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 24, 1012–1019

[147]

Ramakrishna, S., Kwaku Dad, A. B., Beloor, J., Gopalappa, R., Lee, S. K. and Kim, H. (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res., 24, 1020–1027

[148]

Duportet, X., Wroblewska, L., Guye, P., Li, Y., Eyquem, J., Rieders, J., Rimchala, T., Batt, G. and Weiss, R. (2014) A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res., 42, 13440–13451

[149]

Tebas, P., Stein, D., Tang, W. W., Frank, I., Wang, S. Q., Lee, G., Spratt, S. K., Surosky, R. T., Giedlin, M. A., Nichol, G., (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med., 370, 901–910

[150]

Menger, L., Sledzinska, A., Bergerhoff, K., Vargas, F. A., Smith, J., Poirot, L., Pule, M., Herrero, J., Peggs, K. S. and Quezada, S. A. (2016) Talen-mediated inactivation of pd-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Cancer Res., 76, 2087–2093

[151]

Cyranoski, D. (2016) Chinese scientists to pioneer first human CRISPR trial. Nature, 535, 476–477

[152]

Kazuki, Y. and Oshimura, M. (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol. Ther., 19, 1591–1601

[153]

Thomas, C. E., Ehrhardt, A. and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 4, 346–358

[154]

Rios, H. F., Lin, Z., Oh, B., Park, C. H. and Giannobile, W. V. (2011) Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J. Periodontol., 82, 1223–1237

[155]

Gabriel, R., Schmidt, M. and von Kalle, C. (2012) Integration of retroviral vectors. Curr. Opin. Immunol., 24, 592–597

[156]

Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R. and Wixon, J. (2013) Gene therapy clinical trials worldwide to 2012‒an update. J. Gene Med., 15, 65–77

[157]

Kumar, M., Keller, B., Makalou, N. and Sutton, R. E. (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum. Gene Ther., 12, 1893–1905

[158]

Sinn, P. L., Sauter, S. L. and McCray, P. B. Jr. (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors–design, biosafety, and production. Gene Ther., 12, 1089–1098

[159]

Mátrai, J., Chuah, M. K. and VandenDriessche, T. (2010) Recent advances in lentiviral vector development and applications. Mol. Ther., 18, 477–490

[160]

Breckpot, K., Aerts, J. L. and Thielemans, K. (2007) Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther., 14, 847–862

[161]

Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Ponzoni, M., Bartholomae, C., Sergi, L. S., Benedicenti, F., Ambrosi, A., Di Serio, C., (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol., 24, 687–696

[162]

Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 467, 318–322

[163]

Winslow, M. M., Dayton, T. L., Verhaak, R. G. W., Kim-Kiselak, C., Snyder, E. L., Feldser, D. M., Hubbard, D. D., DuPage, M. J., Whittaker, C. A., Hoersch, S., (2011) Suppression of lung adenocarcinoma progression by Nkx2-1. Nature, 473, 101–104

[164]

Santoni de Sio, F. R., Cascio, P., Zingale, A., Gasparini, M. and Naldini, L. (2006) Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood, 107, 4257–4265

[165]

Kay, M. A. (2011) State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet., 12, 316–328

[166]

Partridge, K. A. and Oreffo, R. O. C. (2004) Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng., 10, 295–307

[167]

Douglas, J. T. (2007) Adenoviral vectors for gene therapy. Mol. Biotechnol., 36, 71–80

[168]

Brunetti-Pierri, N. and Ng, P. (2009) Progress towards liver and lung-directed gene therapy with helper-dependent adenoviral vectors. Curr. Gene Ther., 9, 329–340

[169]

McCaffrey, A. P., Fawcett, P., Nakai, H., McCaffrey, R. L., Ehrhardt, A., Pham, T. T. T., Pandey, K., Xu, H., Feuss, S., Storm, T. A., (2008) The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol. Ther., 16, 931–941

[170]

Ramseier, C. A., Abramson, Z. R., Jin, Q. and Giannobile, W. V. (2006) Gene therapeutics for periodontal regenerative medicine. Dent. Clin. North Am., 50, 245–263

[171]

Wu, Z., Yang, H. and Colosi, P. (2010) Effect of genome size on AAV vector packaging. Mol. Ther., 18, 80–86

[172]

Samulski, R. J. and Muzyczka, N. (2014) Aav-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol., 1, 427–451

[173]

Inagaki, K., Piao, C., Kotchey, N. M., Wu, X. and Nakai, H. (2008) Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J. Virol., 82, 9513–9524

[174]

Cossu, G. and Sampaolesi, M. (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol. Med., 13, 520–526

[175]

McCarty, D. M., Monahan, P. E. and Samulski, R. J. (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther., 8, 1248–1254

[176]

Donsante, A., Miller, D. G., Li, Y., Vogler, C., Brunt, E. M., Russell, D. W. and Sands, M. S. (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science, 317, 477

[177]

Nathwani, A. C., Tuddenham, E. G. D., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D. C., Chowdary, P., Riddell, A., Pie, A. J., Harrington, C., (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med., 365, 2357–2365

[178]

Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R. and Anderson, D. G. (2014) Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 15, 541–555

[179]

Pack, D. W., Hoffman, A. S., Pun, S. and Stayton, P. S. (2005) Design and development of polymers for gene delivery. Nat. Rev. Drug Discov., 4, 581–593

[180]

Mintzer, M. A. and Simanek, E. E. (2009) Nonviral vectors for gene delivery. Chem. Rev., 109, 259–302

[181]

Lee, D. E., Koo, H., Sun, I. C., Ryu, J. H., Kim, K. and Kwon, I. C. (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev., 41, 2656–2672

[182]

Alexis, F., Pridgen, E. M., Langer, R. and Farokhzad, O. C. (2010) Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 197, 55–86

[183]

Putnam, D. (2006) Polymers for gene delivery across length scales. Nat. Mater., 5, 439–451

[184]

Graf, T. and Enver, T. (2009) Forcing cells to change lineages. Nature, 462, 587–594

[185]

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147

[186]

Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676

[187]

Tabar, V. and Studer, L. (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet., 15, 82–92

[188]

Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. and Speck, N. A. (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457, 887–891

[189]

Ieda, M., Fu, J.-D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G. and Srivastava, D. (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386

[190]

Saxena, P., Heng, B. C., Bai, P., Folcher, M., Zulewski, H. and Fussenegger, M. (2016) A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat. Commun., 7, 11247

[191]

Wright, C. M., Wright, R. C., Eshleman, J. R. and Ostermeier, M. (2011) A protein therapeutic modality founded on molecular regulation. Proc. Natl. Acad. Sci. USA, 108, 16206–16211

[192]

Culler, S. J., Hoff, K. G. and Smolke, C. D. (2010) Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science, 330, 1251–1255

[193]

Xie, M. and Fussenegger, M. (2018) Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol., 19, 507–525

[194]

Wang, X. W., Hu, L. F., Hao, J., Liao, L. Q., Chiu, Y. T., Shi, M. and Wang, Y. (2019) A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol., 21, 522–530

[195]

Zhang, M. X., Hong, S. S., Cai, Q. Q., Zhang, M., Chen, J., Zhang, X. Y. and Xu, C. J. (2018) Transcriptional control of the MUC16 promoter facilitates follicle-stimulating hormone peptide-conjugated shRNA nanoparticle-mediated inhibition of ovarian carcinoma in vivo. Drug Deliv., 25, 797–806

[196]

Nissim, L., Wu, M. R., Pery, E., Binder-Nissim, A., Suzuki, H. I., Stupp, D., Wehrspaun, C., Tabach, Y., Sharp, P. A. and Lu, T. K. (2017) Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell, 171, 1138–1150.e15

[197]

Angelici, B., Mailand, E., Haefliger, B. and Benenson, Y. (2016) Synthetic biology platform for sensing and integrating endogenous transcriptional inputs in mammalian cells. Cell Rep., 16, 2525–2537

[198]

Jüttner, J., Szabo, A., Gross-Scherf, B., Morikawa, R. K., Rompani, S. B., Hantz, P., Szikra, T., Esposti, F., Cowan, C. S., Bharioke, A., (2019) Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat. Neurosci., 22, 1345–1356

[199]

Wu, M. R., Nissim, L., Stupp, D., Pery, E., Binder-Nissim, A., Weisinger, K., Enghuus, C., Palacios, S. R., Humphrey, M., Zhang, Z., (2019) A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nat. Commun., 10, 2880

[200]

Cheng, J. K., Morse, N. J., Wagner, J. M., Tucker, S. K. and Alper, H. S. (2019) Design and evaluation of synthetic terminators for regulating mammalian cell transgene expression. ACS Synth. Biol., 8, 1263–1275

