Population-scale genetic control of alternative polyadenylation and its association with human diseases
Lei Li, Yumei Li, Xudong Zou, Fuduan Peng, Ya Cui, Eric J. Wagner, Wei Li
Population-scale genetic control of alternative polyadenylation and its association with human diseases
Background: Genome-wide association studies (GWAS) have identified thousands of genomic non-coding variants statistically associated with many human traits and diseases, including cancer. However, the functional interpretation of these non-coding variants remains a significant challenge in the post-GWAS era. Alternative polyadenylation (APA) plays an essential role in post-transcriptional regulation for most human genes. By employing different poly(A) sites, genes can either shorten or extend the 3′-UTRs that contain cis-regulatory elements such as miRNAs or RNA-binding protein binding sites. Therefore, APA can affect the mRNA stability, translation, and cellular localization of proteins. Population-scale studies have revealed many inherited genetic variants that potentially impact APA to further influence disease susceptibility and phenotypic diversity, but systematic computational investigations to delineate the connections are in their earliest states.
Results: Here, we discuss the evolving definitions of the genetic basis of APA and the modern genomics tools to identify, characterize, and validate the genetic influences of APA events in human populations. We also explore the emerging and surprisingly complex molecular mechanisms that regulate APA and summarize the genetic control of APA that is associated with complex human diseases and traits.
Conclusion: APA is an intermediate molecular phenotype that can translate human common non-coding variants to individual phenotypic variability and disease susceptibility.
Genome-wide association studies (GWAS) have identified hundreds of inherited single-nucleotide polymorphisms (SNPs) associated with human diseases. However, they fall short of linking SNPs with dysregulation of specific genes and the molecular mechanisms responsible for disease/traits. By investigating the genetic basis of alternative polyadenylation we may gain insight into how GWAS non-coding variants influence complex diseases.
GWAS / eQTL / disease / alternative polyadenylation
[1] |
Mayr, C. (2017) Regulation by 3′-untranslated regions. Annu. Rev. Genet., 51, 171–194
CrossRef
Pubmed
Google scholar
|
[2] |
Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J. Y., Yehia, G. and Tian, B. (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat. Methods, 10, 133–139
CrossRef
Pubmed
Google scholar
|
[3] |
Derti, A., Garrett-Engele, P., Macisaac, K. D., Stevens, R. C., Sriram, S., Chen, R., Rohl, C. A., Johnson, J. M. and Babak, T. (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res., 22, 1173–1183
CrossRef
Pubmed
Google scholar
|
[4] |
Tian, B. and Manley, J. L. (2017) Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol., 18, 18–30
CrossRef
Pubmed
Google scholar
|
[5] |
Mayr, C. (2019) What Are 3′ UTRs Doing? Cold Spring Harb. Perspect. Biol., 11, a034728
CrossRef
Pubmed
Google scholar
|
[6] |
Berkovits, B. D. and Mayr, C. (2015) Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature, 522, 363–367
CrossRef
Pubmed
Google scholar
|
[7] |
Chao, Y., Li, L., Girodat, D., Förstner, K. U., Said, N., Corcoran, C., Śmiga, M., Papenfort, K., Reinhardt, R., Wieden, H. J.,
CrossRef
Pubmed
Google scholar
|
[8] |
Holmqvist, E., Li, L., Bischler, T., Barquist, L. and Vogel, J. (2018) Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3′ ends. Mol. Cell, 70, 971–982.e6
CrossRef
Pubmed
Google scholar
|
[9] |
Mercer, T. R., Wilhelm, D., Dinger, M. E., Soldà, G., Korbie, D. J., Glazov, E. A., Truong, V., Schwenke, M., Simons, C., Matthaei, K. I.,
CrossRef
Pubmed
Google scholar
|
[10] |
Levy, S. and Schuster, G. (2016) Polyadenylation and degradation of RNA in the mitochondria. Biochem. Soc. Trans., 44, 1475–1482
CrossRef
Pubmed
Google scholar
|
[11] |
Xia, Z., Donehower, L. A., Cooper, T. A., Neilson, J. R., Wheeler, D. A., Wagner, E. J. and Li, W. (2014) Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat. Commun., 5, 5274
CrossRef
Pubmed
Google scholar
|
[12] |
Chun, S., Casparino, A., Patsopoulos, N. A., Croteau-Chonka, D. C., Raby, B. A., De Jager, P. L., Sunyaev, S. R. and Cotsapas, C. (2017) Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet., 49, 600–605
CrossRef
Pubmed
Google scholar
|
[13] |
Manning, K. S. and Cooper, T. A. (2017) The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol., 18, 102–114
CrossRef
Pubmed
Google scholar
|
[14] |
Yang, H. and Melera, P. W. (1994) A genetic polymorphism within the third poly(A) signal of the DHFR gene alters the polyadenylation pattern of DHFR transcripts in CHL cells. Nucleic Acids Res., 22, 2694–2702
CrossRef
Pubmed
Google scholar
|
[15] |
Bell, D. A., Badawi, A. F., Lang, N. P., Ilett, K. F., Kadlubar, F. F. and Hirvonen, A. (1995) Polymorphism in the N-acetyltransferase 1 (NAT1) polyadenylation signal: association of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue. Cancer Res, 55, 5226–5229
Pubmed
|
[16] |
Battersby, S., Ogilvie, A. D., Blackwood, D. H., Shen, S., Muqit, M. M., Muir, W. J., Teague, P., Goodwin, G. M. and Harmar, A. J. (1999) Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3′ untranslated region of the human serotonin transporter gene. J. Neurochem., 72, 1384–1388
CrossRef
Pubmed
Google scholar
|
[17] |
Hoarau, J. J., Cesari, M., Caillens, H., Cadet, F. and Pabion, M. (2004) HLA DQA1 genes generate multiple transcripts by alternative splicing and polyadenylation of the 3′ untranslated region. Tissue Antigens, 63, 58–71
CrossRef
Pubmed
Google scholar
|
[18] |
Graham, D. S. C., Manku, H., Wagner, S., Reid, J., Timms, K., Gutin, A., Lanchbury, J. S. and Vyse, T. J. (2007) Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum. Mol. Genet., 16, 579–591
CrossRef
Pubmed
Google scholar
|
[19] |
Graham, R. R., Kyogoku, C., Sigurdsson, S., Vlasova, I. A., Davies, L. R., Baechler, E. C., Plenge, R. M., Koeuth, T., Ortmann, W. A., Hom, G.,
CrossRef
Pubmed
Google scholar
|
[20] |
Hellquist, A., Zucchelli, M., Kivinen, K., Saarialho-Kere, U., Koskenmies, S., Widen, E., Julkunen, H., Wong, A., Karjalainen-Lindsberg, M. L., Skoog, T.,
CrossRef
Pubmed
Google scholar
|
[21] |
Kwan, T., Benovoy, D., Dias, C., Gurd, S., Provencher, C., Beaulieu, P., Hudson, T. J., Sladek, R. and Majewski, J. (2008) Genome-wide analysis of transcript isoform variation in humans. Nat. Genet., 40, 225–231
CrossRef
Pubmed
Google scholar
|
[22] |
Yang, Z. and Kaye, D. M. (2009) Mechanistic insights into the link between a polymorphism of the 3′UTR of the SLC7A1 gene and hypertension. Hum. Mutat., 30, 328–333
CrossRef
Pubmed
Google scholar
|
[23] |
Yoon, O. K., Hsu, T. Y., Im, J. H. and Brem, R. B. (2012) Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet., 8, e1002882
CrossRef
Pubmed
Google scholar
|
[24] |
Hartley, C. A., McKenna, M. C., Salman, R., Holmes, A., Casey, B. J., Phelps, E. A. and Glatt, C. E. (2012) Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory. Proc. Natl. Acad. Sci. USA, 109, 5493–5498
CrossRef
Pubmed
Google scholar
