Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease
Mo Li, Xue Zeng, Chentian Jin, Sheng Chih Jin, Weilai Dong, Martina Brueckner, Richard Lifton, Qiongshi Lu, Hongyu Zhao
Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease
Background: Whole-exome sequencing (WES) studies have identified multiple genes enriched for de novo mutations (DNMs) in congenital heart disease (CHD) probands. However, risk gene identification based on DNMs alone remains statistically challenging due to heterogenous etiology of CHD and low mutation rate in each gene.
Methods: In this manuscript, we introduce a hierarchical Bayesian framework for gene-level association test which jointly analyzes de novo and rare transmitted variants. Through integrative modeling of multiple types of genetic variants, gene-level annotations, and reference data from large population cohorts, our method accurately characterizes the expected frequencies of both de novo and transmitted variants and shows improved statistical power compared to analyses based on DNMs only.
Results: Applied to WES data of 2,645 CHD proband-parent trios, our method identified 15 significant genes, half of which are novel, leading to new insights into the genetic bases of CHD.
Conclusion: These results showcase the power of integrative analysis of transmitted and de novo variants for disease gene discovery.
Whole-exome sequencing (WES) studies have successfully identified multiple risk genes for congenital heart disease (CHD). However, it remains statistically challenging due to low mutation rate of de novo mutations (DNMs). In this paper, we present TADA-R, an innovative statistical test for identifying trait-associated genes through jointly analyzing de novo and rare transmitted variants. Applied to WES data of CHD proband-parent trios, our method identified novel risk genes and provided new insights into the genetic basis of CHD. Our method may benefit future sequencing-based studies in disease trios and accelerate findings of risk genes.
rare variants / gene-level association test / congenital heart disease / de novo mutation
[1] |
Zaidi, S., Choi, M., Wakimoto, H., Ma, L., Jiang, J., Overton, J. D., Romano-Adesman, A., Bjornson, R. D., Breitbart, R. E., Brown, K. K.,
CrossRef
Pubmed
Google scholar
|
[2] |
Postma, A. V., Bezzina, C. R. and Christoffels, V. M. (2016) Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J. Hum. Genet., 61, 13–19
CrossRef
Pubmed
Google scholar
|
[3] |
Gilboa, S. M., Salemi, J. L., Nembhard, W. N., Fixler, D. E. and Correa, A. (2010) Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation, 122, 2254–2263
CrossRef
Pubmed
Google scholar
|
[4] |
Wienke, A., Herskind, A. M., Christensen, K., Skytthe, A. and Yashin, A. I. (2005) The heritability of CHD mortality in danish twins after controlling for smoking and BMI. Twin Res. Hum. Genet., 8, 53–59
CrossRef
Pubmed
Google scholar
|
[5] |
Lalani, S. R. and Belmont, J. W. (2014) Genetic basis of congenital cardiovascular malformations. Eur. J. Med. Genet., 57, 402–413
CrossRef
Pubmed
Google scholar
|
[6] |
Bentham, J. and Bhattacharya, S. (2008) Genetic mechanisms controlling cardiovascular development. Ann. N. Y. Acad. Sci., 1123, 10–19
CrossRef
Pubmed
Google scholar
|
[7] |
Teer, J. K. and Mullikin, J. C. (2010) Exome sequencing: the sweet spot before whole genomes. Hum. Mol. Genet., 19, R145–R151
CrossRef
Pubmed
Google scholar
|
[8] |
Rabbani, B., Tekin, M. and Mahdieh, N. (2014) The promise of whole-exome sequencing in medical genetics. J. Hum. Genet., 59, 5–15
CrossRef
Pubmed
Google scholar
|
[9] |
Jin, S. C., Homsy, J., Zaidi, S., Lu, Q., Morton, S., DePalma, S. R., Zeng, X., Qi, H., Chang, W., Sierant, M. C.,
CrossRef
Pubmed
Google scholar
|
[10] |
Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S. A., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A.,
CrossRef
Pubmed
Google scholar
|
[11] |
Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L.,
CrossRef
Pubmed
Google scholar
|
[12] |
He, X., Sanders, S. J., Liu, L., De Rubeis, S., Lim, E. T., Sutcliffe, J. S., Schellenberg, G. D., Gibbs, R. A., Daly, M. J., Buxbaum, J. D.,
CrossRef
Pubmed
Google scholar
|
[13] |
