Advances and challenges in quantitative delineation of the genetic architecture of complex traits

Hua Tang, Zihuai He

PDF(1088 KB)
PDF(1088 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 168-184. DOI: 10.15302/J-QB-021-0249
REVIEW
REVIEW

Advances and challenges in quantitative delineation of the genetic architecture of complex traits

Author information +
History +

Abstract

Background: Genome-wide association studies (GWAS) have been widely adopted in studies of human complex traits and diseases.

Results: This review surveys areas of active research: quantifying and partitioning trait heritability, fine mapping functional variants and integrative analysis, genetic risk prediction of phenotypes, and the analysis of sequencing studies that have identified millions of rare variants. Current challenges and opportunities are highlighted.

Conclusion: GWAS have fundamentally transformed the field of human complex trait genetics. Novel statistical and computational methods have expanded the scope of GWAS and have provided valuable insights on the genetic architecture underlying complex phenotypes.

Author summary

Genome-wide association studies have identified a large number of genotype-phenotype associations for a wide variety of complex traits and diseases. Here we provide an overview of recent developments in quantitative methods that make use of GWAS discoveries for probing into the biology underlying specific associations, for depicting the genetic architecture of complex phenotypes, as well as for genetic risk predictions. Methodological challenges are highlighted in the hope to inspire innovation.

Graphical abstract

Keywords

genome-wide association study / heritability / rare variants / biobank / colocalization / eQTL / polygenic risk scores / transcriptome-wide association study

Cite this article

Download citation ▾
Hua Tang, Zihuai He. Advances and challenges in quantitative delineation of the genetic architecture of complex traits. Quant. Biol., 2021, 9(2): 168‒184 https://doi.org/10.15302/J-QB-021-0249