|
[25] |
Zhernakova, D. V., de Klerk, E., Westra, H. J., Mastrokolias, A., Amini, S., Ariyurek, Y., Jansen, R., Penninx, B. W., Hottenga, J. J., Willemsen, G.,
CrossRef
Pubmed
Google scholar
|
[26] |
Prasad, M. K., Bhalla, K., Pan, Z. H., O’Connell, J. R., Weder, A. B., Chakravarti, A., Tian, B. and Chang, Y. P. (2013) A polymorphic 3′UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood pressure. PLoS One, 8, e76290
CrossRef
Pubmed
Google scholar
|
[27] |
Fraser, H. B. and Xie, X. (2009) Common polymorphic transcript variation in human disease. Genome Res., 19, 567–575
CrossRef
Pubmed
Google scholar
|
[28] |
Mittleman, B. E., Pott, S., Warland, S., Zeng, T., Mu, Z., Kaur, M., Gilad, Y. and Li, Y. (2020) Alternative polyadenylation mediates genetic regulation of gene expression. eLife, 9, e57492
CrossRef
Pubmed
Google scholar
|
[29] |
Cannavò, E., Koelling, N., Harnett, D., Garfield, D., Casale, F. P., Ciglar, L., Gustafson, H. E., Viales, R. R., Marco-Ferreres, R., Degner, J. F.,
CrossRef
Pubmed
Google scholar
|
[30] |
Yalamanchili, H. K., Alcott, C. E., Ji, P., Wagner, E. J., Zoghbi, H. Y. and Liu, Z. (2020) PolyA-miner: accurate assessment of differential alternative poly-adenylation from 3′ Seq data using vector projections and non-negative matrix factorization. Nucleic Acids Res., 48, e69
CrossRef
Pubmed
Google scholar
|
[31] |
Routh, A. (2019) DPAC: A tool for differential poly(A)-cluster usage from poly(A)-targeted RNAseq data. G3 (Bethesda), 9, 1825–1830
CrossRef
Pubmed
Google scholar
|
[32] |
Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G.,
CrossRef
Pubmed
Google scholar
|
[33] |
Monlong, J., Calvo, M., Ferreira, P. G. and Guigó, R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun., 5, 4698
CrossRef
Pubmed
Google scholar
|
[34] |
Mariella, E., Marotta, F., Grassi, E., Gilotto, S. and Provero, P. (2019) The Length of the Expressed 3′ UTR Is an intermediate molecular phenotype linking genetic variants to complex diseases. Front. Genet., 10, 714
CrossRef
Pubmed
Google scholar
|
[35] |
The GTEx Consortium, the Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, the Statistical Methods groups—Analysis Working Group, the Enhancing GTEx (eGTEx) groups, the NIH Common Fund, the NIH/NCI, the NIH/NHGRI, the NIH/NIMH, the NIH/NIDA, the Biospecimen Collection Source Site—NDRI,
CrossRef
Pubmed
Google scholar
|
[36] |
Li, L., Huang, K.L., Gao, Y., Cui, Y., Wang, G., Elrod, N.D., Li, Y., Chen, Y.E., Ji, P., Peng, F.
CrossRef
Google scholar
|
[37] |
Ha, K. C. H., Blencowe, B. J. and Morris, Q. (2018) QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol., 19, 45
CrossRef
Pubmed
Google scholar
|
[38] |
Grassi, E., Mariella, E., Lembo, A., Molineris, I. and Provero, P. (2016) Roar: detecting alternative polyadenylation with standard mRNA sequencing libraries. BMC Bioinformatics, 17, 423
CrossRef
Pubmed
Google scholar
|
[39] |
Wang, R., Nambiar, R., Zheng, D. and Tian, B. (2018) PolyA_ DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res., 46, D315–D319
CrossRef
Pubmed
Google scholar
|
[40] |
Gruber, A. J., Schmidt, R., Gruber, A. R., Martin, G., Ghosh, S., Belmadani, M., Keller, W. and Zavolan, M. (2016) A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res., 26, 1145–1159
CrossRef
Pubmed
Google scholar
|
[41] |
You, L., Wu, J., Feng, Y., Fu, Y., Guo, Y., Long, L., Zhang, H., Luan, Y., Tian, P., Chen, L.,
CrossRef
Pubmed
Google scholar
|
[42] |
Kim, M., You, B. H. and Nam, J. W. (2015) Global estimation of the 3′ untranslated region landscape using RNA sequencing. Methods, 83, 111–117
CrossRef
Pubmed
Google scholar
|
[43] |
Arefeen, A., Liu, J., Xiao, X. and Jiang, T. (2018) TAPAS: tool for alternative polyadenylation site analysis. Bioinformatics, 34, 2521–2529
CrossRef
Pubmed
Google scholar
|
[44] |
Ye, C., Long, Y., Ji, G., Li, Q. Q. and Wu, X. (2018) APAtrap: identification and quantification of alternative polyadenylation sites from RNA-seq data. Bioinformatics, 34, 1841–1849
CrossRef
Pubmed
Google scholar
|
[45] |
Feng, X., Li, L., Wagner, E. J. and Li, W. (2018) TC3A: The Cancer 3′ UTR Atlas. Nucleic Acids Res., 46, D1027–D1030
CrossRef
Pubmed
Google scholar
|
[46] |
Yuan, F., Hankey, W., Wagner, E. J., Li, W. and Wang, Q. (2019) Alternative polyadenylation of mRNA and its role in cancer. Genes Dis., 8, 61–72
CrossRef
Pubmed
Google scholar
|
[47] |
Curinha, A., Oliveira Braz, S., Pereira-Castro, I., Cruz, A. and Moreira, A. (2014) Implications of polyadenylation in health and disease. Nucleus, 5, 508–519
CrossRef
Pubmed
Google scholar
|
[48] |
Chang, J. W., Yeh, H. S. and Yong, J. (2017) Alternative polyadenylation in human diseases. Endocrinol. Metab. (Seoul), 32, 413–421
CrossRef
Pubmed
Google scholar
|
[49] |
Masamha, C. P., Xia, Z., Yang, J., Albrecht, T. R., Li, M., Shyu, A. B., Li, W. and Wagner, E. J. (2014) CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 510, 412–416
CrossRef
Pubmed
Google scholar
|
[50] |
Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684
CrossRef
Pubmed
Google scholar
|
[51] |
Gruber, A. J. and Zavolan, M. (2019) Alternative cleavage and polyadenylation in health and disease. Nat. Rev. Genet., 20, 599–614
CrossRef
Pubmed
Google scholar
|
[52] |
Mariella, E., Marotta, F., Grassi, E., Gilotto, S. and Provero, P. (2019) The length of the expressed 3′ UTR is an intermediate molecular phenotype linking genetic variants to complex diseases. Front. Genet., 10, 714
CrossRef
Pubmed
Google scholar
|
[53] |
Sanfilippo, P., Wen, J. and Lai, E. C. (2017) Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. Genome Biol., 18, 229
CrossRef
Pubmed
Google scholar
|
[54] |
Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684
CrossRef
Pubmed
Google scholar
|
[55] |
Li, Y., Ma, H., Shi, C., Feng, F. and Yang, L. (2020) Mutant ACTB mRNA 3′-UTR promotes hepatocellular carcinoma development by regulating miR-1 and miR-29a. Cell. Signal., 67, 109479
CrossRef
Pubmed
Google scholar
|
[56] |
Park, H. J., Ji, P., Kim, S., Xia, Z., Rodriguez, B., Li, L., Su, J., Chen, K., Masamha, C. P., Baillat, D.,
CrossRef
Pubmed
Google scholar
|
[57] |
Chu, Y., Elrod, N., Wang, C., Li, L., Chen, T., Routh, A., Xia, Z., Li, W., Wagner, E. J. and Ji, P. (2019) Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene, 38, 4154–4168
CrossRef
Pubmed
Google scholar
|
[58] |
Tan, S., Li, H., Zhang, W., Shao, Y., Liu, Y., Guan, H., Wu, J., Kang, Y., Zhao, J., Yu, Q.,
CrossRef
Pubmed
Google scholar
|
[59] |
Xiong, M., Chen, L., Zhou, L., Ding, Y., Kazobinka, G., Chen, Z. and Hou, T. (2019) NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation. Theranostics, 9, 7156–7167
CrossRef
Pubmed
Google scholar
|
[60] |
Weng, T., Ko, J., Masamha, C. P., Xia, Z., Xiang, Y., Chen, N. Y., Molina, J. G., Collum, S., Mertens, T. C., Luo, F.,
CrossRef
Pubmed
Google scholar
|
[61] |
Weng, T., Huang, J., Wagner, E. J., Ko, J., Wu, M., Wareing, N. E., Xiang, Y., Chen, N. Y., Ji, P., Molina, J. G.,
CrossRef
Pubmed
Google scholar
|
[62] |
Gennarino, V. A., Alcott, C. E., Chen, C. A., Chaudhury, A., Gillentine, M. A., Rosenfeld, J. A., Parikh, S., Wheless, J. W., Roeder, E. R., Horovitz, D. D.,
CrossRef
Pubmed
Google scholar
|
[63] |
Alcott, C. E., Yalamanchili, H. K., Ji, P., van der Heijden, M. E., Saltzman, A., Elrod, N., Lin, A., Leng, M., Bhatt, B., Hao, S.,
CrossRef
Pubmed
Google scholar
|
[64] |
Ogorodnikov, A., Levin, M., Tattikota, S., Tokalov, S., Hoque, M., Scherzinger, D., Marini, F., Poetsch, A., Binder, H., Macher-Göppinger, S.,
CrossRef
Pubmed
Google scholar
|
[65] |
Wang, R., Zheng, D., Wei, L., Ding, Q. and Tian, B. (2019) Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes. Cell Rep., 26, 2766–2778.e6
CrossRef
Pubmed
Google scholar
|
[66] |
Lee, A. K. and Potts, P. R. (2017) A comprehensive guide to the MAGE family of ubiquitin ligases. J. Mol. Biol., 429, 1114–1142
CrossRef
Pubmed
Google scholar
|
[67] |
Minges, J. T., Su, S., Grossman, G., Blackwelder, A. J., Pop, E. A., Mohler, J. L. and Wilson, E. M. (2013) Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. J. Biol. Chem., 288, 1939–1952
CrossRef
Pubmed
Google scholar
|
[68] |
Xia, L. P., Xu, M., Chen, Y. and Shao, W. W. (2013) Expression of MAGE-A11 in breast cancer tissues and its effects on the proliferation of breast cancer cells. Mol. Med. Rep., 7, 254–258
CrossRef
Pubmed
Google scholar
|
[69] |
Yang, S. W., Li, L., Connelly, J. P., Porter, S. N., Kodali, K., Gan, H., Park, J. M., Tacer, K. F., Tillman, H., Peng, J.,
CrossRef
Pubmed
Google scholar
|
[70] |
Park, Y. M., Hwang, S. J., Masuda, K., Choi, K. M., Jeong, M. R., Nam, D. H., Gorospe, M. and Kim, H. H. (2012) Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4. Mol. Cell. Biol., 32, 4237–4244
CrossRef
Pubmed
Google scholar
|
[71] |
Pino, I., Pío, R., Toledo, G., Zabalegui, N., Vicent, S., Rey, N., Lozano, M. D., Torre, W., García-Foncillas, J. and Montuenga, L. M. (2003) Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung Cancer, 41, 131–143
CrossRef
Pubmed
Google scholar
|
[72] |
Mulnix, R. E., Pitman, R. T., Retzer, A., Bertram, C., Arasi, K., Crees, Z., Girard, J., Uppada, S. B., Stone, A. L. and Puri, N. (2013) hnRNP C1/C2 and Pur-beta proteins mediate induction of senescence by oligonucleotides homologous to the telomere overhang. Onco Targets Ther, 7, 23–32
Pubmed
|
[73] |
Wu, Y., Zhao, W., Liu, Y., Tan, X., Li, X., Zou, Q., Xiao, Z., Xu, H., Wang, Y. and Yang, X. (2018) Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J., 37, e99017
CrossRef
Pubmed
Google scholar
|
[74] |
Fischl, H., Neve, J., Wang, Z., Patel, R., Louey, A., Tian, B. and Furger, A. (2019) hnRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic Acids Res., 47, 7580–7591
CrossRef
Pubmed
Google scholar
|
[75] |
Nanavaty, V., Abrash, E. W., Hong, C., Park, S., Fink, E. E., Li, Z., Sweet, T. J., Bhasin, J. M., Singuri, S., Lee, B. H.,
CrossRef
Pubmed
Google scholar
|
[76] |
Oktaba, K., Zhang, W., Lotz, T. S., Jun, D. J., Lemke, S. B., Ng, S. P., Esposito, E., Levine, M. and Hilgers, V. (2015) ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell, 57, 341–348
CrossRef
Pubmed
Google scholar
|
[77] |
Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. and Eskin, E. (2014) Identifying causal variants at loci with multiple signals of association. Genetics, 198, 497–508
CrossRef
Pubmed
Google scholar
|
[78] |
Wang, G., Sarkar, A., Carbonetto, P. and Stephens, M. (2020) A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol., 82, 1273–1300
CrossRef
Google scholar
|
[79] |
Starita, L. M., Ahituv, N., Dunham, M. J., Kitzman, J. O., Roth, F. P., Seelig, G., Shendure, J. and Fowler, D. M. (2017) Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet., 101, 315–325
CrossRef
Pubmed
Google scholar
|
[80] |