[201]

Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342

[202]

Greber, D., El-Baba, M. D. and Fussenegger, M. (2008) Intronically encoded siRNAs improve dynamic range of mammalian gene regulation systems and toggle switch. Nucleic Acids Res., 36, e101

[203]

Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R. and Collins, J. J. (2004) Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA, 101, 8414–8419

[204]

Kramer, B. P., Viretta, A. U., Baba, M. D.-E., Aubel, D., Weber, W. and Fussenegger, M. (2004) An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol., 22, 867–870

[205]

Wroblewska, L., Kitada, T., Endo, K., Siciliano, V., Stillo, B., Saito, H. and Weiss, R. (2015) Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol., 33, 839–841

[206]

Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311

[207]

Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311

[208]

Liu, P. Q., Rebar, E. J., Zhang, L., Liu, Q., Jamieson, A. C., Liang, Y., Qi, H., Li, P. X., Chen, B., Mendel, M. C., (2001) Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem., 276, 11323–11334

[209]

Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 10, 973–976

[210]

Perez-Pinera, P., Ousterout, D. G., Brunger, J. M., Farin, A. M., Glass, K. A., Guilak, F., Crawford, G. E., Hartemink, A. J. and Gersbach, C. A. (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods, 10, 239–242

[211]

Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P. and Knoblich, J. A. (2013) Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379

[212]

Kalos, M. and June, C. H. (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity, 39, 49–60

[213]

Miller, J. F. A. P. and Sadelain, M. (2015) The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell, 27, 439–449

[214]

Savoldo, B., Ramos, C. A., Liu, E., Mims, M. P., Keating, M. J., Carrum, G., Kamble, R. T., Bollard, C. M., Gee, A. P., Mei, Z., (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest., 121, 1822–1826

[215]

Finney, H. M., Lawson, A. D. G., Bebbington, C. R. and Weir, A. N. C. (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol, 161, 2791–2797

[216]

Kochenderfer, J. N., Dudley, M. E., Feldman, S. A., Wilson, W. H., Spaner, D. E., Maric, I., Stetler-Stevenson, M., Phan, G. Q., Hughes, M. S., Sherry, R. M., (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 119, 2709–2720

[217]

Brentjens, R. J., Rivière, I., Park, J. H., Davila, M. L., Wang, X., Stefanski, J., Taylor, C., Yeh, R., Bartido, S., Borquez-Ojeda, O., (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 118, 4817–4828

[218]

Duval, L., Schmidt, H., Kaltoft, K., Fode, K., Jensen, J. J., Sorensen, S. M., Nishimura, M. I. and von der Maase, H. (2006) Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma. Clin. Cancer Res., 12, 1229–1236

[219]

Ma, Q., Safar, M., Holmes, E., Wang, Y., Boynton, A. L. and Junghans, R. P. (2004) Anti-prostate specific membrane antigen designer T cells for prostate cancer therapy. Prostate, 61, 12–25

[220]

Westwood, J. A., Smyth, M. J., Teng, M. W. L., Moeller, M., Trapani, J. A., Scott, A. M., Smyth, F. E., Cartwright, G. A., Power, B. E., Hönemann, D., (2005) Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc. Natl. Acad. Sci. USA, 102, 19051–19056

[221]

Sharifzadeh, Z., Rahbarizadeh, F., Shokrgozar, M. A., Ahmadvand, D., Mahboudi, F., Jamnani, F. R. and Moghimi, S. M. (2013) Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett., 334, 237–244

[222]

Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F., (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 371, 1507–1517

[223]

Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S. S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M., (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med., 6, 224ra25

[224]

Fedorov, V. D., Themeli, M. and Sadelain, M. (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med., 5, 215ra172

[225]

Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. and Lim, W. A. (2015) Remote control of therapeutic t cells through a small molecule-gated chimeric receptor. Science, 350, aab4077

[226]

Straathof, K. C., Pulè M. A., Yotnda, P., Dotti, G., Vanin, E. F., Brenner, M. K., Heslop, H. E., Spencer, D. M. and Rooney, C. M. (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood, 105, 4247–4254

[227]

Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. and Sadelain, M. (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol., 31, 71–75

[228]

Zhang, L., Kerkar, S. P., Yu, Z., Zheng, Z., Yang, S., Restifo, N. P., Rosenberg, S. A. and Morgan, R. A. (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol. Ther., 19, 751–759

[229]

John, L. B., Kershaw, M. H. and Darcy, P. K. (2013) Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. OncoImmunology, 2, e26286

[230]

Tamada, K., Geng, D., Sakoda, Y., Bansal, N., Srivastava, R. and Li, Z. (2013) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res., 19, 951

[231]

Urbanska, K., Lanitis, E., Poussin, M., Lynn, R. C., Gavin, B. P., Kelderman, S., Yu, J., Scholler, N. and Powell, D. J. Jr. (2012) A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res., 72, 1844–1852

[232]

Morsut, L., Roybal, K. T., Xiong, X., Gordley, R. M., Coyle, S. M., Thomson, M. and Lim, W. A. (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell, 164, 780–791

[233]

Daringer, N. M., Dudek, R. M., Schwarz, K. A. and Leonard, J. N. (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth. Biol., 3, 892–902

[234]

Roybal, K. T., Rupp, L. J., Morsut, L., Walker, W. J., McNally, K. A., Park, J. S. and Lim, W. A. (2016) Precision tumor recognition by t cells with combinatorial antigen-sensing circuits. Cell, 164, 770–779

[235]

Qudrat, A., Mosabbir, A. A. and Truong, K. (2017) Engineered proteins program mammalian cells to target inflammatory disease sites. Cell Chem. Biol., 24, 703–711.e2

[236]

Ye, H., Xie, M., Xue, S., Charpin-El Hamri, G., Yin, J., Zulewski, H., and Fussenegger, M. (2017) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng., 1, 0005

[237]

Barnea, G., Strapps, W., Herrada, G., Berman, Y., Ong, J., Kloss, B., Axel, R. and Lee, K. J. (2008) The genetic design of signaling cascades to record receptor activation. Proc. Natl. Acad. Sci. USA, 105, 64–69

[238]

Baeumler, T. A., Ahmed, A. A. and Fulga, T. A. (2017) Engineering synthetic signaling pathways with programmable dcas9-based chimeric receptors. Cell Rep., 20, 2639–2653

[239]

Daringer, N. M., Dudek, R. M., Schwarz, K. A. and Leonard, J. N. (2014) Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth. Biol., 3, 892–902

[240]

Schwarz, K. A., Daringer, N. M., Dolberg, T. B. and Leonard, J. N. (2017) Rewiring human cellular input-output using modular extracellular sensors. Nat. Chem. Biol., 13, 202–209

[241]

Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360

[242]

Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2013) A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat. Commun., 4, 2825

[243]

Rössger, K., Charpin-El-Hamri, G. and Fussenegger, M. (2014) Bile acid-controlled transgene expression in mammalian cells and mice. Metab. Eng., 21, 81–90

[244]

Wright, C. M., Wright, R. C., Eshleman, J. R. and Ostermeier, M. (2011) A protein therapeutic modality founded on molecular regulation. Proc. Natl. Acad. Sci. USA, 108, 16206–16211

[245]

Deisseroth, K. (2011) Optogenetics. Nat. Methods, 8, 26–29

[246]

Ye, H., Daoud-El Baba, M., Peng, R. W. and Fussenegger, M. (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science, 332, 1565–1568

[247]

Kim, T., Folcher, M., Doaud-El Baba, M. and Fussenegger, M. (2015) A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. Int. Ed. Engl., 54, 5933–5938

[248]

Levin, M. (2014) Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell, 25, 3835–3850

[249]

Krawczyk, K., Xue, S., Buchmann, P., Charpin-El-Hamri, G., Saxena, P., Hussherr, M.-D., Shao, J., Ye, H., Xie, M. and Fussenegger, M. (2020) Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science, 368, 993–1001

[250]

Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S.,Friedman, J.M. (2015) Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21, 92 98

[251]

Shao, J., Xue, S., Yu, G., Yu, Y., Yang, X., Bai, Y., Zhu, S., Yang, L., Yin, J., Wang, Y., (2017) Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med., 9, eaal2298

[252]

Brophy, J. A. and Voigt, C. A. (2014) Principles of genetic circuit design. Nat. Methods, 11, 508–520

[253]

Wei, D.-X., Dao, J.-W. and Chen, G.-Q. (2018) A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater., 30, 1802273

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press

AI Summary AI Mindmap
PDF (2103KB)

2390

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/