De Rubeis , S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., Kou, Y., Liu, L., Fromer, M., Walker, S.,
CrossRef
Pubmed
Google scholar
|
[14] |
Singh, T., Kurki, M. I., Curtis, D., Purcell, S. M., Crooks, L., McRae, J., Suvisaari, J., Chheda, H., Blackwood, D., Breen, G.,
CrossRef
Pubmed
Google scholar
|
[15] |
Samocha, K. E., Robinson, E. B., Sanders, S. J., Stevens, C., Sabo, A., McGrath, L. M., Kosmicki, J. A., Rehnström, K., Mallick, S., Kirby, A.,
CrossRef
Pubmed
Google scholar
|
[16] |
Bruneau, B. G. (2008) The developmental genetics of congenital heart disease. Nature, 451, 943–948
CrossRef
Pubmed
Google scholar
|
[17] |
Shanks, M. E.,Downes, S. M., Copley, R. R., Lise, S., Broxholme, J., Hudspith, K. A., Kwasniewska, A., Davies, W. I., Hankins, M. W., Packham, E. R.,
CrossRef
Pubmed
Google scholar
|
[18] |
Chahrour, M. H., Yu, T. W., Lim, E. T., Ataman, B., Coulter, M. E., Hill, R. S., Stevens, C. R., Schubert, C. R., Greenberg, M. E., Gabriel, S. B.,
CrossRef
Pubmed
Google scholar
|
[19] |
Schormair, B., Kemlink, D., Mollenhauer, B., Fiala, O., Machetanz, G., Roth, J., Berutti, R., Strom, T. M., Haslinger, B., Trenkwalder, C.,
CrossRef
Pubmed
Google scholar
|
[20] |
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P.,
CrossRef
Pubmed
Google scholar
|
[21] |
Bajpai, R., Chen, D. A., Rada-Iglesias, A., Zhang, J., Xiong, Y., Helms, J., Chang, C. P., Zhao, Y., Swigut, T. and Wysocka, J. (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463, 958–962
CrossRef
Pubmed
Google scholar
|
[22] |
Digilio, M. C., Gnazzo, M., Lepri, F., Dentici, M. L., Pisaneschi, E., Baban, A., Passarelli, C., Capolino, R., Angioni, A., Novelli, A.,
CrossRef
Pubmed
Google scholar
|
[23] |
Kasahara, A., Cipolat, S., Chen, Y., Dorn, G. W. 2nd and Scorrano, L. (2013) Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science, 342, 734–737
CrossRef
Pubmed
Google scholar
|
[24] |
Garg, V., Muth, A. N., Ransom, J. F., Schluterman, M. K., Barnes, R., King, I. N., Grossfeld, P. D. and Srivastava, D. (2005) Mutations in NOTCH1 cause aortic valve disease. Nature, 437, 270–274
CrossRef
Pubmed
Google scholar
|
[25] |
Mohamed, S. A., Aherrahrou, Z., Liptau, H., Erasmi, A. W., Hagemann, C., Wrobel, S., Borzym, K., Schunkert, H., Sievers, H. H. and Erdmann, J. (2006) Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem. Biophys. Res. Commun., 345, 1460–1465
CrossRef
Pubmed
Google scholar
|
[26] |
McBride, K. L., Riley, M. F., Zender, G. A., Fitzgerald-Butt, S. M., Towbin, J. A., Belmont, J . W. and Cole, S. E. (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum. Mol. Genet., 17, 2886–2893
CrossRef
Pubmed
Google scholar
|
[27] |
Homsy, J., Zaidi, S., Shen, Y., Ware, J. S., Samocha, K. E., Karczewski, K. J., DePalma, S. R., McKean, D., Wakimoto, H., Gorham, J.,
CrossRef
Pubmed
Google scholar
|
[28] |
Verma, S. K., Deshmukh, V., Nutter, C. A., Jaworski, E., Jin, W., Wadhwa, L., Abata, J., Ricci, M., Lincoln, J., Martin, J. F.,
CrossRef
Pubmed
Google scholar
|
[29] |
Lek, M., Karczewski, K. J., Minikel, E. V.,Samocha, K. E., Banks, E., Fennell, T., O’Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B.,
CrossRef
Pubmed
Google scholar
|
[30] |
Stessman, H. A. F., Willemsen, M. H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I.,
CrossRef
Pubmed
Google scholar
|
[31] |
The Deciphering Developmental Disorders Study (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature, 519, 223–228
CrossRef
Pubmed
Google scholar
|
[32] |
Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E.,
CrossRef
Pubmed
Google scholar
|
[33] |
Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H.,
CrossRef
Pubmed
Google scholar
|
[34] |
Krumm, N., Turner, T. N., Baker, C., Vives, L., Mohajeri, K., Witherspoon, K., Raja, A., Coe, B. P., Stessman, H. A., He, Z. X.,
CrossRef
Pubmed
Google scholar
|
[35] |
Fischbach, G. D. and Lord, C. (2010) The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron, 68, 192–195
CrossRef
Pubmed
Google scholar
|
[36] |
1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature, 526, 68–74
|
[37] |
NHLBI Exome Sequencing Project (ESP) website. http://evs.gs.washington.edu/EVS/. Accessed: Sep 1, 2020
|
[38] |
Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |