Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease

Mo Li, Xue Zeng, Chentian Jin, Sheng Chih Jin, Weilai Dong, Martina Brueckner, Richard Lifton, Qiongshi Lu, Hongyu Zhao

PDF(578 KB)
PDF(578 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 216-227. DOI: 10.15302/J-QB-021-0248
RESEARCH ARTICLE
RESEARCH ARTICLE

Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease

Author information +
History +

Abstract

Background: Whole-exome sequencing (WES) studies have identified multiple genes enriched for de novo mutations (DNMs) in congenital heart disease (CHD) probands. However, risk gene identification based on DNMs alone remains statistically challenging due to heterogenous etiology of CHD and low mutation rate in each gene.

Methods: In this manuscript, we introduce a hierarchical Bayesian framework for gene-level association test which jointly analyzes de novo and rare transmitted variants. Through integrative modeling of multiple types of genetic variants, gene-level annotations, and reference data from large population cohorts, our method accurately characterizes the expected frequencies of both de novo and transmitted variants and shows improved statistical power compared to analyses based on DNMs only.

Results: Applied to WES data of 2,645 CHD proband-parent trios, our method identified 15 significant genes, half of which are novel, leading to new insights into the genetic bases of CHD.

Conclusion: These results showcase the power of integrative analysis of transmitted and de novo variants for disease gene discovery.

Author summary

Whole-exome sequencing (WES) studies have successfully identified multiple risk genes for congenital heart disease (CHD). However, it remains statistically challenging due to low mutation rate of de novo mutations (DNMs). In this paper, we present TADA-R, an innovative statistical test for identifying trait-associated genes through jointly analyzing de novo and rare transmitted variants. Applied to WES data of CHD proband-parent trios, our method identified novel risk genes and provided new insights into the genetic basis of CHD. Our method may benefit future sequencing-based studies in disease trios and accelerate findings of risk genes.

Graphical abstract

Keywords

rare variants / gene-level association test / congenital heart disease / de novo mutation

Cite this article

Download citation ▾
Mo Li, Xue Zeng, Chentian Jin, Sheng Chih Jin, Weilai Dong, Martina Brueckner, Richard Lifton, Qiongshi Lu, Hongyu Zhao. Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease. Quant. Biol., 2021, 9(2): 216‒227 https://doi.org/10.15302/J-QB-021-0248

References

[1]
Zaidi, S., Choi, M., Wakimoto, H., Ma, L., Jiang, J., Overton, J. D., Romano-Adesman, A., Bjornson, R. D., Breitbart, R. E., Brown, K. K., (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature, 498, 220–223
CrossRef Pubmed Google scholar
[2]
Postma, A. V., Bezzina, C. R. and Christoffels, V. M. (2016) Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J. Hum. Genet., 61, 13–19
CrossRef Pubmed Google scholar
[3]
Gilboa, S. M., Salemi, J. L., Nembhard, W. N., Fixler, D. E. and Correa, A. (2010) Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation, 122, 2254–2263
CrossRef Pubmed Google scholar
[4]
Wienke, A., Herskind, A. M., Christensen, K., Skytthe, A. and Yashin, A. I. (2005) The heritability of CHD mortality in danish twins after controlling for smoking and BMI. Twin Res. Hum. Genet., 8, 53–59
CrossRef Pubmed Google scholar
[5]
Lalani, S. R. and Belmont, J. W. (2014) Genetic basis of congenital cardiovascular malformations. Eur. J. Med. Genet., 57, 402–413
CrossRef Pubmed Google scholar
[6]
Bentham, J. and Bhattacharya, S. (2008) Genetic mechanisms controlling cardiovascular development. Ann. N. Y. Acad. Sci., 1123, 10–19
CrossRef Pubmed Google scholar
[7]
Teer, J. K. and Mullikin, J. C. (2010) Exome sequencing: the sweet spot before whole genomes. Hum. Mol. Genet., 19, R145–R151
CrossRef Pubmed Google scholar
[8]
Rabbani, B., Tekin, M. and Mahdieh, N. (2014) The promise of whole-exome sequencing in medical genetics. J. Hum. Genet., 59, 5–15
CrossRef Pubmed Google scholar
[9]
Jin, S. C., Homsy, J., Zaidi, S., Lu, Q., Morton, S., DePalma, S. R., Zeng, X., Qi, H., Chang, W., Sierant, M. C., (2017) Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet., 49, 1593–1601
CrossRef Pubmed Google scholar
[10]
Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S. A., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475
CrossRef Pubmed Google scholar
[11]
Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237–241
CrossRef Pubmed Google scholar
[12]
He, X., Sanders, S. J., Liu, L., De Rubeis, S., Lim, E. T., Sutcliffe, J. S., Schellenberg, G. D., Gibbs, R. A., Daly, M. J., Buxbaum, J. D., (2013) Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet., 9, e1003671
CrossRef Pubmed Google scholar
[13]
De Rubeis , S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., Kou, Y., Liu, L., Fromer, M., Walker, S., (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215
CrossRef Pubmed Google scholar
[14]
Singh, T., Kurki, M. I., Curtis, D., Purcell, S. M., Crooks, L., McRae, J., Suvisaari, J., Chheda, H., Blackwood, D., Breen, G., (2016) Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci., 19, 571–577
CrossRef Pubmed Google scholar
[15]
Samocha, K. E., Robinson, E. B., Sanders, S. J., Stevens, C., Sabo, A., McGrath, L. M., Kosmicki, J. A., Rehnström, K., Mallick, S., Kirby, A., (2014) A framework for the interpretation of de novo mutation in human disease. Nat. Genet., 46, 944–950
CrossRef Pubmed Google scholar
[16]
Bruneau, B. G. (2008) The developmental genetics of congenital heart disease. Nature, 451, 943–948
CrossRef Pubmed Google scholar
[17]
Shanks, M. E.,Downes, S. M., Copley, R. R., Lise, S., Broxholme, J., Hudspith, K. A., Kwasniewska, A., Davies, W. I., Hankins, M. W., Packham, E. R., (2013) Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur. J. Hum. Genet., 21, 274–280
CrossRef Pubmed Google scholar
[18]
Chahrour, M. H., Yu, T. W., Lim, E. T., Ataman, B., Coulter, M. E., Hill, R. S., Stevens, C. R., Schubert, C. R., Greenberg, M. E., Gabriel, S. B., (2012) Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet., 8, e1002635
CrossRef Pubmed Google scholar
[19]
Schormair, B., Kemlink, D., Mollenhauer, B., Fiala, O., Machetanz, G., Roth, J., Berutti, R., Strom, T. M., Haslinger, B., Trenkwalder, C., (2018) Diagnostic exome sequencing in early-onset Parkinson’s disease confirms VPS13C as a rare cause of autosomal-recessive Parkinson’s disease. Clin. Genet., 93, 603–612
CrossRef Pubmed Google scholar
[20]
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581, 434–443
CrossRef Pubmed Google scholar
[21]
Bajpai, R., Chen, D. A., Rada-Iglesias, A., Zhang, J., Xiong, Y., Helms, J., Chang, C. P., Zhao, Y., Swigut, T. and Wysocka, J. (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463, 958–962
