Population-scale genetic control of alternative polyadenylation and its association with human diseases

Lei Li, Yumei Li, Xudong Zou, Fuduan Peng, Ya Cui, Eric J. Wagner, Wei Li

PDF(286 KB)
PDF(286 KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (1) : 44-54. DOI: 10.15302/J-QB-021-0252
REVIEW

Population-scale genetic control of alternative polyadenylation and its association with human diseases

Author information +
History +

Abstract

Background: Genome-wide association studies (GWAS) have identified thousands of genomic non-coding variants statistically associated with many human traits and diseases, including cancer. However, the functional interpretation of these non-coding variants remains a significant challenge in the post-GWAS era. Alternative polyadenylation (APA) plays an essential role in post-transcriptional regulation for most human genes. By employing different poly(A) sites, genes can either shorten or extend the 3′-UTRs that contain cis-regulatory elements such as miRNAs or RNA-binding protein binding sites. Therefore, APA can affect the mRNA stability, translation, and cellular localization of proteins. Population-scale studies have revealed many inherited genetic variants that potentially impact APA to further influence disease susceptibility and phenotypic diversity, but systematic computational investigations to delineate the connections are in their earliest states.

Results: Here, we discuss the evolving definitions of the genetic basis of APA and the modern genomics tools to identify, characterize, and validate the genetic influences of APA events in human populations. We also explore the emerging and surprisingly complex molecular mechanisms that regulate APA and summarize the genetic control of APA that is associated with complex human diseases and traits.

Conclusion: APA is an intermediate molecular phenotype that can translate human common non-coding variants to individual phenotypic variability and disease susceptibility.

Author summary

Genome-wide association studies (GWAS) have identified hundreds of inherited single-nucleotide polymorphisms (SNPs) associated with human diseases. However, they fall short of linking SNPs with dysregulation of specific genes and the molecular mechanisms responsible for disease/traits. By investigating the genetic basis of alternative polyadenylation we may gain insight into how GWAS non-coding variants influence complex diseases.

Graphical abstract

Keywords

GWAS / eQTL / disease / alternative polyadenylation

Cite this article

Download citation ▾
Lei Li, Yumei Li, Xudong Zou, Fuduan Peng, Ya Cui, Eric J. Wagner, Wei Li. Population-scale genetic control of alternative polyadenylation and its association with human diseases. Quant. Biol., 2022, 10(1): 44‒54 https://doi.org/10.15302/J-QB-021-0252

