Advances and challenges in quantitative delineation of the genetic architecture of complex traits
Hua Tang, Zihuai He
Advances and challenges in quantitative delineation of the genetic architecture of complex traits
Background: Genome-wide association studies (GWAS) have been widely adopted in studies of human complex traits and diseases.
Results: This review surveys areas of active research: quantifying and partitioning trait heritability, fine mapping functional variants and integrative analysis, genetic risk prediction of phenotypes, and the analysis of sequencing studies that have identified millions of rare variants. Current challenges and opportunities are highlighted.
Conclusion: GWAS have fundamentally transformed the field of human complex trait genetics. Novel statistical and computational methods have expanded the scope of GWAS and have provided valuable insights on the genetic architecture underlying complex phenotypes.
Genome-wide association studies have identified a large number of genotype-phenotype associations for a wide variety of complex traits and diseases. Here we provide an overview of recent developments in quantitative methods that make use of GWAS discoveries for probing into the biology underlying specific associations, for depicting the genetic architecture of complex phenotypes, as well as for genetic risk predictions. Methodological challenges are highlighted in the hope to inspire innovation.
genome-wide association study / heritability / rare variants / biobank / colocalization / eQTL / polygenic risk scores / transcriptome-wide association study
[1] |
MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J.,
CrossRef
Pubmed
Google scholar
|
[2] |
Crawford, N. G., KellyD. E. , Hansen, M. E. B., Beltrame, M. H., Fan, S., Bowman, S. L., Jewett, E., Ranciaro, A., Thompson, S., Lo, Y.,
CrossRef
Google scholar
|
[3] |
Denny, J. C., Bastarache, L., Ritchie, M. D., Carroll, R. J., Zink, R., Mosley, J. D., Field, J. R., Pulley, J. M., Ramirez, A. H., Bowton, E.,
CrossRef
Pubmed
Google scholar
|
[4] |
Bush, W. S., Oetjens, M. T. and Crawford, D. C. (2016) Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat. Rev. Genet., 17, 129–145
CrossRef
Pubmed
Google scholar
|
[5] |
Smith, G. D. and Hemani, G. (2014) Mendelian randomization: Geneticanchorsfor causal inference in epidemiological studies. Hum. Mol. Genet., 23, R89–R98
CrossRef
Google scholar
|
[6] |
Pingault, J. B., O’Reilly, P. F., Schoeler, T., Ploubidis, G. B., Rijsdijk, F. and Dudbridge, F. (2018) Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet., 19, 566–580
CrossRef
Pubmed
Google scholar
|
[7] |
Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24
CrossRef
Pubmed
Google scholar
|
[8] |
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A. and Yang, J. (2017) 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet., 101, 5–22
CrossRef
Pubmed
Google scholar
|
[9] |
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd Ed. (Monographs on Statistics and Applied Probability). Chapman and Hall/CRC
|
[10] |
Wellcome, T., Case, T. and Consortium, C. (2007) Genomewide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls Supplementary Information. Nature, 447,661-78.
|
[11] |
Pe’er, I., Yelensky, R., Altshuler, D. and Daly, M. J. (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol., 32, 381–385
CrossRef
Pubmed
Google scholar
|
[12] |
Yang, J., Ferreira, T., Morris, A. P., Medland, S. E., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W., Weedon, M. N., Loos, R. J.,
CrossRef
Pubmed
Google scholar
|
[13] |
Chung, D., Yang, C., Li, C., Gelernter, J. and Zhao, H. (2014) GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet., 10, e1004787
CrossRef
Pubmed
Google scholar
|
[14] |
Pickrell, J. K. (2014) Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet., 94, 559–573
CrossRef
Pubmed
Google scholar
|
[15] |
Lu, Q., Yao, X., Hu, Y. and Zhao, H. (2016) GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation. Bioinformatics, 32, 542–548
CrossRef
Pubmed
Google scholar
|
[16] |
He, X., Fuller, C. K., Song, Y., Meng, Q., Zhang, B., Yang, X. and Li, H. (2013) Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am. J. Hum. Genet., 92, 667–680
CrossRef
Pubmed
Google scholar
|
[17] |
Giambartolomei, C., Vukcevic, D., Schadt, E. E., Franke, L., Hingorani, A. D., Wallace, C. and Plagnol, V. (2014) Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet., 10, e1004383
CrossRef
Pubmed
Google scholar
|
[18] |
Hormozdiari, F., van de Bunt, M., Segrè, A. V., Li, X., Joo, J. W. J., Bilow, M., Sul, J. H., Sankararaman, S., Pasaniuc, B. and Eskin, E. (2016) Colocalization of GWAS and eQTL Signals Detects Target Genes. Am. J. Hum. Genet., 99, 1245–1260
CrossRef
Pubmed
Google scholar
|
[19] |
Giambartolomei, C., Zhenli Liu, J., Zhang, W., Hauberg, M., Shi, H., Boocock, J., Pickrell, J., Jaffe, A. E., Pasaniuc, B. and Roussos, P.,
CrossRef
Pubmed
Google scholar
|
[20] |
Wen, X., Pique-Regi, R. and Luca, F. (2017) Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization. PLoS Genet., 13, e1006646
CrossRef
Pubmed
Google scholar
|
[21] |
Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P. R., Anttila, V., Xu, H., Zang, C., Farh, K.,
CrossRef
Pubmed
Google scholar
|
[22] |
Cordell, H. J. (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet., 11, 2463–2468
CrossRef
Pubmed
Google scholar
|
[23] |
Noordam, R., Bos, M. M., Wang, H., Winkler, T. W., Bentley, A. R., Kilpeläinen, T. O., de Vries, P. S., Sung, Y. J., Schwander, K., Cade, B. E.,
CrossRef
Pubmed
Google scholar
|
[24] |
Bentley, A. R., Sung, Y. J., Brown, M. R., Winkler, T. W., Kraja, A. T., Ntalla, I., Schwander, K., Chasman, D. I., Lim, E., Deng, X.,
CrossRef
Pubmed
Google scholar
|
[25] |
Wei, W. H., Hemani, G. and Haley, C. S. (2014) Detecting epistasis in human complex traits. Nat. Rev. Genet., 15, 722–733
CrossRef
Pubmed
Google scholar
|
[26] |
Crawford, L., Zeng, P., Mukherjee, S. and Zhou, X. (2017) Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet., 13, e1006869
CrossRef
Pubmed
Google scholar
|
[27] |
Fang, G., Wang, W., Paunic, V., Heydari, H., Costanzo, M., Liu, X., Liu, X., VanderSluis, B., Oately, B., Steinbach, M.,
CrossRef
Pubmed
Google scholar
|
[28] |
Bis, J. C., Jian, X., Kunkle, B. W., Chen, Y., Hamilton-Nelson, K. L., Bush, W. S., Salerno, W. J., Lancour, D., Ma, Y., Renton, A. E.,
CrossRef
Pubmed
Google scholar
|
[29] |
Marouli, E., Graff, M., Medina-Gomez, C., Lo, K. S., Wood, A. R., Kjaer, T. R., Fine, R. S., Lu, Y., Schurmann, C., Highland, H. M.,
CrossRef
Pubmed
Google scholar
|
[30] |
Zhao, Z., Bi, W., Zhou, W., VandeHaar, P., Fritsche, L. G. and Lee, S. (2020) UK Biobank whole-exome sequence binary phenome analysis with robust region-based rare-variant test. Am. J. Hum. Genet., 106, 3–12
CrossRef
Pubmed
Google scholar
|
[31] |
Altshuler, D. M., Gibbs, R. A., Peltonen, L., Altshuler, D. M., Gibbs, R. A., Peltonen, L., Dermitzakis, E., Schaffner, S. F., Yu, F., Peltonen, L.,
CrossRef
Pubmed
Google scholar
|
[32] |
Hoffmann, T. J., Zhan, Y., Kvale, M. N., Hesselson, S. E., Gollub, J., Iribarren, C., Lu, Y., Mei, G., Purdy, M. M., Quesenberry, C.,
CrossRef
Pubmed
Google scholar
|
[33] |
Hoffmann, T. J., Kvale, M. N., Hesselson, S. E., Zhan, Y., Aquino, C., Cao, Y., Cawley, S., Chung, E., Connell, S., Eshragh, J.,
CrossRef
Pubmed
Google scholar
|
[34] |
Hunter-Zinck, H., Shi, Y., Li, M., Gorman, B. R., Ji, S. G., Sun, N., Webster, T., Liem, A., Hsieh, P., Devineni, P.,
CrossRef
Pubmed
Google scholar
|
[35] |
Bien, S. A., Wojcik, G. L., Zubair, N., Gignoux, C. R., Martin, A. R., Kocarnik, J. M., Martin, L. W., Buyske, S., Haessler, J., Walker, R. W.,
CrossRef
Pubmed
Google scholar
|
[36] |
Das, S., Abecasis, G. R. and Browning, B. L. (2018) Genotype imputation from large reference panels. Annu. Rev. Genomics Hum. Genet., 19, 73–96
CrossRef
Pubmed
Google scholar
|
[37] |
McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., Kang, H. M., Fuchsberger, C., Danecek, P., Sharp, K.,
CrossRef
Pubmed
Google scholar
|
[38] |
Howie, B., Marchini, J. and Stephens, M. (2011) Genotype imputation with thousands of genomes. G3- Genes, Genomes, Genet., 1, 457–470
CrossRef
Google scholar
|
[39] |
Li, Y., Willer, C., Sanna, S. and Abecasis, G. (2009) Genotype imputation. Annu. Rev. Genomics Hum. Genet., 10, 387–406
CrossRef
Pubmed
Google scholar
|
[40] |
Knowler, W. C., Williams, R. C., Pettitt, D. J. and Steinberg, A. G. (1988) Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am. J. Hum. Genet. 43, 520–526
Pubmed
|
[41] |
Campbell, C. D., Ogburn, E. L., Lunetta, K. L., Lyon, H. N., Freedman, M. L., Groop, L. C., Altshuler, D., Ardlie, K. G. and Hirschhorn, J. N. (2005) Demonstrating stratification in a European American population. Nat. Genet., 37, 868–872
CrossRef
Pubmed
Google scholar
|
[42] |
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., Sabatti, C. and Eskin, E. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat. Genet., 42, 348–354
CrossRef
Pubmed
Google scholar
|
[43] |
Zhou, X. and Stephens, M. (2012) Genome-wide efficient mixed-model analysis for association studies. Nat. Genet., 44, 821–824
CrossRef
Pubmed
Google scholar
|
[44] |
Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I. and Heckerman, D. (2011) FaST linear mixed models for genome-wide association studies. Nat. Methods, 8, 833–835
CrossRef
Pubmed
Google scholar
|
[45] |
Listgarten, J., Lippert, C. and Heckerman, D. (2013) FaST-LMM-Select for addressing confounding from spatial structure and rare variants. Nat. Genet., 45, 470–471
CrossRef
Pubmed
Google scholar
|
[46] |
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., Daly, M. J., Price, A. L. and Neale, B. M.,
CrossRef
Pubmed
Google scholar
|
[47] |
Bacanu, S. A., Devlin, B. and Roeder, K. (2000) The power of genomic control. Am. J. Hum. Genet., 66, 1933–1944
CrossRef
Pubmed
Google scholar
|
[48] |
Falconer, D. S. and Mackay, T. F. C. (1962) Introduction to Quantitative Genetics. Benjamin-Cummings Pub Co
|
[49] |
Haseman, J. K. and Elston, R. C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet., 2, 3–19
CrossRef
Pubmed
Google scholar
|
[50] |
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A.,
CrossRef
Pubmed
Google scholar
|
[51] |
Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D. I., Cornes, B. K., Davis, C., Dunkel, L., De Lange, M., Harris, J. R., Hjelmborg, J. V.,
CrossRef
Pubmed
Google scholar
|
[52] |
Gudbjartsson, D. F., Walters, G. B., Thorleifsson, G., Stefansson, H., Halldorsson, B. V., Zusmanovich, P., Sulem, P., Thorlacius, S., Gylfason, A., Steinberg, S.,
CrossRef
Pubmed
Google scholar
|
[53] |
Lee, S. H., Wray, N. R., Goddard, M. E. and Visscher, P. M. (2011) Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet., 88, 294–305
CrossRef
Pubmed
Google scholar
|
[54] |
Tenesa, A. and Haley, C. S. (2013) The heritability of human disease: estimation, uses and abuses. Nat. Rev. Genet., 14, 139–149
CrossRef
Pubmed
Google scholar
|
[55] |
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A. C., Martin, N. G., Montgomery, G. W.,
CrossRef
Pubmed
Google scholar
|
[56] |
Lettre, G., Jackson, A. U., Gieger, C., Schumacher, F. R., Berndt, S. I., Sanna, S., Eyheramendy, S., Voight, B. F., Butler, J. L., Guiducci, C.,
CrossRef
Pubmed
Google scholar
|
[57] |
Weedon, M. N., Lango, H., Lindgren, C. M., Wallace, C., Evans, D. M., Mangino, M., Freathy, R. M., Perry, J. R., Stevens, S., Hall, A. S.,
CrossRef
Pubmed
Google scholar
|
[58] |
Fisher, R. A. (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb., 53, 399–433
|
[59] |
Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., Frayling, T. M., Hirschhorn, J., Yang, J. and Visscher, P. M.,
CrossRef
Pubmed
Google scholar
|
[60] |
Loh, P. R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B. K., Pollack, S. J., de Candia, T. R., Lee, S. H., Wray, N. R., Kendler, K. S.,
CrossRef
Pubmed
Google scholar
|
[61] |
Boyle, E. A., Li, Y. I. and Pritchard, J. K. (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell, 169, 1177–1186
CrossRef
Pubmed
Google scholar
|
[62] |
Wray, N. R., Wijmenga, C., Sullivan, P. F., Yang, J. and Visscher, P. M. (2018) Common disease is more complex than implied by the core gene omnigenic model. Cell, 173, 1573–1580
CrossRef
Pubmed
Google scholar
|
[63] |
Pritchard, J. K. and Cox, N. J. (2002) The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet., 11, 2417–2423
CrossRef
Pubmed
Google scholar
|
[64] |
Botstein, D. and Risch, N. (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet., 33, 228–237
CrossRef
Pubmed
Google scholar
|
[65] |
Schork, N. J., Murray, S. S., Frazer, K. A. and Topol, E. J. (2009) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev., 19, 212–219
CrossRef
Pubmed
Google scholar
|
[66] |
Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145
CrossRef
Pubmed
Google scholar
|
[67] |
Bomba, L., Walter, K. and Soranzo, N. (2017) The impact of rare and low-frequency genetic variants in common disease. Genome Biol., 18, 77
CrossRef
Pubmed
Google scholar
|
[68] |
Wainschtein, P., Jain, D. P., Yengo, L., Zheng, Z., TOPMed Anthropometry Working Group, Trans-Omics for Precision Medicine Consortium, Adrienne Cupples, L., Shadyab, A. H., McKnight, B., Shoemaker, B. M.,
|
[69] |
Young, A. I. (2019) Solving the missing heritability problem. PLoS Genet., 15, e1008222
CrossRef
Pubmed
Google scholar
|
[70] |
Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M. F., Parker, B. J., Washietl, S., Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E.,
CrossRef
Pubmed
Google scholar
|
[71] |
Khurana, E., Fu, Y., Colonna, V., Mu, X., Kang, H. M., Lappalainen, T., Sboner, A., Lochovsky, L., Chen, J., Harmanci, A.,
CrossRef
Google scholar
|
[72] |
ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef
Pubmed
Google scholar
|
[73] |
Altshuler, D., Daly, M. J. and Lander, E. S. (2008) Genetic mapping in human disease. Science, 322, 881–888
CrossRef
Pubmed
Google scholar
|
[74] |
Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S. and Manolio, T. A. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA, 106, 9362–9367
CrossRef
Pubmed
Google scholar
|
[75] |
Gusev, A., Lee, S. H., Trynka, G., Finucane, H., Vilhjálmsson, B. J., Xu, H., Zang, C., Ripke, S., Bulik-Sullivan, B., Stahl, E.,
CrossRef
Pubmed
Google scholar
|
[76] |
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248–249
CrossRef
Pubmed
Google scholar
|
[77] |
Ng, P. C. and Henikoff, S. (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res., 31, 3812–3814
CrossRef
Pubmed
Google scholar
|
[78] |
Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310–315
CrossRef
Pubmed
Google scholar
|
[79] |
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J.,
CrossRef
Pubmed
Google scholar
|
[80] |
The GTEx Consortium. (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science,348, 648–660
|
[81] |
Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., Sealock, J., Karlsson, I. K., Hägg, S., Athanasiu, L.,
CrossRef
Pubmed
Google scholar
|
[82] |
Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Marchini, J. L., McCarthy, S., McVean, G. A., Abecasis, G. R.,
CrossRef
Pubmed
Google scholar
|
[83] |
Zhu, X. and Stephens, M. (2018) Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. Nat. Commun., 9, 4361
CrossRef
Pubmed
Google scholar
|
[84] |
Kichaev, G., Yang, W. Y., Lindstrom, S., Hormozdiari, F., Eskin, E., Price, A. L., Kraft, P. and Pasaniuc, B. (2014) Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet., 10, e1004722
CrossRef
Pubmed
Google scholar
|
[85] |
Wen, X., Lee, Y., Luca, F. and Pique-Regi, R. (2016) Efficient integrative multi-SNP association analysis via deterministic approximation of posteriors. Am. J. Hum. Genet., 98, 1114–1129
CrossRef
Pubmed
Google scholar
|
[86] |
Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L., Ewens, K. G., Spielman, R. S. and Cheung, V. G. (2004) Genetic analysis of genome-wide variation in human gene expression. Nature, 430, 743–747
CrossRef
Pubmed
Google scholar
|
[87] |
Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G.,
CrossRef
Pubmed
Google scholar
|
[88] |
GTEx Consortium (2017) Genetic effects on gene expression across human tissues. Nature, 550, 204–213
CrossRef
Google scholar
|
[89] |
Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J.,
CrossRef
Pubmed
Google scholar
|
[90] |
Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S.,
CrossRef
Pubmed
Google scholar
|
[91] |
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A.,
CrossRef
Pubmed
Google scholar
|
[92] |
Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., Torstenson, E. S., Shah, K. P., Garcia, T., Edwards, T. L.,
CrossRef
Pubmed
Google scholar
|
[93] |
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K.,
CrossRef
Pubmed
Google scholar
|
[94] |
Zhang, Y., Quick, C., Yu, K., Barbeira, A., Luca, F., Pique-Regi, R., Im, H. K. and Wen, X. (2019) Investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. bioRxiv, 808295
CrossRef
Google scholar
|
[95] |
Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., Natarajan, P., Lander, E. S., Lubitz, S. A., Ellinor, P. T.,
CrossRef
Pubmed
Google scholar
|
[96] |
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427
CrossRef
Pubmed
Google scholar
|
[97] |
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., Sklar, P., and the International Schizophrenia Consortium. (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748–752
CrossRef
Pubmed
Google scholar
|
[98] |
Stahl, E. A., Wegmann, D., Trynka, G., Gutierrez-Achury, J., Do, R., Voight, B. F., Kraft, P., Chen, R., Kallberg, H. J., Kurreeman, F. A.,
CrossRef
Pubmed
Google scholar
|
[99] |
Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. and Hirschhorn, J. N. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet., 33, 177–182
CrossRef
Pubmed
Google scholar
|
[100] |
Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. and Sham, P. C. (2017) Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol., 41, 469–480
CrossRef
Pubmed
Google scholar
|
[101] |
So, H. C. and Sham, P. C. (2017) Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci. Rep., 7, 41262
CrossRef
Pubmed
Google scholar
|
[102] |
Song, S., Jiang, W., Hou, L. and Zhao, H. (2020) Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies. PLOS Comput. Biol., 16, e1007565
CrossRef
Pubmed
Google scholar
|
[103] |
Zhu, X. and Stephens, M. (2017) Bayesian large-scale multiple regression with summary statistics from genome-wide association studies. Ann. Appl. Stat., 11, 1561–1592
CrossRef
Pubmed
Google scholar
|
[104] |
Vilhjálmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindström, S., Ripke, S., Genovese, G., Loh, P. R., Bhatia, G., Do, R.,
CrossRef
Pubmed
Google scholar
|
[105] |
Lloyd-Jones, L. R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper, K. E., Wang, H., Zheng, Z., Magi, R., Esko, T.,
CrossRef
Pubmed
Google scholar
|
[106] |
Hu, Y., Lu, Q., Powles, R., Yao, X., Yang, C., Fang, F., Xu, X. and Zhao, H. (2017) Leveraging functional annotations in genetic risk prediction for human complex diseases. PLOS Comput. Biol., 13, e1005589
CrossRef
Pubmed
Google scholar
|
[107] |
Hu, Y., Lu, Q., Liu, W., Zhang, Y., Li, M. and Zhao, H. (2017) Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLoS Genet., 13, e1006836
CrossRef
Pubmed
Google scholar
|
[108] |
Li, C., Yang, C., Gelernter, J. and Zhao, H. (2014) Improving genetic risk prediction by leveraging pleiotropy. Hum. Genet., 133, 639–650
CrossRef
Pubmed
Google scholar
|
[109] |
Maier, R. M., Zhu, Z., Lee, S. H., Trzaskowski, M., Ruderfer, D. M., Stahl, E. A., Ripke, S., Wray, N. R., Yang, J., Visscher, P. M.,
CrossRef
Pubmed
Google scholar
|
[110] |
Ginsburg, G. S., Burke, T. W. and Febbo, P. (2008) Centralized biorepositories for genetic and genomic research. JAMA, 299, 1359–1361
CrossRef
Pubmed
Google scholar
|
[111] |
Gottesman, O., Kuivaniemi, H., Tromp, G., Faucett, W. A., Li, R., Manolio, T. A., Sanderson, S. C., Kannry, J., Zinberg, R., Basford, M. A.,
CrossRef
Pubmed
Google scholar
|
[112] |
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O’Connell, J.,
CrossRef
Pubmed
Google scholar
|
[113] |
http://www.nealelab.is/uk-biobank/. Accessed: September 1, 2020
|
[114] |
Li, X., Li, Z., Zhou, H., Gaynor, S. M., Liu, Y., Chen, H., Sun, R., Dey, R., Arnett, D. K., Aslibekyan, S.,
CrossRef
Pubmed
Google scholar
|
[115] |
Gogarten, S. M., Sofer, T., Chen, H., Yu, C., Brody, J. A., Thornton, T. A., Rice, K. M. and Conomos, M. P. (2019) Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics, 35, 5346–5348
CrossRef
Pubmed
Google scholar
|
[116] |
Loh, P. R., Tucker, G., Bulik-Sullivan, B. K., Vilhjálmsson, B. J., Finucane, H. K., Salem, R. M., Chasman, D. I., Ridker, P. M., Neale, B. M., Berger, B.,
CrossRef
Pubmed
Google scholar
|
[117] |
Loh, P. R., Kichaev, G., Gazal, S., Schoech, A. P. and Price, A. L. (2018) Mixed-model association for biobank-scale datasets. Nat. Genet., 50, 906–908
CrossRef
Pubmed
Google scholar
|
[118] |
Zhou, W., Nielsen, J. B., Fritsche, L. G., Dey, R., Gabrielsen, M. E., Wolford, B. N., LeFaive, J., VandeHaar, P., Gagliano, S. A., Gifford, A.,