CrossRef Pubmed Google scholar
[22]
Digilio, M. C., Gnazzo, M., Lepri, F., Dentici, M. L., Pisaneschi, E., Baban, A., Passarelli, C., Capolino, R., Angioni, A., Novelli, A., (2017) Congenital heart defects in molecularly proven Kabuki syndrome patients. Am. J. Med. Genet. A., 173, 2912–2922
CrossRef Pubmed Google scholar
[23]
Kasahara, A., Cipolat, S., Chen, Y., Dorn, G. W. 2nd and Scorrano, L. (2013) Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science, 342, 734–737
CrossRef Pubmed Google scholar
[24]
Garg, V., Muth, A. N., Ransom, J. F., Schluterman, M. K., Barnes, R., King, I. N., Grossfeld, P. D. and Srivastava, D. (2005) Mutations in NOTCH1 cause aortic valve disease. Nature, 437, 270–274
CrossRef Pubmed Google scholar
[25]
Mohamed, S. A., Aherrahrou, Z., Liptau, H., Erasmi, A. W., Hagemann, C., Wrobel, S., Borzym, K., Schunkert, H., Sievers, H. H. and Erdmann, J. (2006) Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem. Biophys. Res. Commun., 345, 1460–1465
CrossRef Pubmed Google scholar
[26]
McBride, K. L., Riley, M. F., Zender, G. A., Fitzgerald-Butt, S. M., Towbin, J. A., Belmont, J . W. and Cole, S. E. (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum. Mol. Genet., 17, 2886–2893
CrossRef Pubmed Google scholar
[27]
Homsy, J., Zaidi, S., Shen, Y., Ware, J. S., Samocha, K. E., Karczewski, K. J., DePalma, S. R., McKean, D., Wakimoto, H., Gorham, J., (2015) De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 350, 1262–1266
CrossRef Pubmed Google scholar
[28]
Verma, S. K., Deshmukh, V., Nutter, C. A., Jaworski, E., Jin, W., Wadhwa, L., Abata, J., Ricci, M., Lincoln, J., Martin, J. F., (2016) Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci. Rep., 6, 30896
CrossRef Pubmed Google scholar
[29]
Lek, M., Karczewski, K. J., Minikel, E. V.,Samocha, K. E., Banks, E., Fennell, T., O’Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536, 285–291
CrossRef Pubmed Google scholar
[30]
Stessman, H. A. F., Willemsen, M. H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I., (2016) Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am. J. Hum. Genet., 98, 541–552
CrossRef Pubmed Google scholar
[31]
The Deciphering Developmental Disorders Study (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature, 519, 223–228
CrossRef Pubmed Google scholar
[32]
Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., (2014) Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations. Eur. J. Hum. Genet., 22, 179–183
CrossRef Pubmed Google scholar
[33]
Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., (2017) ACTB loss-of-function mutations result in a pleiotropic developmental disorder. Am. J. Hum. Genet., 101, 1021–1033
CrossRef Pubmed Google scholar
[34]
Krumm, N., Turner, T. N., Baker, C., Vives, L., Mohajeri, K., Witherspoon, K., Raja, A., Coe, B. P., Stessman, H. A., He, Z. X., (2015) Excess of rare, inherited truncating mutations in autism. Nat. Genet., 47, 582–588
CrossRef Pubmed Google scholar
[35]
Fischbach, G. D. and Lord, C. (2010) The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron, 68, 192–195
CrossRef Pubmed Google scholar
[36]
1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature, 526, 68–74
[37]
NHLBI Exome Sequencing Project (ESP) website.
[38]
Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164
CrossRef Pubmed Google scholar

SUPPORTING INFORMATION

TADA software is available as an R package at https://github.com/limo936/TADA-R. Statistical tests for genes can run independently and parallelly to speed up the algorithm. On average, each gene takes 40 seconds for computation.

ACKNOWLEDGEMENTS

This study was supported in part by the National Institutes of Health (NIH) grants R01 GM134005, and the National Science Foundation (NSF) grants DMS 1902903. Dr. Sheng Chih Jin's effort was supported by the Pathway to Independence Award (K99/R00) program, grants K99HL143036-01A1 and R00HL143036-02.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Mo Li, Xue Zeng, Chentian Jin , Sheng Chih Jin, Weilai Dong, Martina Brueckner, Richard Lifton, Qiongshi Lu, and Hongyu Zhao declare that they have no conflict of interests.
The article does not contain any human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(578 KB)

Accesses

Citations

Detail

Sections
Recommended

/