References

[1]
MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J., (2017) The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res., 45, D896–D901
CrossRef Pubmed Google scholar
[2]
Crawford, N. G., KellyD. E. , Hansen, M. E. B., Beltrame, M. H., Fan, S., Bowman, S. L., Jewett, E., Ranciaro, A., Thompson, S., Lo, Y., (2017) Loci associated with skin pigmentation identified in African populations. Science, 358, eaan8433
CrossRef Google scholar
[3]
Denny, J. C., Bastarache, L., Ritchie, M. D., Carroll, R. J., Zink, R., Mosley, J. D., Field, J. R., Pulley, J. M., Ramirez, A. H., Bowton, E., (2013) Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol., 31, 1102–1110
CrossRef Pubmed Google scholar
[4]
Bush, W. S., Oetjens, M. T. and Crawford, D. C. (2016) Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat. Rev. Genet., 17, 129–145
CrossRef Pubmed Google scholar
[5]
Smith, G. D. and Hemani, G. (2014) Mendelian randomization: Geneticanchorsfor causal inference in epidemiological studies. Hum. Mol. Genet., 23, R89–R98
CrossRef Google scholar
[6]
Pingault, J. B., O’Reilly, P. F., Schoeler, T., Ploubidis, G. B., Rijsdijk, F. and Dudbridge, F. (2018) Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet., 19, 566–580
CrossRef Pubmed Google scholar
[7]
Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24
CrossRef Pubmed Google scholar
[8]
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A. and Yang, J. (2017) 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet., 101, 5–22
CrossRef Pubmed Google scholar
[9]
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd Ed. (Monographs on Statistics and Applied Probability). Chapman and Hall/CRC
[10]
Wellcome, T., Case, T. and Consortium, C. (2007) Genomewide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls Supplementary Information. Nature, 447,661-78.
[11]
Pe’er, I., Yelensky, R., Altshuler, D. and Daly, M. J. (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol., 32, 381–385
CrossRef Pubmed Google scholar
[12]
Yang, J., Ferreira, T., Morris, A. P., Medland, S. E., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., Weedon, M. N., Loos, R. J., (2012) Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet., 44, 369–375, S1–S3
CrossRef Pubmed Google scholar
[13]
Chung, D., Yang, C., Li, C., Gelernter, J. and Zhao, H. (2014) GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet., 10, e1004787
CrossRef Pubmed Google scholar
[14]
Pickrell, J. K. (2014) Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet., 94, 559–573
CrossRef Pubmed Google scholar
[15]
Lu, Q., Yao, X., Hu, Y. and Zhao, H. (2016) GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation. Bioinformatics, 32, 542–548
CrossRef Pubmed Google scholar
[16]
He, X., Fuller, C. K., Song, Y., Meng, Q., Zhang, B., Yang, X. and Li, H. (2013) Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am. J. Hum. Genet., 92, 667–680
CrossRef Pubmed Google scholar
[17]
Giambartolomei, C., Vukcevic, D., Schadt, E. E., Franke, L., Hingorani, A. D., Wallace, C. and Plagnol, V. (2014) Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet., 10, e1004383
CrossRef Pubmed Google scholar
[18]
Hormozdiari, F., van de Bunt, M., Segrè, A. V., Li, X., Joo, J. W. J., Bilow, M., Sul, J. H., Sankararaman, S., Pasaniuc, B. and Eskin, E. (2016) Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. J. Hum. Genet., 99, 1245–1260
CrossRef Pubmed Google scholar
[19]
Giambartolomei, C., Zhenli Liu, J., Zhang, W., Hauberg, M., Shi, H., Boocock, J., Pickrell, J., Jaffe, A. E., Pasaniuc, B. and Roussos, P., (2018) A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics, 34, 2538–2545
CrossRef Pubmed Google scholar
[20]
Wen, X., Pique-Regi, R. and Luca, F. (2017) Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization. PLoS Genet., 13, e1006646
CrossRef Pubmed Google scholar
[21]
Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P. R., Anttila, V., Xu, H., Zang, C., Farh, K., (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet., 47, 1228–1235
CrossRef Pubmed Google scholar
[22]
Cordell, H. J. (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet., 11, 2463–2468
CrossRef Pubmed Google scholar
[23]
Noordam, R., Bos, M. M., Wang, H., Winkler, T. W., Bentley, A. R., Kilpeläinen, T. O., de Vries, P. S., Sung, Y. J., Schwander, K., Cade, B. E., (2019) Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat. Commun., 10, 5121
CrossRef Pubmed Google scholar
[24]
Bentley, A. R., Sung, Y. J., Brown, M. R., Winkler, T. W., Kraja, A. T., Ntalla, I., Schwander, K., Chasman, D. I., Lim, E., Deng, X., (2019) Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nat. Genet., 51, 636–648