CrossRef
Pubmed
Google scholar
|
[119] |
Peng, J. and Siegmund, D. (2004) Mapping quantitative traits with random and with ascertained sibships. Proc. Natl. Acad. Sci. USA, 101, 7845–7850
CrossRef
Google scholar
|
[120] |
Cirulli, E. T. and Goldstein, D. B. (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet., 11, 415–425
CrossRef
Pubmed
Google scholar
|
[121] |
Marchini, J., Howie, B., Myers, S., McVean, G. and Donnelly, P. (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet., 39, 906–913
CrossRef
Pubmed
Google scholar
|
[122] |
Li, Y., Willer, C. J., Ding, J., Scheet, P. and Abecasis, G. R. (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol., 34, 816–834
CrossRef
Pubmed
Google scholar
|
[123] |
Browning, B. L. and Browning, S. R. (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet.,
CrossRef
Pubmed
Google scholar
|
[124] |
Lee, S., Abecasis, G. R., Boehnke, M. and Lin, X. (2014) Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet., 95, 5–23
CrossRef
Pubmed
Google scholar
|
[125] |
Van Hout, C. V., Tachmazidou, I., Backman, J. D., Hoffman, J. D., Liu, D., Pandey, A. K., Gonzaga-Jauregui, C., Khalid, S., Ye, B., Banerjee, N.,
CrossRef
Google scholar
|
[126] |
Leung, Y. Y., Valladares, O., Chou, Y. F., Lin, H. J., Kuzma, A. B., Cantwell, L., Qu, L., Gangadharan, P., Salerno, W. J., Schellenberg, G. D.,
CrossRef
Pubmed
Google scholar
|
[127] |
Taliun, D., Harris, D. N., Kessler, M. D., Carlson, J., Szpiech, Z. A., Torres, R., Taliun, S. A. G., Corvelo, A., Gogarten, S. M., Kang, H. M.,
|
[128] |
Kowalski, M. H., Qian, H., Hou, Z., Rosen, J. D., Tapia, A. L., Shan, Y., Jain, D., Argos, M., Arnett, D. K., Avery, C.,
CrossRef
Pubmed
Google scholar
|
[129] |
Madsen, B. E. and Browning, S. R. (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet., 5, e1000384
CrossRef
Pubmed
Google scholar
|
[130] |
Li, B. and Leal, S. M. (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–321
CrossRef
Pubmed
Google scholar
|
[131] |
Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89, 82–93
CrossRef
Pubmed
Google scholar
|
[132] |
Pan, W. (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet. Epidemiol., 33, 497–507
CrossRef
Pubmed
Google scholar
|
[133] |
Chen, H., Huffman, J. E., Brody, J. A., Wang, C., Lee, S., Li, Z., Gogarten, S. M., Sofer, T., Bielak, L. F., Bis, J. C.,
CrossRef
Pubmed
Google scholar
|
[134] |
Morrison, A. C., Huang, Z., Yu, B., Metcalf, G., Liu, X., Ballantyne, C., Coresh, J., Yu, F., Muzny, D., Feofanova, E.,
CrossRef
Pubmed
Google scholar
|
[135] |
Sarnowski, C., Satizabal, C. L., DeCarli, C., Pitsillides, A. N., Cupples, L. A., Vasan, R. S., Wilson, J. G., Bis, J. C., Fornage, M., Beiser, A. S.,
CrossRef
Pubmed
Google scholar
|
[136] |
Werling, D. M., Brand, H., An, J. Y., Stone, M. R., Zhu, L., Glessner, J. T., Collins, R. L., Dong, S., Layer, R. M., Markenscoff-Papadimitriou, E.,
CrossRef
Pubmed
Google scholar
|
[137] |
Li, Z., Li, X., Liu, Y., Shen, J., Chen, H., Zhou, H., Morrison, A. C., Boerwinkle, E. and Lin, X. (2019) Dynamic scan procedure for detecting rare-variant association regions in whole-genome sequencing studies. Am. J. Hum. Genet., 104, 802–814
CrossRef
Pubmed
Google scholar
|
[138] |
He, Z., Xu, B., Buxbaum, J. and Ionita-Laza, I. (2019) A genome-wide scan statistic framework for whole-genome sequence data analysis. Nat. Commun., 10, 3018
CrossRef
Pubmed
Google scholar
|
[139] |
Jakubosky, D., Smith, E. N., D’Antonio, M., Jan Bonder, M., Young Greenwald, W. W., D’Antonio-Chronowska, A., Matsui, H., Stegle, O., Montgomery, S. B., DeBoever, C.,
CrossRef
Pubmed
Google scholar
|
[140] |
Kosugi, S., Momozawa, Y., Liu, X., Terao, C., Kubo, M. and Kamatani, Y. (2019) Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol., 20, 117
CrossRef
Pubmed
Google scholar
|
[141] |
Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C. and Sedlazeck, F. J. (2019) Structural variant calling: the long and the short of it. Genome Biol., 20, 246
CrossRef
Pubmed
Google scholar
|
[142] |
Jakubosky, D., D’Antonio, M., Bonder, M. J., Smail, C., Donovan, M. K. R., Young Greenwald, W. W., Matsui, H., D’Antonio-Chronowska, A., Stegle, O., Smith, E. N.,
CrossRef
Pubmed
Google scholar
|
[143] |
Chen, L., Abel, H. J., Das, I., Larson, D. E., Ganel, L., Kanchi, K. L., Regier, A. A., Young, E. P., Kang, C. J., Scott, A. J.,
|
[144] |
Sirugo, G., Williams, S. M. and Tishkoff, S. A. (2019) The missing diversity in human genetic studies. Cell, 177, 26–31
CrossRef
Pubmed
Google scholar
|
[145] |
Genovese, G.Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., Bowden, D. W., Langefeld, C. D., Oleksyk, T. K., Uscinski Knob, A. L.,
CrossRef
Google scholar
|
[146] |
Belloy, M. E., Napolioni, V. and Greicius, M. D. (2019) A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron, 101, 820–838
CrossRef
Pubmed
Google scholar
|
[147] |
Zhang, R., Wang, X., Tang, Z., Liu, J., Yang, S., Zhang, Y., Wei, Y., Luo, W., Wang, J., Li, J.,
CrossRef
Pubmed
Google scholar
|
[148] |
H3Africa Consortium, Rotimi, C., Abayomi, A., Abimiku, A., Adabayeri, V. M., Adebamowo, C., Adebiyi, E., Ademola, A. D., Adeyemo, A., Adu, D.,
CrossRef
Google scholar
|
[149] |
Banda, Y., Kvale, M. N., Hoffmann, T. J., Hesselson, S. E., Ranatunga, D., Tang, H., Sabatti, C., Croen, L. A., Dispensa, B. P., Henderson, M.,
CrossRef
Pubmed
Google scholar
|
[150] |
Wojcik, G. L., Graff, M., Nishimura, K. K., Tao, R., Haessler, J., Gignoux, C. R., Highland, H. M., Patel, Y. M., Sorokin, E. P., Avery, C. L.,
CrossRef
Pubmed
Google scholar
|
[151] |
Fang, H., Hui, Q., Lynch, J., Honerlaw, J., Assimes, T. L., Huang, J., Vujkovic, M., Damrauer, S. M., Pyarajan, S., Gaziano, J. M.,
CrossRef
Pubmed
Google scholar
|
[152] |
Coram, M. A., Duan, Q., Hoffmann, T. J., Thornton, T., Knowles, J. W., Johnson, N. A., Ochs-Balcom, H. M., Donlon, T. A., Martin, L. W., Eaton, C. B.,
CrossRef
Pubmed
Google scholar
|
[153] |
Galinsky, K. J., Reshef, Y. A., Finucane, H. K., Loh, P. R., Zaitlen, N., Patterson, N. J., Brown, B. C. and Price, A. L. (2019) Estimating cross-population genetic correlations of causal effect sizes. Genet. Epidemiol., 43, 180–188
CrossRef
Pubmed
Google scholar
|
[154] |
Coram, M. A., Candille, S. I., Duan, Q., Chan, K. H., Li, Y., Kooperberg, C., Reiner, A. P. and Tang, H. (2015) Leveraging multi-ethnic evidence for mapping complex traits in minority populations: An empirical Bayes approach. Am. J. Hum. Genet., 96, 740–752
CrossRef
Pubmed
Google scholar
|
[155] |
Coram, M. A., Fang, H., Candille, S. I., Assimes, T. L. and Tang, H. (2017) Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations. Am. J. Hum. Genet., 101, 218–226
CrossRef
Pubmed
Google scholar
|
[156] |
Willer, C. J., Schmidt, E. M., Sengupta, S., Peloso, G. M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M. L., Mora, S.,
CrossRef
Pubmed
Google scholar
|
[157] |
Panjwani, N., Wang, F., Mastromatteo, S., Bao, A., Wang, C., He, G., Gong, J., Rommens, J. M., Sun, L. and Strug, L. J. (2020) LocusFocus: Web-based colocalization for the annotation and functional follow-up of GWAS. PLOS Comput. Biol., 16, e1008336
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |