Population-scale genetic control of alternative polyadenylation and its association with human diseases

Lei Li , Yumei Li , Xudong Zou , Fuduan Peng , Ya Cui , Eric J. Wagner , Wei Li

Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 44 -54.

PDF (286KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 44 -54. DOI: 10.15302/J-QB-021-0252
REVIEW

Population-scale genetic control of alternative polyadenylation and its association with human diseases

Author information +
History +
PDF (286KB)

Abstract

Background: Genome-wide association studies (GWAS) have identified thousands of genomic non-coding variants statistically associated with many human traits and diseases, including cancer. However, the functional interpretation of these non-coding variants remains a significant challenge in the post-GWAS era. Alternative polyadenylation (APA) plays an essential role in post-transcriptional regulation for most human genes. By employing different poly(A) sites, genes can either shorten or extend the 3′-UTRs that contain cis-regulatory elements such as miRNAs or RNA-binding protein binding sites. Therefore, APA can affect the mRNA stability, translation, and cellular localization of proteins. Population-scale studies have revealed many inherited genetic variants that potentially impact APA to further influence disease susceptibility and phenotypic diversity, but systematic computational investigations to delineate the connections are in their earliest states.

Results: Here, we discuss the evolving definitions of the genetic basis of APA and the modern genomics tools to identify, characterize, and validate the genetic influences of APA events in human populations. We also explore the emerging and surprisingly complex molecular mechanisms that regulate APA and summarize the genetic control of APA that is associated with complex human diseases and traits.

Conclusion: APA is an intermediate molecular phenotype that can translate human common non-coding variants to individual phenotypic variability and disease susceptibility.

Graphical abstract

Keywords

GWAS / eQTL / disease / alternative polyadenylation

Cite this article

Download citation ▾
Lei Li, Yumei Li, Xudong Zou, Fuduan Peng, Ya Cui, Eric J. Wagner, Wei Li. Population-scale genetic control of alternative polyadenylation and its association with human diseases. Quant. Biol., 2022, 10(1): 44-54 DOI:10.15302/J-QB-021-0252

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mayr, C. (2017) Regulation by 3′-untranslated regions. Annu. Rev. Genet., 51, 171–194

[2]

Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J. Y., Yehia, G. and Tian, B. (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat. Methods, 10, 133–139

[3]

Derti, A., Garrett-Engele, P., Macisaac, K. D., Stevens, R. C., Sriram, S., Chen, R., Rohl, C. A., Johnson, J. M. and Babak, T. (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res., 22, 1173–1183

[4]

Tian, B. and Manley, J. L. (2017) Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol., 18, 18–30

[5]

Mayr, C. (2019) What Are 3′ UTRs Doing? Cold Spring Harb. Perspect. Biol., 11, a034728

[6]

Berkovits, B. D. and Mayr, C. (2015) Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature, 522, 363–367

[7]

Chao, Y., Li, L., Girodat, D., Förstner, K. U., Said, N., Corcoran, C., Śmiga, M., Papenfort, K., Reinhardt, R., Wieden, H. J., (2017) In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Mol. Cell, 65, 39–51

[8]

Holmqvist, E., Li, L., Bischler, T., Barquist, L. and Vogel, J. (2018) Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3′ ends. Mol. Cell, 70, 971–982.e6

[9]

Mercer, T. R., Wilhelm, D., Dinger, M. E., Soldà G., Korbie, D. J., Glazov, E. A., Truong, V., Schwenke, M., Simons, C., Matthaei, K. I., (2011) Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res., 39, 2393–2403

[10]

Levy, S. and Schuster, G. (2016) Polyadenylation and degradation of RNA in the mitochondria. Biochem. Soc. Trans., 44, 1475–1482

[11]

Xia, Z., Donehower, L. A., Cooper, T. A., Neilson, J. R., Wheeler, D. A., Wagner, E. J. and Li, W. (2014) Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat. Commun., 5, 5274

[12]

Chun, S., Casparino, A., Patsopoulos, N. A., Croteau-Chonka, D. C., Raby, B. A., De Jager, P. L., Sunyaev, S. R. and Cotsapas, C. (2017) Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet., 49, 600–605

[13]

Manning, K. S. and Cooper, T. A. (2017) The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol., 18, 102–114

[14]

Yang, H. and Melera, P. W. (1994) A genetic polymorphism within the third poly(A) signal of the DHFR gene alters the polyadenylation pattern of DHFR transcripts in CHL cells. Nucleic Acids Res., 22, 2694–2702

[15]

Bell, D. A., Badawi, A. F., Lang, N. P., Ilett, K. F., Kadlubar, F. F. and Hirvonen, A. (1995) Polymorphism in the N-acetyltransferase 1 (NAT1) polyadenylation signal: association of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue. Cancer Res, 55, 5226–5229

[16]

Battersby, S., Ogilvie, A. D., Blackwood, D. H., Shen, S., Muqit, M. M., Muir, W. J., Teague, P., Goodwin, G. M. and Harmar, A. J. (1999) Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3′ untranslated region of the human serotonin transporter gene. J. Neurochem., 72, 1384–1388

[17]

Hoarau, J. J., Cesari, M., Caillens, H., Cadet, F. and Pabion, M. (2004) HLA DQA1 genes generate multiple transcripts by alternative splicing and polyadenylation of the 3′ untranslated region. Tissue Antigens, 63, 58–71

[18]

Graham, D. S. C., Manku, H., Wagner, S., Reid, J., Timms, K., Gutin, A., Lanchbury, J. S. and Vyse, T. J. (2007) Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum. Mol. Genet., 16, 579–591

[19]

Graham, R. R., Kyogoku, C., Sigurdsson, S., Vlasova, I. A., Davies, L. R., Baechler, E. C., Plenge, R. M., Koeuth, T., Ortmann, W. A., Hom, G., (2007) Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl. Acad. Sci. USA, 104, 6758–6763

[20]

Hellquist, A., Zucchelli, M., Kivinen, K., Saarialho-Kere, U., Koskenmies, S., Widen, E., Julkunen, H., Wong, A., Karjalainen-Lindsberg, M. L., Skoog, T., (2007) The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus. J. Med. Genet., 44, 314–321

[21]

Kwan, T., Benovoy, D., Dias, C., Gurd, S., Provencher, C., Beaulieu, P., Hudson, T. J., Sladek, R. and Majewski, J. (2008) Genome-wide analysis of transcript isoform variation in humans. Nat. Genet., 40, 225–231

[22]

Yang, Z. and Kaye, D. M. (2009) Mechanistic insights into the link between a polymorphism of the 3′UTR of the SLC7A1 gene and hypertension. Hum. Mutat., 30, 328–333

[23]

Yoon, O. K., Hsu, T. Y., Im, J. H. and Brem, R. B. (2012) Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet., 8, e1002882

[24]

Hartley, C. A., McKenna, M. C., Salman, R., Holmes, A., Casey, B. J., Phelps, E. A. and Glatt, C. E. (2012) Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory. Proc. Natl. Acad. Sci. USA, 109, 5493–5498

[25]

Zhernakova, D. V., de Klerk, E., Westra, H. J., Mastrokolias, A., Amini, S., Ariyurek, Y., Jansen, R., Penninx, B. W., Hottenga, J. J., Willemsen, G., (2013) DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. PLoS Genet., 9, e1003594

[26]

Prasad, M. K., Bhalla, K., Pan, Z. H., O’Connell, J. R., Weder, A. B., Chakravarti, A., Tian, B. and Chang, Y. P. (2013) A polymorphic 3′UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood pressure. PLoS One, 8, e76290

[27]

Fraser, H. B. and Xie, X. (2009) Common polymorphic transcript variation in human disease. Genome Res., 19, 567–575

[28]

Mittleman, B. E., Pott, S., Warland, S., Zeng, T., Mu, Z., Kaur, M., Gilad, Y. and Li, Y. (2020) Alternative polyadenylation mediates genetic regulation of gene expression. eLife, 9, e57492

[29]

Cannavò E., Koelling, N., Harnett, D., Garfield, D., Casale, F. P., Ciglar, L., Gustafson, H. E., Viales, R. R., Marco-Ferreres, R., Degner, J. F., (2017) Genetic variants regulating expression levels and isoform diversity during embryogenesis. Nature, 541, 402–406

[30]

Yalamanchili, H. K., Alcott, C. E., Ji, P., Wagner, E. J., Zoghbi, H. Y. and Liu, Z. (2020) PolyA-miner: accurate assessment of differential alternative poly-adenylation from 3′ Seq data using vector projections and non-negative matrix factorization. Nucleic Acids Res., 48, e69

[31]

Routh, A. (2019) DPAC: A tool for differential poly(A)-cluster usage from poly(A)-targeted RNAseq data. G3 (Bethesda), 9, 1825–1830

[32]

Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511

[33]

Monlong, J., Calvo, M., Ferreira, P. G. and Guigó R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun., 5, 4698

[34]

Mariella, E., Marotta, F., Grassi, E., Gilotto, S. and Provero, P. (2019) The Length of the Expressed 3′ UTR Is an intermediate molecular phenotype linking genetic variants to complex diseases. Front. Genet., 10, 714

[35]

The GTEx Consortium, the Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, the Statistical Methods groups—Analysis Working Group, the Enhancing GTEx (eGTEx) groups, the NIH Common Fund, the NIH/NCI, the NIH/NHGRI, the NIH/NIMH, the NIH/NIDA, the Biospecimen Collection Source Site—NDRI, (2017) Genetic effects on gene expression across human tissues. Nature, 550, 204–213

[36]

Li, L., Huang, K.L., Gao, Y., Cui, Y., Wang, G., Elrod, N.D., Li, Y., Chen, Y.E., Ji, P., Peng, F. (2021) An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait and disease heritability. Nat. Genet

[37]

Ha, K. C. H., Blencowe, B. J. and Morris, Q. (2018) QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol., 19, 45

[38]

Grassi, E., Mariella, E., Lembo, A., Molineris, I. and Provero, P. (2016) Roar: detecting alternative polyadenylation with standard mRNA sequencing libraries. BMC Bioinformatics, 17, 423

[39]

Wang, R., Nambiar, R., Zheng, D. and Tian, B. (2018) PolyA_ DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res., 46, D315–D319

[40]

Gruber, A. J., Schmidt, R., Gruber, A. R., Martin, G., Ghosh, S., Belmadani, M., Keller, W. and Zavolan, M. (2016) A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res., 26, 1145–1159

[41]

You, L., Wu, J., Feng, Y., Fu, Y., Guo, Y., Long, L., Zhang, H., Luan, Y., Tian, P., Chen, L., (2015) APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals. Nucleic Acids Res., 43, D59–D67

[42]

Kim, M., You, B. H. and Nam, J. W. (2015) Global estimation of the 3′ untranslated region landscape using RNA sequencing. Methods, 83, 111–117

[43]

Arefeen, A., Liu, J., Xiao, X. and Jiang, T. (2018) TAPAS: tool for alternative polyadenylation site analysis. Bioinformatics, 34, 2521–2529

[44]

Ye, C., Long, Y., Ji, G., Li, Q. Q. and Wu, X. (2018) APAtrap: identification and quantification of alternative polyadenylation sites from RNA-seq data. Bioinformatics, 34, 1841–1849

[45]

Feng, X., Li, L., Wagner, E. J. and Li, W. (2018) TC3A: The Cancer 3′ UTR Atlas. Nucleic Acids Res., 46, D1027–D1030

[46]

Yuan, F., Hankey, W., Wagner, E. J., Li, W. and Wang, Q. (2019) Alternative polyadenylation of mRNA and its role in cancer. Genes Dis., 8, 61–72

[47]

Curinha, A., Oliveira Braz, S., Pereira-Castro, I., Cruz, A. and Moreira, A. (2014) Implications of polyadenylation in health and disease. Nucleus, 5, 508–519

[48]

Chang, J. W., Yeh, H. S. and Yong, J. (2017) Alternative polyadenylation in human diseases. Endocrinol. Metab. (Seoul), 32, 413–421

[49]

Masamha, C. P., Xia, Z., Yang, J., Albrecht, T. R., Li, M., Shyu, A. B., Li, W. and Wagner, E. J. (2014) CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 510, 412–416

[50]

Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684

[51]

Gruber, A. J. and Zavolan, M. (2019) Alternative cleavage and polyadenylation in health and disease. Nat. Rev. Genet., 20, 599–614

[52]

Mariella, E., Marotta, F., Grassi, E., Gilotto, S. and Provero, P. (2019) The length of the expressed 3′ UTR is an intermediate molecular phenotype linking genetic variants to complex diseases. Front. Genet., 10, 714

[53]

Sanfilippo, P., Wen, J. and Lai, E. C. (2017) Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. Genome Biol., 18, 229

[54]

Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684

[55]

Li, Y., Ma, H., Shi, C., Feng, F. and Yang, L. (2020) Mutant ACTB mRNA 3′-UTR promotes hepatocellular carcinoma development by regulating miR-1 and miR-29a. Cell. Signal., 67, 109479

[56]

Park, H. J., Ji, P., Kim, S., Xia, Z., Rodriguez, B., Li, L., Su, J., Chen, K., Masamha, C. P., Baillat, D., (2018) 3′ UTR shortening represses tumor-suppressor genes in trans by disrupting ceRNA crosstalk. Nat. Genet., 50, 783–789

[57]

Chu, Y., Elrod, N., Wang, C., Li, L., Chen, T., Routh, A., Xia, Z., Li, W., Wagner, E. J. and Ji, P. (2019) Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene, 38, 4154–4168

[58]

Tan, S., Li, H., Zhang, W., Shao, Y., Liu, Y., Guan, H., Wu, J., Kang, Y., Zhao, J., Yu, Q., (2018) NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene, 37, 4887–4900

[59]

Xiong, M., Chen, L., Zhou, L., Ding, Y., Kazobinka, G., Chen, Z. and Hou, T. (2019) NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation. Theranostics, 9, 7156–7167

[60]

Weng, T., Ko, J., Masamha, C. P., Xia, Z., Xiang, Y., Chen, N. Y., Molina, J. G., Collum, S., Mertens, T. C., Luo, F., (2019) Cleavage factor 25 deregulation contributes to pulmonary fibrosis through alternative polyadenylation. J. Clin. Invest., 129, 1984–1999

[61]

Weng, T., Huang, J., Wagner, E. J., Ko, J., Wu, M., Wareing, N. E., Xiang, Y., Chen, N. Y., Ji, P., Molina, J. G., (2020) Downregulation of CFIm25 amplifies dermal fibrosis through alternative polyadenylation. J. Exp. Med., 217, e20181384

[62]

Gennarino, V. A., Alcott, C. E., Chen, C. A., Chaudhury, A., Gillentine, M. A., Rosenfeld, J. A., Parikh, S., Wheless, J. W., Roeder, E. R., Horovitz, D. D., (2015) NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. eLife, 4, e10782

[63]

Alcott, C. E., Yalamanchili, H. K., Ji, P., van der Heijden, M. E., Saltzman, A., Elrod, N., Lin, A., Leng, M., Bhatt, B., Hao, S., (2020) Partial loss of CFIm25 causes learning deficits and aberrant neuronal alternative polyadenylation. eLife, 9, e50895

[64]

Ogorodnikov, A., Levin, M., Tattikota, S., Tokalov, S., Hoque, M., Scherzinger, D., Marini, F., Poetsch, A., Binder, H., Macher-Göppinger, S., (2018) Transcriptome 3′end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat. Commun., 9, 5331

[65]