CrossRef Pubmed Google scholar
[25]
Wei, W. H., Hemani, G. and Haley, C. S. (2014) Detecting epistasis in human complex traits. Nat. Rev. Genet., 15, 722–733
CrossRef Pubmed Google scholar
[26]
Crawford, L., Zeng, P., Mukherjee, S. and Zhou, X. (2017) Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet., 13, e1006869
CrossRef Pubmed Google scholar
[27]
Fang, G., Wang, W., Paunic, V., Heydari, H., Costanzo, M., Liu, X., Liu, X., VanderSluis, B., Oately, B., Steinbach, M., (2019) Discovering genetic interactions bridging pathways in genome-wide association studies. Nat. Commun., 10, 4274
CrossRef Pubmed Google scholar
[28]
Bis, J. C., Jian, X., Kunkle, B. W., Chen, Y., Hamilton-Nelson, K. L., Bush, W. S., Salerno, W. J., Lancour, D., Ma, Y., Renton, A. E., (2020) Whole exome sequencing study identifies novel rare and common Alzheimer’s-Associated variants involved in immune response and transcriptional regulation. Mol. Psychiatry, 25, 1859–1875
CrossRef Pubmed Google scholar
[29]
Marouli, E., Graff, M., Medina-Gomez, C., Lo, K. S., Wood, A. R., Kjaer, T. R., Fine, R. S., Lu, Y., Schurmann, C., Highland, H. M., (2017) Rare and low-frequency coding variants alter human adult height. Nature, 542, 186–190
CrossRef Pubmed Google scholar
[30]
Zhao, Z., Bi, W., Zhou, W., VandeHaar, P., Fritsche, L. G. and Lee, S. (2020) UK Biobank whole-exome sequence binary phenome analysis with robust region-based rare-variant test. Am. J. Hum. Genet., 106, 3–12
CrossRef Pubmed Google scholar
[31]
Altshuler, D. M., Gibbs, R. A., Peltonen, L., Altshuler, D. M., Gibbs, R. A., Peltonen, L., Dermitzakis, E., Schaffner, S. F., Yu, F., Peltonen, L., (2010) Integrating common and rare genetic variation in diverse human populations. Nature, 467, 52–58
CrossRef Pubmed Google scholar
[32]
Hoffmann, T. J., Zhan, Y., Kvale, M. N., Hesselson, S. E., Gollub, J., Iribarren, C., Lu, Y., Mei, G., Purdy, M. M., Quesenberry, C., (2011) Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics, 98, 422–430
CrossRef Pubmed Google scholar
[33]
Hoffmann, T. J., Kvale, M. N., Hesselson, S. E., Zhan, Y., Aquino, C., Cao, Y., Cawley, S., Chung, E., Connell, S., Eshragh, J., (2011) Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. Genomics, 98, 79–89
CrossRef Pubmed Google scholar
[34]
Hunter-Zinck, H., Shi, Y., Li, M., Gorman, B. R., Ji, S. G., Sun, N., Webster, T., Liem, A., Hsieh, P., Devineni, P., (2020) Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet., 106, 535–548
CrossRef Pubmed Google scholar
[35]
Bien, S. A., Wojcik, G. L., Zubair, N., Gignoux, C. R., Martin, A. R., Kocarnik, J. M., Martin, L. W., Buyske, S., Haessler, J., Walker, R. W., (2016) Strategies for enriching variant coverage in candidate disease loci on a multiethnic genotyping array. PLoS One, 11, e0167758
CrossRef Pubmed Google scholar
[36]
Das, S., Abecasis, G. R. and Browning, B. L. (2018) Genotype imputation from large reference panels. Annu. Rev. Genomics Hum. Genet., 19, 73–96
CrossRef Pubmed Google scholar
[37]
McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., Kang, H. M., Fuchsberger, C., Danecek, P., Sharp, K., (2016) A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet., 48, 1279–1283
CrossRef Pubmed Google scholar
[38]
Howie, B., Marchini, J. and Stephens, M. (2011) Genotype imputation with thousands of genomes. G3- Genes, Genomes, Genet., 1, 457–470
CrossRef Google scholar
[39]
Li, Y., Willer, C., Sanna, S. and Abecasis, G. (2009) Genotype imputation. Annu. Rev. Genomics Hum. Genet., 10, 387–406
CrossRef Pubmed Google scholar
[40]
Knowler, W. C., Williams, R. C., Pettitt, D. J. and Steinberg, A. G. (1988) Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am. J. Hum. Genet. 43, 520–526
Pubmed
[41]
Campbell, C. D., Ogburn, E. L., Lunetta, K. L., Lyon, H. N., Freedman, M. L., Groop, L. C., Altshuler, D., Ardlie, K. G. and Hirschhorn, J. N. (2005) Demonstrating stratification in a European American population. Nat. Genet., 37, 868–872
CrossRef Pubmed Google scholar
[42]
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., Sabatti, C. and Eskin, E. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat. Genet., 42, 348–354
CrossRef Pubmed Google scholar
[43]
Zhou, X. and Stephens, M. (2012) Genome-wide efficient mixed-model analysis for association studies. Nat. Genet., 44, 821–824
CrossRef Pubmed Google scholar
[44]
Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I. and Heckerman, D. (2011) FaST linear mixed models for genome-wide association studies. Nat. Methods, 8, 833–835
CrossRef Pubmed Google scholar
[45]
Listgarten, J., Lippert, C. and Heckerman, D. (2013) FaST-LMM-Select for addressing confounding from spatial structure and rare variants. Nat. Genet., 45, 470–471
CrossRef Pubmed Google scholar
[46]
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., Daly, M. J., Price, A. L. and Neale, B. M., (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 47, 291–295
CrossRef Pubmed Google scholar
[47]
Bacanu, S. A., Devlin, B. and Roeder, K. (2000) The power of genomic control. Am. J. Hum. Genet., 66, 1933–1944
CrossRef Pubmed Google scholar
[48]
Falconer, D. S. and Mackay, T. F. C. (1962) Introduction to Quantitative Genetics. Benjamin-Cummings Pub Co
[49]
Haseman, J. K. and Elston, R. C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet., 2, 3–19
CrossRef Pubmed Google scholar
[50]
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., (2009) Finding the missing heritability of complex diseases. Nature, 461, 747–753
CrossRef Pubmed Google scholar
[51]
Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D. I., Cornes, B. K., Davis, C., Dunkel, L., De Lange, M., Harris, J. R., Hjelmborg, J. V., (2003) Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res., 6, 399–408
CrossRef Pubmed Google scholar
[52]
Gudbjartsson, D. F., Walters, G. B., Thorleifsson, G., Stefansson, H., Halldorsson, B. V., Zusmanovich, P., Sulem, P., Thorlacius, S., Gylfason, A., Steinberg, S., (2008) Many sequence variants affecting diversity of adult human height. Nat. Genet., 40, 609–615
CrossRef Pubmed Google scholar
[53]
Lee, S. H., Wray, N. R., Goddard, M. E. and Visscher, P. M. (2011) Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet., 88, 294–305
CrossRef Pubmed Google scholar
[54]
Tenesa, A. and Haley, C. S. (2013) The heritability of human disease: estimation, uses and abuses. Nat. Rev. Genet., 14, 139–149
CrossRef Pubmed Google scholar
[55]
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., (2010) Common SNPs explain a large proportion of the heritability for human height. Nat. Genet., 42, 565–569
CrossRef Pubmed Google scholar
[56]
Lettre, G., Jackson, A. U., Gieger, C., Schumacher, F. R., Berndt, S. I., Sanna, S., Eyheramendy, S., Voight, B. F., Butler, J. L., Guiducci, C., (2008) Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet., 40, 584–591
CrossRef Pubmed Google scholar
[57]
Weedon, M. N., Lango, H., Lindgren, C. M., Wallace, C., Evans, D. M., Mangino, M., Freathy, R. M., Perry, J. R., Stevens, S., Hall, A. S., (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet., 40, 575–583
CrossRef Pubmed Google scholar
[58]
Fisher, R. A. (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb., 53, 399–433
[59]
Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., Frayling, T. M., Hirschhorn, J., Yang, J. and Visscher, P. M., (2018) Meta-analysis of genome-wide association studies for height and body mass index in ~700, 000 individuals of European ancestry. Hum. Mol. Genet., 27, 3641–3649
CrossRef Pubmed Google scholar
[60]
Loh, P. R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B. K., Pollack, S. J., de Candia, T. R., Lee, S. H., Wray, N. R., Kendler, K. S., (2015) Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet., 47, 1385–1392
CrossRef Pubmed Google scholar
[61]
Boyle, E. A., Li, Y. I. and Pritchard, J. K. (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell, 169, 1177–1186
CrossRef Pubmed Google scholar
[62]
Wray, N. R., Wijmenga, C., Sullivan, P. F., Yang, J. and Visscher, P. M. (2018) Common disease is more complex than implied by the core gene omnigenic model. Cell, 173, 1573–1580
CrossRef Pubmed Google scholar
[63]
Pritchard, J. K. and Cox, N. J. (2002) The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet., 11, 2417–2423
CrossRef Pubmed Google scholar
[64]
Botstein, D. and Risch, N. (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet., 33, 228–237
CrossRef Pubmed Google scholar
[65]
Schork, N. J., Murray, S. S., Frazer, K. A. and Topol, E. J. (2009) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev., 19, 212–219
CrossRef Pubmed Google scholar
[66]
Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145
CrossRef Pubmed Google scholar
[67]
Bomba, L., Walter, K. and Soranzo, N. (2017) The impact of rare and low-frequency genetic variants in common disease. Genome Biol., 18, 77
CrossRef Pubmed Google scholar
[68]
Wainschtein, P., Jain, D. P., Yengo, L., Zheng, Z., TOPMed Anthropometry Working Group, Trans-Omics for Precision Medicine Consortium, Adrienne Cupples, L., Shadyab, A. H., McKnight, B., Shoemaker, B. M., (2019) Recovery of trait heritability from whole genome sequence data. BioRxiv doi: 10.1101/588020
[69]
Young, A. I. (2019) Solving the missing heritability problem. PLoS Genet., 15, e1008222
CrossRef Pubmed Google scholar
[70]
Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M. F., Parker, B. J., Washietl, S., Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E., (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478, 476–482
CrossRef Pubmed Google scholar
[71]
Khurana, E., Fu, Y., Colonna, V., Mu, X., Kang, H. M., Lappalainen, T., Sboner, A., Lochovsky, L., Chen, J., Harmanci, A., (2013) Integrative annotation of variants from 1092 humans: Application to cancer genomics. Science, 342, 1235587
CrossRef Google scholar
[72]
ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef Pubmed Google scholar
[73]
Altshuler, D., Daly, M. J. and Lander, E. S. (2008) Genetic mapping in human disease. Science, 322, 881–888
CrossRef Pubmed Google scholar
[74]
Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S. and Manolio, T. A. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA, 106, 9362–9367
CrossRef Pubmed Google scholar
[75]
Gusev, A., Lee, S. H., Trynka, G., Finucane, H., Vilhjálmsson, B. J., Xu, H., Zang, C., Ripke, S., Bulik-Sullivan, B., Stahl, E., (2014) Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet., 95, 535–552
CrossRef Pubmed Google scholar
[76]
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248–249
CrossRef Pubmed Google scholar
[77]
Ng, P. C. and Henikoff, S. (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res., 31, 3812–3814
CrossRef Pubmed Google scholar
[78]
Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310–315
CrossRef Pubmed Google scholar
[79]
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330
CrossRef Pubmed Google scholar
[80]
The GTEx Consortium. (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science,348, 648–660
[81]
Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., Sealock, J., Karlsson, I. K., Hägg, S., Athanasiu, L., (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet., 51, 404–413
CrossRef Pubmed Google scholar
[82]
Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Marchini, J. L., McCarthy, S., McVean, G. A., Abecasis, G. R., (2015) A global reference for human genetic variation. Nature, 526, 68–74
CrossRef Pubmed Google scholar
[83]
Zhu, X. and Stephens, M. (2018) Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. Nat. Commun., 9, 4361
CrossRef Pubmed Google scholar
[84]
Kichaev, G., Yang, W. Y., Lindstrom, S., Hormozdiari, F., Eskin, E., Price, A. L., Kraft, P. and Pasaniuc, B. (2014) Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet., 10, e1004722
CrossRef Pubmed Google scholar
[85]
Wen, X., Lee, Y., Luca, F. and Pique-Regi, R. (2016) Efficient integrative multi-SNP association analysis via deterministic approximation of posteriors. Am. J. Hum. Genet., 98, 1114–1129
CrossRef Pubmed Google scholar
[86]
Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L., Ewens, K. G., Spielman, R. S. and Cheung, V. G. (2004) Genetic analysis of genome-wide variation in human gene expression. Nature, 430, 743–747
CrossRef Pubmed Google scholar
[87]
Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511
CrossRef Pubmed Google scholar
[88]
GTEx Consortium (2017) Genetic effects on gene expression across human tissues. Nature, 550, 204–213
CrossRef Google scholar
[89]
Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J., (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet., 47, 1091–1098
CrossRef Pubmed Google scholar
[90]
Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S., (2019) A statistical framework for cross-tissue transcriptome-wide association analysis. Nat. Genet., 51, 568–576
CrossRef Pubmed Google scholar
[91]
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A., (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 48, 245–252
CrossRef Pubmed Google scholar
[92]
Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., Torstenson, E. S., Shah, K. P., Garcia, T., Edwards, T. L., (2018) Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun., 9, 1825
CrossRef Pubmed Google scholar
[93]
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., (2019) Opportunities and challenges for transcriptome-wide association studies. Nat. Genet., 51, 592–599
CrossRef Pubmed Google scholar
[94]
Zhang, Y., Quick, C., Yu, K., Barbeira, A., Luca, F., Pique-Regi, R., Im, H. K. and Wen, X. (2019) Investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. bioRxiv, 808295
CrossRef Google scholar
[95]
Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., Natarajan, P., Lander, E. S., Lubitz, S. A., Ellinor, P. T., (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet., 50, 1219–1224
CrossRef Pubmed Google scholar
[96]
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427
CrossRef Pubmed Google scholar
[97]
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., Sklar, P., and the International Schizophrenia Consortium. (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748–752
CrossRef Pubmed Google scholar
[98]
Stahl, E. A., Wegmann, D., Trynka, G., Gutierrez-Achury, J., Do, R., Voight, B. F., Kraft, P., Chen, R., Kallberg, H. J., Kurreeman, F. A., (2012) Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet., 44, 483–489
CrossRef Pubmed Google scholar
[99]
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. and Hirschhorn, J. N. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet., 33, 177–182
CrossRef Pubmed Google scholar
[100]
Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. and Sham, P. C. (2017) Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol., 41, 469–480
CrossRef Pubmed Google scholar
[101]
So, H. C. and Sham, P. C. (2017) Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci. Rep., 7, 41262
CrossRef Pubmed Google scholar
[102]
Song, S., Jiang, W., Hou, L. and Zhao, H. (2020) Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies. PLOS Comput. Biol., 16, e1007565
CrossRef Pubmed Google scholar
[103]
Zhu, X. and Stephens, M. (2017) Bayesian large-scale multiple regression with summary statistics from genome-wide association studies. Ann. Appl. Stat., 11, 1561–1592
CrossRef Pubmed Google scholar
[104]
Vilhjálmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindström, S., Ripke, S., Genovese, G., Loh, P. R., Bhatia, G., Do, R., (2015) Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet., 97, 576–592
CrossRef Pubmed Google scholar
[105]
Lloyd-Jones, L. R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper, K. E., Wang, H., Zheng, Z., Magi, R., Esko, T., (2019) Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun., 10, 5086
CrossRef Pubmed Google scholar
[106]
Hu, Y., Lu, Q., Powles, R., Yao, X., Yang, C., Fang, F., Xu, X. and Zhao, H. (2017) Leveraging functional annotations in genetic risk prediction for human complex diseases. PLOS Comput. Biol., 13, e1005589
CrossRef Pubmed Google scholar
[107]
Hu, Y., Lu, Q., Liu, W., Zhang, Y., Li, M. and Zhao, H. (2017) Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLoS Genet., 13, e1006836
CrossRef Pubmed Google scholar
[108]
Li, C., Yang, C., Gelernter, J. and Zhao, H. (2014) Improving genetic risk prediction by leveraging pleiotropy. Hum. Genet., 133, 639–650
CrossRef Pubmed Google scholar
[109]
Maier, R. M., Zhu, Z., Lee, S. H., Trzaskowski, M., Ruderfer, D. M., Stahl, E. A., Ripke, S., Wray, N. R., Yang, J., Visscher, P. M., (2018) Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nat. Commun., 9, 989
CrossRef Pubmed Google scholar
[110]
Ginsburg, G. S., Burke, T. W. and Febbo, P. (2008) Centralized biorepositories for genetic and genomic research. JAMA, 299, 1359–1361
CrossRef Pubmed Google scholar
[111]
Gottesman, O., Kuivaniemi, H., Tromp, G., Faucett, W. A., Li, R., Manolio, T. A., Sanderson, S. C., Kannry, J., Zinberg, R., Basford, M. A., (2013) The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet. Med., 15, 761–771
CrossRef Pubmed Google scholar
[112]
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O’Connell, J., (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature, 562, 203–209
CrossRef Pubmed Google scholar
[113]
http://www.nealelab.is/uk-biobank/. Accessed: September 1, 2020
[114]
Li, X., Li, Z., Zhou, H., Gaynor, S. M., Liu, Y., Chen, H., Sun, R., Dey, R., Arnett, D. K., Aslibekyan, S., (2020) Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale. Nat. Genet., 52, 969–983
CrossRef Pubmed Google scholar
[115]
Gogarten, S. M., Sofer, T., Chen, H., Yu, C., Brody, J. A., Thornton, T. A., Rice, K. M. and Conomos, M. P. (2019) Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics, 35, 5346–5348
CrossRef Pubmed Google scholar
[116]
Loh, P. R., Tucker, G., Bulik-Sullivan, B. K., Vilhjálmsson, B. J., Finucane, H. K., Salem, R. M., Chasman, D. I., Ridker, P. M., Neale, B. M., Berger, B., (2015) Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet., 47, 284–290
CrossRef Pubmed Google scholar
[117]
Loh, P. R., Kichaev, G., Gazal, S., Schoech, A. P. and Price, A. L. (2018) Mixed-model association for biobank-scale datasets. Nat. Genet., 50, 906–908
CrossRef Pubmed Google scholar
[118]
Zhou, W., Nielsen, J. B., Fritsche, L. G., Dey, R., Gabrielsen, M. E., Wolford, B. N., LeFaive, J., VandeHaar, P., Gagliano, S. A., Gifford, A., (2018) Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet., 50, 1335–1341
CrossRef Pubmed Google scholar
[119]
Peng, J. and Siegmund, D. (2004) Mapping quantitative traits with random and with ascertained sibships. Proc. Natl. Acad. Sci. USA, 101, 7845–7850
CrossRef Google scholar
[120]
Cirulli, E. T. and Goldstein, D. B. (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet., 11, 415–425
CrossRef Pubmed Google scholar
[121]
Marchini, J., Howie, B., Myers, S., McVean, G. and Donnelly, P. (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet., 39, 906–913
CrossRef Pubmed Google scholar
[122]
Li, Y., Willer, C. J., Ding, J., Scheet, P. and Abecasis, G. R. (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol., 34, 816–834
CrossRef Pubmed Google scholar
[123]
Browning, B. L. and Browning, S. R. (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet.,
CrossRef Pubmed Google scholar
[124]
Lee, S., Abecasis, G. R., Boehnke, M. and Lin, X. (2014) Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet., 95, 5–23
CrossRef Pubmed Google scholar
[125]
Van Hout, C. V., Tachmazidou, I., Backman, J. D., Hoffman, J. D., Liu, D., Pandey, A. K., Gonzaga-Jauregui, C., Khalid, S., Ye, B., Banerjee, N., (2020) Whole exome sequencing and characterization of coding variation in 49,960 individuals in the UK Biobank. Nature, 586, 749–756
CrossRef Google scholar
[126]
Leung, Y. Y., Valladares, O., Chou, Y. F., Lin, H. J., Kuzma, A. B., Cantwell, L., Qu, L., Gangadharan, P., Salerno, W. J., Schellenberg, G. D., (2019) VCPA: genomic variant calling pipeline and data management tool for Alzheimer’s Disease Sequencing Project. Bioinformatics, 35, 1768–1770
CrossRef Pubmed Google scholar
[127]
Taliun, D., Harris, D. N., Kessler, M. D., Carlson, J., Szpiech, Z. A., Torres, R., Taliun, S. A. G., Corvelo, A., Gogarten, S. M., Kang, H. M., (2019) Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 590, 290–299
[128]
Kowalski, M. H., Qian, H., Hou, Z., Rosen, J. D., Tapia, A. L., Shan, Y., Jain, D., Argos, M., Arnett, D. K., Avery, C., , (2019) Use of€>100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet., 15, e1008500
CrossRef Pubmed Google scholar
[129]
Madsen, B. E. and Browning, S. R. (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet., 5, e1000384
CrossRef Pubmed Google scholar
[130]
Li, B. and Leal, S. M. (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–321
CrossRef Pubmed Google scholar
[131]
Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89, 82–93
CrossRef Pubmed Google scholar
[132]
Pan, W. (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet. Epidemiol., 33, 497–507
CrossRef Pubmed Google scholar
[133]
Chen, H., Huffman, J. E., Brody, J. A., Wang, C., Lee, S., Li, Z., Gogarten, S. M., Sofer, T., Bielak, L. F., Bis, J. C., (2019) Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing Studies. Am. J. Hum. Genet., 104, 260–274
CrossRef Pubmed Google scholar
[134]
Morrison, A. C., Huang, Z., Yu, B., Metcalf, G., Liu, X., Ballantyne, C., Coresh, J., Yu, F., Muzny, D., Feofanova, E., (2017) Practical approaches for whole-genome sequence analysis of heart- and blood-related traits. Am. J. Hum. Genet., 100, 205–215
CrossRef Pubmed Google scholar
[135]
Sarnowski, C., Satizabal, C. L., DeCarli, C., Pitsillides, A. N., Cupples, L. A., Vasan, R. S., Wilson, J. G., Bis, J. C., Fornage, M., Beiser, A. S., (2018) Whole genome sequence analyses of brain imaging measures in the Framingham Study. Neurology, 90, e188–e196
CrossRef Pubmed Google scholar
[136]
Werling, D. M., Brand, H., An, J. Y., Stone, M. R., Zhu, L., Glessner, J. T., Collins, R. L., Dong, S., Layer, R. M., Markenscoff-Papadimitriou, E., (2018) An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet., 50, 727–736
CrossRef Pubmed Google scholar
[137]
Li, Z., Li, X., Liu, Y., Shen, J., Chen, H., Zhou, H., Morrison, A. C., Boerwinkle, E. and Lin, X. (2019) Dynamic scan procedure for detecting rare-variant association regions in whole-genome sequencing studies. Am. J. Hum. Genet., 104, 802–814
CrossRef Pubmed Google scholar
[138]
He, Z., Xu, B., Buxbaum, J. and Ionita-Laza, I. (2019) A genome-wide scan statistic framework for whole-genome sequence data analysis. Nat. Commun., 10, 3018
CrossRef Pubmed Google scholar
[139]
Jakubosky, D., Smith, E. N., D’Antonio, M., Jan Bonder, M., Young Greenwald, W. W., D’Antonio-Chronowska, A., Matsui, H., Stegle, O., Montgomery, S. B., DeBoever, C., (2020) Discovery and quality analysis of a comprehensive set of structural variants and short tandem repeats. Nat. Commun., 11, 2928
CrossRef Pubmed Google scholar
[140]
Kosugi, S., Momozawa, Y., Liu, X., Terao, C., Kubo, M. and Kamatani, Y. (2019) Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol., 20, 117