References

[1]
Mayr, C. (2017) Regulation by 3′-untranslated regions. Annu. Rev. Genet., 51, 171–194
CrossRef Pubmed Google scholar
[2]
Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J. Y., Yehia, G. and Tian, B. (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat. Methods, 10, 133–139
CrossRef Pubmed Google scholar
[3]
Derti, A., Garrett-Engele, P., Macisaac, K. D., Stevens, R. C., Sriram, S., Chen, R., Rohl, C. A., Johnson, J. M. and Babak, T. (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res., 22, 1173–1183
CrossRef Pubmed Google scholar
[4]
Tian, B. and Manley, J. L. (2017) Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol., 18, 18–30
CrossRef Pubmed Google scholar
[5]
Mayr, C. (2019) What Are 3′ UTRs Doing? Cold Spring Harb. Perspect. Biol., 11, a034728
CrossRef Pubmed Google scholar
[6]
Berkovits, B. D. and Mayr, C. (2015) Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature, 522, 363–367
CrossRef Pubmed Google scholar
[7]
Chao, Y., Li, L., Girodat, D., Förstner, K. U., Said, N., Corcoran, C., Śmiga, M., Papenfort, K., Reinhardt, R., Wieden, H. J., (2017) In vivo cleavage map illuminates the central role of RNase E in coding and non-coding RNA pathways. Mol. Cell, 65, 39–51
CrossRef Pubmed Google scholar
[8]
Holmqvist, E., Li, L., Bischler, T., Barquist, L. and Vogel, J. (2018) Global maps of ProQ binding in vivo reveal target recognition via RNA structure and stability control at mRNA 3′ ends. Mol. Cell, 70, 971–982.e6
CrossRef Pubmed Google scholar
[9]
Mercer, T. R., Wilhelm, D., Dinger, M. E., Soldà, G., Korbie, D. J., Glazov, E. A., Truong, V., Schwenke, M., Simons, C., Matthaei, K. I., (2011) Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res., 39, 2393–2403
CrossRef Pubmed Google scholar
[10]
Levy, S. and Schuster, G. (2016) Polyadenylation and degradation of RNA in the mitochondria. Biochem. Soc. Trans., 44, 1475–1482
CrossRef Pubmed Google scholar
[11]
Xia, Z., Donehower, L. A., Cooper, T. A., Neilson, J. R., Wheeler, D. A., Wagner, E. J. and Li, W. (2014) Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat. Commun., 5, 5274
CrossRef Pubmed Google scholar
[12]
Chun, S., Casparino, A., Patsopoulos, N. A., Croteau-Chonka, D. C., Raby, B. A., De Jager, P. L., Sunyaev, S. R. and Cotsapas, C. (2017) Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-disease-associated loci in three major immune-cell types. Nat. Genet., 49, 600–605
CrossRef Pubmed Google scholar
[13]
Manning, K. S. and Cooper, T. A. (2017) The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol., 18, 102–114
CrossRef Pubmed Google scholar
[14]
Yang, H. and Melera, P. W. (1994) A genetic polymorphism within the third poly(A) signal of the DHFR gene alters the polyadenylation pattern of DHFR transcripts in CHL cells. Nucleic Acids Res., 22, 2694–2702
CrossRef Pubmed Google scholar
[15]
Bell, D. A., Badawi, A. F., Lang, N. P., Ilett, K. F., Kadlubar, F. F. and Hirvonen, A. (1995) Polymorphism in the N-acetyltransferase 1 (NAT1) polyadenylation signal: association of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue. Cancer Res, 55, 5226–5229
Pubmed
[16]
Battersby, S., Ogilvie, A. D., Blackwood, D. H., Shen, S., Muqit, M. M., Muir, W. J., Teague, P., Goodwin, G. M. and Harmar, A. J. (1999) Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism in the 3′ untranslated region of the human serotonin transporter gene. J. Neurochem., 72, 1384–1388
CrossRef Pubmed Google scholar
[17]
Hoarau, J. J., Cesari, M., Caillens, H., Cadet, F. and Pabion, M. (2004) HLA DQA1 genes generate multiple transcripts by alternative splicing and polyadenylation of the 3′ untranslated region. Tissue Antigens, 63, 58–71
CrossRef Pubmed Google scholar
[18]
Graham, D. S. C., Manku, H., Wagner, S., Reid, J., Timms, K., Gutin, A., Lanchbury, J. S. and Vyse, T. J. (2007) Association of IRF5 in UK SLE families identifies a variant involved in polyadenylation. Hum. Mol. Genet., 16, 579–591
CrossRef Pubmed Google scholar
[19]
Graham, R. R., Kyogoku, C., Sigurdsson, S., Vlasova, I. A., Davies, L. R., Baechler, E. C., Plenge, R. M., Koeuth, T., Ortmann, W. A., Hom, G., (2007) Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl. Acad. Sci. USA, 104, 6758–6763
CrossRef Pubmed Google scholar
[20]
Hellquist, A., Zucchelli, M., Kivinen, K., Saarialho-Kere, U., Koskenmies, S., Widen, E., Julkunen, H., Wong, A., Karjalainen-Lindsberg, M. L., Skoog, T., (2007) The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus. J. Med. Genet., 44, 314–321
CrossRef Pubmed Google scholar
[21]
Kwan, T., Benovoy, D., Dias, C., Gurd, S., Provencher, C., Beaulieu, P., Hudson, T. J., Sladek, R. and Majewski, J. (2008) Genome-wide analysis of transcript isoform variation in humans. Nat. Genet., 40, 225–231
CrossRef Pubmed Google scholar
[22]
Yang, Z. and Kaye, D. M. (2009) Mechanistic insights into the link between a polymorphism of the 3′UTR of the SLC7A1 gene and hypertension. Hum. Mutat., 30, 328–333
CrossRef Pubmed Google scholar
[23]
Yoon, O. K., Hsu, T. Y., Im, J. H. and Brem, R. B. (2012) Genetics and regulatory impact of alternative polyadenylation in human B-lymphoblastoid cells. PLoS Genet., 8, e1002882
CrossRef Pubmed Google scholar
[24]
Hartley, C. A., McKenna, M. C., Salman, R., Holmes, A., Casey, B. J., Phelps, E. A. and Glatt, C. E. (2012) Serotonin transporter polyadenylation polymorphism modulates the retention of fear extinction memory. Proc. Natl. Acad. Sci. USA, 109, 5493–5498
CrossRef Pubmed Google scholar
[25]
Zhernakova, D. V., de Klerk, E., Westra, H. J., Mastrokolias, A., Amini, S., Ariyurek, Y., Jansen, R., Penninx, B. W., Hottenga, J. J., Willemsen, G., (2013) DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. PLoS Genet., 9, e1003594
CrossRef Pubmed Google scholar
[26]
Prasad, M. K., Bhalla, K., Pan, Z. H., O’Connell, J. R., Weder, A. B., Chakravarti, A., Tian, B. and Chang, Y. P. (2013) A polymorphic 3′UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood pressure. PLoS One, 8, e76290
CrossRef Pubmed Google scholar
[27]
Fraser, H. B. and Xie, X. (2009) Common polymorphic transcript variation in human disease. Genome Res., 19, 567–575
CrossRef Pubmed Google scholar
[28]
Mittleman, B. E., Pott, S., Warland, S., Zeng, T., Mu, Z., Kaur, M., Gilad, Y. and Li, Y. (2020) Alternative polyadenylation mediates genetic regulation of gene expression. eLife, 9, e57492
CrossRef Pubmed Google scholar
[29]
Cannavò, E., Koelling, N., Harnett, D., Garfield, D., Casale, F. P., Ciglar, L., Gustafson, H. E., Viales, R. R., Marco-Ferreres, R., Degner, J. F., (2017) Genetic variants regulating expression levels and isoform diversity during embryogenesis. Nature, 541, 402–406
CrossRef Pubmed Google scholar
[30]
Yalamanchili, H. K., Alcott, C. E., Ji, P., Wagner, E. J., Zoghbi, H. Y. and Liu, Z. (2020) PolyA-miner: accurate assessment of differential alternative poly-adenylation from 3′ Seq data using vector projections and non-negative matrix factorization. Nucleic Acids Res., 48, e69
CrossRef Pubmed Google scholar
[31]
Routh, A. (2019) DPAC: A tool for differential poly(A)-cluster usage from poly(A)-targeted RNAseq data. G3 (Bethesda), 9, 1825–1830
CrossRef Pubmed Google scholar
[32]
Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511
CrossRef Pubmed Google scholar
[33]
Monlong, J., Calvo, M., Ferreira, P. G. and Guigó, R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun., 5, 4698
CrossRef Pubmed Google scholar
[34]
Mariella, E., Marotta, F., Grassi, E., Gilotto, S. and Provero, P. (2019) The Length of the Expressed 3′ UTR Is an intermediate molecular phenotype linking genetic variants to complex diseases. Front. Genet., 10, 714
CrossRef Pubmed Google scholar
[35]
The GTEx Consortium, the Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, the Statistical Methods groups—Analysis Working Group, the Enhancing GTEx (eGTEx) groups, the NIH Common Fund, the NIH/NCI, the NIH/NHGRI, the NIH/NIMH, the NIH/NIDA, the Biospecimen Collection Source Site—NDRI, (2017) Genetic effects on gene expression across human tissues. Nature, 550, 204–213
CrossRef Pubmed Google scholar
[36]
Li, L., Huang, K.L., Gao, Y., Cui, Y., Wang, G., Elrod, N.D., Li, Y., Chen, Y.E., Ji, P., Peng, F. (2021) An atlas of alternative polyadenylation quantitative trait loci contributing to complex trait and disease heritability. Nat. Genet
CrossRef Google scholar
[37]
Ha, K. C. H., Blencowe, B. J. and Morris, Q. (2018) QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol., 19, 45
CrossRef Pubmed Google scholar
[38]
Grassi, E., Mariella, E., Lembo, A., Molineris, I. and Provero, P. (2016) Roar: detecting alternative polyadenylation with standard mRNA sequencing libraries. BMC Bioinformatics, 17, 423
CrossRef Pubmed Google scholar
[39]
Wang, R., Nambiar, R., Zheng, D. and Tian, B. (2018) PolyA_ DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res., 46, D315–D319
CrossRef Pubmed Google scholar
[40]
Gruber, A. J., Schmidt, R., Gruber, A. R., Martin, G., Ghosh, S., Belmadani, M., Keller, W. and Zavolan, M. (2016) A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation. Genome Res., 26, 1145–1159
CrossRef Pubmed Google scholar
[41]
You, L., Wu, J., Feng, Y., Fu, Y., Guo, Y., Long, L., Zhang, H., Luan, Y., Tian, P., Chen, L., (2015) APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals. Nucleic Acids Res., 43, D59–D67
CrossRef Pubmed Google scholar
[42]
Kim, M., You, B. H. and Nam, J. W. (2015) Global estimation of the 3′ untranslated region landscape using RNA sequencing. Methods, 83, 111–117
CrossRef Pubmed Google scholar
[43]
Arefeen, A., Liu, J., Xiao, X. and Jiang, T. (2018) TAPAS: tool for alternative polyadenylation site analysis. Bioinformatics, 34, 2521–2529
CrossRef Pubmed Google scholar
[44]
Ye, C., Long, Y., Ji, G., Li, Q. Q. and Wu, X. (2018) APAtrap: identification and quantification of alternative polyadenylation sites from RNA-seq data. Bioinformatics, 34, 1841–1849
CrossRef Pubmed Google scholar
[45]
Feng, X., Li, L., Wagner, E. J. and Li, W. (2018) TC3A: The Cancer 3′ UTR Atlas. Nucleic Acids Res., 46, D1027–D1030
CrossRef Pubmed Google scholar
[46]
Yuan, F., Hankey, W., Wagner, E. J., Li, W. and Wang, Q. (2019) Alternative polyadenylation of mRNA and its role in cancer. Genes Dis., 8, 61–72
CrossRef Pubmed Google scholar
[47]
Curinha, A., Oliveira Braz, S., Pereira-Castro, I., Cruz, A. and Moreira, A. (2014) Implications of polyadenylation in health and disease. Nucleus, 5, 508–519
CrossRef Pubmed Google scholar
[48]
Chang, J. W., Yeh, H. S. and Yong, J. (2017) Alternative polyadenylation in human diseases. Endocrinol. Metab. (Seoul), 32, 413–421
CrossRef Pubmed Google scholar
[49]
Masamha, C. P., Xia, Z., Yang, J., Albrecht, T. R., Li, M., Shyu, A. B., Li, W. and Wagner, E. J. (2014) CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 510, 412–416
CrossRef Pubmed Google scholar
[50]
Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684
CrossRef Pubmed Google scholar
[51]
Gruber, A. J. and Zavolan, M. (2019) Alternative cleavage and polyadenylation in health and disease. Nat. Rev. Genet., 20, 599–614
CrossRef Pubmed Google scholar
[52]
Mariella, E., Marotta, F., Grassi, E., Gilotto, S. and Provero, P. (2019) The length of the expressed 3′ UTR is an intermediate molecular phenotype linking genetic variants to complex diseases. Front. Genet., 10, 714
CrossRef Pubmed Google scholar
[53]
Sanfilippo, P., Wen, J. and Lai, E. C. (2017) Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species. Genome Biol., 18, 229
CrossRef Pubmed Google scholar
[54]
Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684
CrossRef Pubmed Google scholar
[55]
Li, Y., Ma, H., Shi, C., Feng, F. and Yang, L. (2020) Mutant ACTB mRNA 3′-UTR promotes hepatocellular carcinoma development by regulating miR-1 and miR-29a. Cell. Signal., 67, 109479
CrossRef Pubmed Google scholar
[56]
Park, H. J., Ji, P., Kim, S., Xia, Z., Rodriguez, B., Li, L., Su, J., Chen, K., Masamha, C. P., Baillat, D., (2018) 3′ UTR shortening represses tumor-suppressor genes in trans by disrupting ceRNA crosstalk. Nat. Genet., 50, 783–789
CrossRef Pubmed Google scholar
[57]
Chu, Y., Elrod, N., Wang, C., Li, L., Chen, T., Routh, A., Xia, Z., Li, W., Wagner, E. J. and Ji, P. (2019) Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene, 38, 4154–4168
CrossRef Pubmed Google scholar
[58]
Tan, S., Li, H., Zhang, W., Shao, Y., Liu, Y., Guan, H., Wu, J., Kang, Y., Zhao, J., Yu, Q., (2018) NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene, 37, 4887–4900
CrossRef Pubmed Google scholar
[59]
Xiong, M., Chen, L., Zhou, L., Ding, Y., Kazobinka, G., Chen, Z. and Hou, T. (2019) NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation. Theranostics, 9, 7156–7167
CrossRef Pubmed Google scholar
[60]
Weng, T., Ko, J., Masamha, C. P., Xia, Z., Xiang, Y., Chen, N. Y., Molina, J. G., Collum, S., Mertens, T. C., Luo, F., (2019) Cleavage factor 25 deregulation contributes to pulmonary fibrosis through alternative polyadenylation. J. Clin. Invest., 129, 1984–1999
CrossRef Pubmed Google scholar
[61]
Weng, T., Huang, J., Wagner, E. J., Ko, J., Wu, M., Wareing, N. E., Xiang, Y., Chen, N. Y., Ji, P., Molina, J. G., (2020) Downregulation of CFIm25 amplifies dermal fibrosis through alternative polyadenylation. J. Exp. Med., 217, e20181384
CrossRef Pubmed Google scholar
[62]
Gennarino, V. A., Alcott, C. E., Chen, C. A., Chaudhury, A., Gillentine, M. A., Rosenfeld, J. A., Parikh, S., Wheless, J. W., Roeder, E. R., Horovitz, D. D., (2015) NUDT21-spanning CNVs lead to neuropsychiatric disease and altered MeCP2 abundance via alternative polyadenylation. eLife, 4, e10782
CrossRef Pubmed Google scholar
[63]
Alcott, C. E., Yalamanchili, H. K., Ji, P., van der Heijden, M. E., Saltzman, A., Elrod, N., Lin, A., Leng, M., Bhatt, B., Hao, S., (2020) Partial loss of CFIm25 causes learning deficits and aberrant neuronal alternative polyadenylation. eLife, 9, e50895
CrossRef Pubmed Google scholar
[64]
Ogorodnikov, A., Levin, M., Tattikota, S., Tokalov, S., Hoque, M., Scherzinger, D., Marini, F., Poetsch, A., Binder, H., Macher-Göppinger, S., (2018) Transcriptome 3′end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat. Commun., 9, 5331
CrossRef Pubmed Google scholar
[65]
Wang, R., Zheng, D., Wei, L., Ding, Q. and Tian, B. (2019) Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes. Cell Rep., 26, 2766–2778.e6
CrossRef Pubmed Google scholar
[66]
Lee, A. K. and Potts, P. R. (2017) A comprehensive guide to the MAGE family of ubiquitin ligases. J. Mol. Biol., 429, 1114–1142
CrossRef Pubmed Google scholar
[67]
Minges, J. T., Su, S., Grossman, G., Blackwelder, A. J., Pop, E. A., Mohler, J. L. and Wilson, E. M. (2013) Melanoma antigen-A11 (MAGE-A11) enhances transcriptional activity by linking androgen receptor dimers. J. Biol. Chem., 288, 1939–1952
CrossRef Pubmed Google scholar
[68]
Xia, L. P., Xu, M., Chen, Y. and Shao, W. W. (2013) Expression of MAGE-A11 in breast cancer tissues and its effects on the proliferation of breast cancer cells. Mol. Med. Rep., 7, 254–258
CrossRef Pubmed Google scholar
[69]
Yang, S. W., Li, L., Connelly, J. P., Porter, S. N., Kodali, K., Gan, H., Park, J. M., Tacer, K. F., Tillman, H., Peng, J., (2020) A cancer-specific ubiquitin ligase drives mRNA alternative polyadenylation by ubiquitinating the mRNA 3′ end processing complex. Mol. Cell, 77, 1206–1221.e7
CrossRef Pubmed Google scholar
[70]
Park, Y. M., Hwang, S. J., Masuda, K., Choi, K. M., Jeong, M. R., Nam, D. H., Gorospe, M. and Kim, H. H. (2012) Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4. Mol. Cell. Biol., 32, 4237–4244
CrossRef Pubmed Google scholar
[71]
Pino, I., Pío, R., Toledo, G., Zabalegui, N., Vicent, S., Rey, N., Lozano, M. D., Torre, W., García-Foncillas, J. and Montuenga, L. M. (2003) Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung Cancer, 41, 131–143
CrossRef Pubmed Google scholar
[72]
Mulnix, R. E., Pitman, R. T., Retzer, A., Bertram, C., Arasi, K., Crees, Z., Girard, J., Uppada, S. B., Stone, A. L. and Puri, N. (2013) hnRNP C1/C2 and Pur-beta proteins mediate induction of senescence by oligonucleotides homologous to the telomere overhang. Onco Targets Ther, 7, 23–32
Pubmed
[73]
Wu, Y., Zhao, W., Liu, Y., Tan, X., Li, X., Zou, Q., Xiao, Z., Xu, H., Wang, Y. and Yang, X. (2018) Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J., 37, e99017
CrossRef Pubmed Google scholar
[74]
Fischl, H., Neve, J., Wang, Z., Patel, R., Louey, A., Tian, B. and Furger, A. (2019) hnRNPC regulates cancer-specific alternative cleavage and polyadenylation profiles. Nucleic Acids Res., 47, 7580–7591
CrossRef Pubmed Google scholar
[75]
Nanavaty, V., Abrash, E. W., Hong, C., Park, S., Fink, E. E., Li, Z., Sweet, T. J., Bhasin, J. M., Singuri, S., Lee, B. H., (2020) DNA methylation regulates alternative polyadenylation via CTCF and the cohesin complex. Mol. Cell, 78, 752–764.e6
CrossRef Pubmed Google scholar
[76]
Oktaba, K., Zhang, W., Lotz, T. S., Jun, D. J., Lemke, S. B., Ng, S. P., Esposito, E., Levine, M. and Hilgers, V. (2015) ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell, 57, 341–348
CrossRef Pubmed Google scholar
[77]
Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. and Eskin, E. (2014) Identifying causal variants at loci with multiple signals of association. Genetics, 198, 497–508
CrossRef Pubmed Google scholar
[78]
Wang, G., Sarkar, A., Carbonetto, P. and Stephens, M. (2020) A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol., 82, 1273–1300
CrossRef Google scholar
[79]
Starita, L. M., Ahituv, N., Dunham, M. J., Kitzman, J. O., Roth, F. P., Seelig, G., Shendure, J. and Fowler, D. M. (2017) Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet., 101, 315–325
CrossRef Pubmed Google scholar
[80]
Bogard, N., Linder, J., Rosenberg, A. B. and Seelig, G. (2019) A deep neural network for predicting and engineering alternative polyadenylation. Cell, 178, 91–106.e23
CrossRef Pubmed Google scholar
[81]
Higgs, D. R., Goodbourn, S. E., Lamb, J., Clegg, J. B., Weatherall, D. J. and Proudfoot, N. J. (1983) Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature, 306, 398–400
CrossRef Pubmed Google scholar
[82]
Fei, Y. J., Oner, R., Bözkurt, G., Gu, L. H., Altay, C., Gurgey, A., Fattoum, S., Baysal, E. and Huisman, T. H. (1992) Hb H disease caused by a homozygosity for the AATAAA→AATAAG mutation in the polyadenylation site of the alpha 2-globin gene: hematological observations. Acta Haematol., 88, 82–85
CrossRef Pubmed Google scholar
[83]
Orkin, S. H., Cheng, T. C., Antonarakis, S. E. and Kazazian, H. H. Jr. (1985) Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J., 4, 453–456
CrossRef Pubmed Google scholar
[84]
Rund, D., Dowling, C., Najjar, K., Rachmilewitz, E. A., Kazazian, H. H. Jr and Oppenheim, A. (1992) Two mutations in the beta-globin polyadenylylation signal reveal extended transcripts and new RNA polyadenylylation sites. Proc. Natl. Acad. Sci. U.S.A., 89, 4324–4328
CrossRef Pubmed Google scholar
[85]
Stacey, S. N., Sulem, P., Jonasdottir, A., Masson, G., Gudmundsson, J., Gudbjartsson, D. F., Magnusson, O. T., Gudjonsson, S. A., Sigurgeirsson, B., Thorisdottir, K., (2011) A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat. Genet., 43, 1098–1103
CrossRef Pubmed Google scholar
[86]
Bennett, C. L., Brunkow, M. E., Ramsdell, F., O’Briant, K. C., Zhu, Q., Fuleihan, R. L., Shigeoka, A. O., Ochs, H. D. and Chance, P. F. (2001) A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→AAUGAA) leads to the IPEX syndrome. Immunogenetics, 53, 435–439
CrossRef Pubmed Google scholar
[87]
Uitte de Willige, S., Rietveld, I. M., De Visser, M. C. H., Vos, H. L. and Bertina, R. M. (2007) Polymorphism 10034C>T is located in a region regulating polyadenylation of FGG transcripts and influences the fibrinogen γ′/γA mRNA ratio. J. Thromb. Haemost., 5, 1243–1249
CrossRef Pubmed Google scholar
[88]
Zhang, Z., So, K., Peterson, R., Bauer, M., Ng, H., Zhang, Y., Kim, J. H., Kidd, T. and Miura, P. (2019) Elav-mediated exon skipping and alternative polyadenylation of the dscam1 gene are required for axon outgrowth. Cell Rep., 27, 3808–3817.e7
CrossRef Pubmed Google scholar
[89]
Anvar, S. Y., Allard, G., Tseng, E., Sheynkman, G. M., de Klerk, E., Vermaat, M., Yin, R. H., Johansson, H. E., Ariyurek, Y., den Dunnen, J. T., (2018) Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol., 19, 46
CrossRef Pubmed Google scholar
[90]
Schmiedel, B.J., Singh , D., Madrigal, A., Valdovino-Gonzalez, A.G., White, B.M., Zapardiel-Gonzalo, J., Ha, B., Altay , G., Greenbaum, J.A., McVicker, G. (2018) Impact of genetic polymorphisms on human immune cell gene expression. Cell, 175, 1701–1715
[91]
van der Wijst, M., de Vries, D. H., Groot, H. E., Trynka, G., Hon, C. C., Bonder, M. J., Stegle, O., Nawijn, M. C., Idaghdour, Y., van der Harst, P., (2020) The single-cell eQTLGen consortium. eLife, 9, e52155
CrossRef Pubmed Google scholar
[92]
van der Wijst, M. G. P., Brugge, H., de Vries, D. H., Deelen, P., Swertz, M. A. and Franke, L., and the LifeLines Cohort Study, and the BIOS Consortium. (2018) Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet., 50, 493–497
CrossRef Pubmed Google scholar
[93]
Gao, Y., Li, L., Amos, C. I. and Li, W. (2020) Dynamic analysis of alternative polyadenylation from single-cell RNA-seq (scDaPars) reveals cell subpopulations invisible to gene expression analysis. bioRxiv, 310649
[94]
Merkin, J., Russell, C., Chen, P. and Burge, C. B. (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science, 338, 1593–1599
CrossRef Pubmed Google scholar
[95]
Tan, M. H., Li, Q., Shanmugam, R., Piskol, R., Kohler, J., Young, A. N., Liu, K. I., Zhang, R., Ramaswami, G., Ariyoshi, K., (2017) Dynamic landscape and regulation of RNA editing in mammals. Nature, 550, 249–254
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

The authors apologize to those colleagues whose relevant studies were not cited due to spacing limits. We thank members of the Wei Li lab for helpful discussions. The Wagner lab acknowledges support from the National Institutes of Health grant R01-GM134539 (E.J.W).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Lei Li, Yumei Li, Xudong Zou, Fuduan Peng, Ya Cui, Eric J. Wagner and Wei Li declare no competing financial interests. All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. Published by Higher Education Press
AI Summary AI Mindmap
PDF(286 KB)

Accesses

Citations

Detail

Sections
Recommended

/