Wang, R., Zheng, D., Wei, L., Ding, Q. and Tian, B. (2019) Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes. Cell Rep., 26, 2766–2778.e6

[66]

Lee, A. K. and Potts, P. R. (2017) A comprehensive guide to the MAGE family of ubiquitin ligases. J. Mol. Biol., 429, 1114–1142

[67]

Minges, J. T., Su, S., Grossman, G., Blackwelder, A. J., Pop, E. A., Mohler, J. L. and Wilson, E. M. (2013) Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. J. Biol. Chem., 288, 1939–1952

[68]

Xia, L. P., Xu, M., Chen, Y. and Shao, W. W. (2013) Expression of MAGE-A11 in breast cancer tissues and its effects on the proliferation of breast cancer cells. Mol. Med. Rep., 7, 254–258

[69]

Yang, S. W., Li, L., Connelly, J. P., Porter, S. N., Kodali, K., Gan, H., Park, J. M., Tacer, K. F., Tillman, H., Peng, J., (2020) A cancer-specific ubiquitin ligase drives mRNA alternative polyadenylation by ubiquitinating the mRNA 3′ end processing complex. Mol. Cell, 77, 1206–1221.e7

[70]

Park, Y. M., Hwang, S. J., Masuda, K., Choi, K. M., Jeong, M. R., Nam, D. H., Gorospe, M. and Kim, H. H. (2012) Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4. Mol. Cell. Biol., 32, 4237–4244

[71]

Pino, I., Pío, R., Toledo, G., Zabalegui, N., Vicent, S., Rey, N., Lozano, M. D., Torre, W., García-Foncillas, J. and Montuenga, L. M. (2003) Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung Cancer, 41, 131–143

[72]

Mulnix, R. E., Pitman, R. T., Retzer, A., Bertram, C., Arasi, K., Crees, Z., Girard, J., Uppada, S. B., Stone, A. L. and Puri, N. (2013) hnRNP C1/C2 and Pur-beta proteins mediate induction of senescence by oligonucleotides homologous to the telomere overhang. Onco Targets Ther, 7, 23–32

[73]

Wu, Y., Zhao, W., Liu, Y., Tan, X., Li, X., Zou, Q., Xiao, Z., Xu, H., Wang, Y. and Yang, X. (2018) Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J., 37, e99017

[74]

Fischl, H., Neve, J., Wang, Z., Patel, R., Louey, A., Tian, B. and Furger, A. (2019) hnRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic Acids Res., 47, 7580–7591

[75]

Nanavaty, V., Abrash, E. W., Hong, C., Park, S., Fink, E. E., Li, Z., Sweet, T. J., Bhasin, J. M., Singuri, S., Lee, B. H., (2020) DNA methylation regulates alternative polyadenylation via CTCF and the cohesin complex. Mol. Cell, 78, 752–764.e6

[76]

Oktaba, K., Zhang, W., Lotz, T. S., Jun, D. J., Lemke, S. B., Ng, S. P., Esposito, E., Levine, M. and Hilgers, V. (2015) ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell, 57, 341–348

[77]

Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. and Eskin, E. (2014) Identifying causal variants at loci with multiple signals of association. Genetics, 198, 497–508

[78]

Wang, G., Sarkar, A., Carbonetto, P. and Stephens, M. (2020) A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol., 82, 1273–1300

[79]

Starita, L. M., Ahituv, N., Dunham, M. J., Kitzman, J. O., Roth, F. P., Seelig, G., Shendure, J. and Fowler, D. M. (2017) Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet., 101, 315–325

[80]

Bogard, N., Linder, J., Rosenberg, A. B. and Seelig, G. (2019) A deep neural network for predicting and engineering alternative polyadenylation. Cell, 178, 91–106.e23

[81]

Higgs, D. R., Goodbourn, S. E., Lamb, J., Clegg, J. B., Weatherall, D. J. and Proudfoot, N. J. (1983) Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature, 306, 398–400

[82]

Fei, Y. J., Oner, R., Bözkurt, G., Gu, L. H., Altay, C., Gurgey, A., Fattoum, S., Baysal, E. and Huisman, T. H. (1992) Hb H disease caused by a homozygosity for the AATAAA→AATAAG mutation in the polyadenylation site of the alpha 2-globin gene: hematological observations. Acta Haematol., 88, 82–85

[83]

Orkin, S. H., Cheng, T. C., Antonarakis, S. E. and Kazazian, H. H. Jr. (1985) Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J., 4, 453–456

[84]

Rund, D., Dowling, C., Najjar, K., Rachmilewitz, E. A., Kazazian, H. H. Jr and Oppenheim, A. (1992) Two mutations in the beta-globin polyadenylylation signal reveal extended transcripts and new RNA polyadenylylation sites. Proc. Natl. Acad. Sci. U.S.A., 89, 4324–4328

[85]

Stacey, S. N., Sulem, P., Jonasdottir, A., Masson, G., Gudmundsson, J., Gudbjartsson, D. F., Magnusson, O. T., Gudjonsson, S. A., Sigurgeirsson, B., Thorisdottir, K., (2011) A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat. Genet., 43, 1098–1103

[86]

Bennett, C. L., Brunkow, M. E., Ramsdell, F., O’Briant, K. C., Zhu, Q., Fuleihan, R. L., Shigeoka, A. O., Ochs, H. D. and Chance, P. F. (2001) A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics, 53, 435–439

[87]

Uitte de Willige, S., Rietveld, I. M., De Visser, M. C. H., Vos, H. L. and Bertina, R. M. (2007) Polymorphism 10034C>T is located in a region regulating polyadenylation of FGG transcripts and influences the fibrinogen γ′/γA mRNA ratio. J. Thromb. Haemost., 5, 1243–1249

[88]

Zhang, Z., So, K., Peterson, R., Bauer, M., Ng, H., Zhang, Y., Kim, J. H., Kidd, T. and Miura, P. (2019) Elav-mediated exon skipping and alternative polyadenylation of the dscam1 gene are required for axon outgrowth. Cell Rep., 27, 3808–3817.e7

[89]

Anvar, S. Y., Allard, G., Tseng, E., Sheynkman, G. M., de Klerk, E., Vermaat, M., Yin, R. H., Johansson, H. E., Ariyurek, Y., den Dunnen, J. T., (2018) Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol., 19, 46

[90]

Schmiedel, B.J., Singh , D., Madrigal, A., Valdovino-Gonzalez, A.G., White, B.M., Zapardiel-Gonzalo, J., Ha, B., Altay , G., Greenbaum, J.A., McVicker, G. (2018) Impact of genetic polymorphisms on human immune cell gene expression. Cell, 175, 1701–1715

[91]

van der Wijst, M., de Vries, D. H., Groot, H. E., Trynka, G., Hon, C. C., Bonder, M. J., Stegle, O., Nawijn, M. C., Idaghdour, Y., van der Harst, P., (2020) The single-cell eQTLGen consortium. eLife, 9, e52155

[92]

van der Wijst, M. G. P., Brugge, H., de Vries, D. H., Deelen, P., Swertz, M. A. and Franke, L., and the LifeLines Cohort Study, and the BIOS Consortium. (2018) Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet., 50, 493–497

[93]

Gao, Y., Li, L., Amos, C. I. and Li, W. (2020) Dynamic analysis of alternative polyadenylation from single-cell RNA-seq (scDaPars) reveals cell subpopulations invisible to gene expression analysis. bioRxiv, 310649

[94]

Merkin, J., Russell, C., Chen, P. and Burge, C. B. (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science, 338, 1593–1599

[95]

Tan, M. H., Li, Q., Shanmugam, R., Piskol, R., Kohler, J., Young, A. N., Liu, K. I., Zhang, R., Ramaswami, G., Ariyoshi, K., (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature, 550, 249–254

RIGHTS & PERMISSIONS

The Author(s) 2022. Published by Higher Education Press

AI Summary AI Mindmap
PDF (286KB)

4995

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/