CrossRef Pubmed Google scholar
[141]
Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C. and Sedlazeck, F. J. (2019) Structural variant calling: the long and the short of it. Genome Biol., 20, 246
CrossRef Pubmed Google scholar
[142]
Jakubosky, D., D’Antonio, M., Bonder, M. J., Smail, C., Donovan, M. K. R., Young Greenwald, W. W., Matsui, H., D’Antonio-Chronowska, A., Stegle, O., Smith, E. N., (2020) Properties of structural variants and short tandem repeats associated with gene expression and complex traits. Nat. Commun., 11, 2927
CrossRef Pubmed Google scholar
[143]
Chen, L., Abel, H. J., Das, I., Larson, D. E., Ganel, L., Kanchi, K. L., Regier, A. A., Young, E. P., Kang, C. J., Scott, A. J., (2020) Association of structural variation with cardiometabolic traits in Finns. Am. J. Hum. Genet., 108, 583–596
[144]
Sirugo, G., Williams, S. M. and Tishkoff, S. A. (2019) The missing diversity in human genetic studies. Cell, 177, 26–31
CrossRef Pubmed Google scholar
[145]
Genovese, G.Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., Bowden, D. W., Langefeld, C. D., Oleksyk, T. K., Uscinski Knob, A. L., (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science, 1193032
CrossRef Google scholar
[146]
Belloy, M. E., Napolioni, V. and Greicius, M. D. (2019) A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron, 101, 820–838
CrossRef Pubmed Google scholar
[147]
Zhang, R., Wang, X., Tang, Z., Liu, J., Yang, S., Zhang, Y., Wei, Y., Luo, W., Wang, J., Li, J., (2014) Apolipoprotein E gene polymorphism and the risk of intracerebral hemorrhage: a meta-analysis of epidemiologic studies. Lipids Health Dis., 13, 47
CrossRef Pubmed Google scholar
[148]
H3Africa Consortium, Rotimi, C., Abayomi, A., Abimiku, A., Adabayeri, V. M., Adebamowo, C., Adebiyi, E., Ademola, A. D., Adeyemo, A., Adu, D., (2014) Enabling the genomic revolution in Africa. Science, 344, 1346–1348
CrossRef Google scholar
[149]
Banda, Y., Kvale, M. N., Hoffmann, T. J., Hesselson, S. E., Ranatunga, D., Tang, H., Sabatti, C., Croen, L. A., Dispensa, B. P., Henderson, M., (2015) Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics, 200, 1285–1295
CrossRef Pubmed Google scholar
[150]
Wojcik, G. L., Graff, M., Nishimura, K. K., Tao, R., Haessler, J., Gignoux, C. R., Highland, H. M., Patel, Y. M., Sorokin, E. P., Avery, C. L., (2019) Genetic analyses of diverse populations improves discovery for complex traits. Nature, 570, 514–518
CrossRef Pubmed Google scholar
[151]
Fang, H., Hui, Q., Lynch, J., Honerlaw, J., Assimes, T. L., Huang, J., Vujkovic, M., Damrauer, S. M., Pyarajan, S., Gaziano, J. M., (2019) Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet., 105, 763–772
CrossRef Pubmed Google scholar
[152]
Coram, M. A., Duan, Q., Hoffmann, T. J., Thornton, T., Knowles, J. W., Johnson, N. A., Ochs-Balcom, H. M., Donlon, T. A., Martin, L. W., Eaton, C. B., (2013) Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am. J. Hum. Genet., 92, 904–916
CrossRef Pubmed Google scholar
[153]
Galinsky, K. J., Reshef, Y. A., Finucane, H. K., Loh, P. R., Zaitlen, N., Patterson, N. J., Brown, B. C. and Price, A. L. (2019) Estimating cross-population genetic correlations of causal effect sizes. Genet. Epidemiol., 43, 180–188
CrossRef Pubmed Google scholar
[154]
Coram, M. A., Candille, S. I., Duan, Q., Chan, K. H., Li, Y., Kooperberg, C., Reiner, A. P. and Tang, H. (2015) Leveraging multi-ethnic evidence for mapping complex traits in minority populations: An empirical Bayes approach. Am. J. Hum. Genet., 96, 740–752
CrossRef Pubmed Google scholar
[155]
Coram, M. A., Fang, H., Candille, S. I., Assimes, T. L. and Tang, H. (2017) Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations. Am. J. Hum. Genet., 101, 218–226
CrossRef Pubmed Google scholar
[156]
Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M. L., Mora, S., (2013) Discovery and refinement of loci associated with lipid levels. Nat. Genet., 45, 1274–1283
CrossRef Pubmed Google scholar
[157]
Panjwani, N., Wang, F., Mastromatteo, S., Bao, A., Wang, C., He, G., Gong, J., Rommens, J. M., Sun, L. and Strug, L. J. (2020) LocusFocus: Web-based colocalization for the annotation and functional follow-up of GWAS. PLOS Comput. Biol., 16, e1008336
CrossRef Pubmed Google scholar

ACKNOWLEDGMENTS

This work is supported by NIH R35GM127063 (HT) and NIH AG066206 (ZH).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Hua Tang and Zihuai He declare that they have no conflict of interests.
The article is a review article and does not contain any human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1088 KB)

Accesses

Citations

Detail

Sections
Recommended

/