Bogard, N., Linder, J., Rosenberg, A. B. and Seelig, G. (2019) A deep neural network for predicting and engineering alternative polyadenylation. Cell, 178, 91–106.e23
CrossRef
Pubmed
Google scholar
|
[81] |
Higgs, D. R., Goodbourn, S. E., Lamb, J., Clegg, J. B., Weatherall, D. J. and Proudfoot, N. J. (1983) Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature, 306, 398–400
CrossRef
Pubmed
Google scholar
|
[82] |
Fei, Y. J., Oner, R., Bözkurt, G., Gu, L. H., Altay, C., Gurgey, A., Fattoum, S., Baysal, E. and Huisman, T. H. (1992) Hb H disease caused by a homozygosity for the AATAAA→AATAAG mutation in the polyadenylation site of the alpha 2-globin gene: hematological observations. Acta Haematol., 88, 82–85
CrossRef
Pubmed
Google scholar
|
[83] |
Orkin, S. H., Cheng, T. C., Antonarakis, S. E. and Kazazian, H. H. Jr. (1985) Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J., 4, 453–456
CrossRef
Pubmed
Google scholar
|
[84] |
Rund, D., Dowling, C., Najjar, K., Rachmilewitz, E. A., Kazazian, H. H. Jr and Oppenheim, A. (1992) Two mutations in the beta-globin polyadenylylation signal reveal extended transcripts and new RNA polyadenylylation sites. Proc. Natl. Acad. Sci. U.S.A., 89, 4324–4328
CrossRef
Pubmed
Google scholar
|
[85] |
Stacey, S. N., Sulem, P., Jonasdottir, A., Masson, G., Gudmundsson, J., Gudbjartsson, D. F., Magnusson, O. T., Gudjonsson, S. A., Sigurgeirsson, B., Thorisdottir, K.,
CrossRef
Pubmed
Google scholar
|
[86] |
Bennett, C. L., Brunkow, M. E., Ramsdell, F., O’Briant, K. C., Zhu, Q., Fuleihan, R. L., Shigeoka, A. O., Ochs, H. D. and Chance, P. F. (2001) A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics, 53, 435–439
CrossRef
Pubmed
Google scholar
|
[87] |
Uitte de Willige, S., Rietveld, I. M., De Visser, M. C. H., Vos, H. L. and Bertina, R. M. (2007) Polymorphism 10034C>T is located in a region regulating polyadenylation of FGG transcripts and influences the fibrinogen γ′/γA mRNA ratio. J. Thromb. Haemost., 5, 1243–1249
CrossRef
Pubmed
Google scholar
|
[88] |
Zhang, Z., So, K., Peterson, R., Bauer, M., Ng, H., Zhang, Y., Kim, J. H., Kidd, T. and Miura, P. (2019) Elav-mediated exon skipping and alternative polyadenylation of the dscam1 gene are required for axon outgrowth. Cell Rep., 27, 3808–3817.e7
CrossRef
Pubmed
Google scholar
|
[89] |
Anvar, S. Y., Allard, G., Tseng, E., Sheynkman, G. M., de Klerk, E., Vermaat, M., Yin, R. H., Johansson, H. E., Ariyurek, Y., den Dunnen, J. T.,
CrossRef
Pubmed
Google scholar
|
[90] |
Schmiedel, B.J., Singh , D., Madrigal, A., Valdovino-Gonzalez, A.G., White, B.M., Zapardiel-Gonzalo, J., Ha, B., Altay , G., Greenbaum, J.A., McVicker, G.
|
[91] |
van der Wijst, M., de Vries, D. H., Groot, H. E., Trynka, G., Hon, C. C., Bonder, M. J., Stegle, O., Nawijn, M. C., Idaghdour, Y., van der Harst, P.,
CrossRef
Pubmed
Google scholar
|
[92] |
van der Wijst, M. G. P., Brugge, H., de Vries, D. H., Deelen, P., Swertz, M. A. and Franke, L., and the LifeLines Cohort Study, and the BIOS Consortium. (2018) Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet., 50, 493–497
CrossRef
Pubmed
Google scholar
|
[93] |
Gao, Y., Li, L., Amos, C. I. and Li, W. (2020) Dynamic analysis of alternative polyadenylation from single-cell RNA-seq (scDaPars) reveals cell subpopulations invisible to gene expression analysis. bioRxiv, 310649
|
[94] |
Merkin, J., Russell, C., Chen, P. and Burge, C. B. (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science, 338, 1593–1599
CrossRef
Pubmed
Google scholar
|
[95] |
Tan, M. H., Li, Q., Shanmugam, R., Piskol, R., Kohler, J., Young, A. N., Liu, K. I., Zhang, R., Ramaswami, G., Ariyoshi, K.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |