Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease

Mo Li , Xue Zeng , Chentian Jin , Sheng Chih Jin , Weilai Dong , Martina Brueckner , Richard Lifton , Qiongshi Lu , Hongyu Zhao

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 216 -227.

PDF (329KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 216 -227. DOI: 10.15302/J-QB-021-0248
RESEARCH ARTICLE

Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease

Author information +
History +
PDF (329KB)

Abstract

Background: Whole-exome sequencing (WES) studies have identified multiple genes enriched for de novo mutations (DNMs) in congenital heart disease (CHD) probands. However, risk gene identification based on DNMs alone remains statistically challenging due to heterogenous etiology of CHD and low mutation rate in each gene.

Methods: In this manuscript, we introduce a hierarchical Bayesian framework for gene-level association test which jointly analyzes de novo and rare transmitted variants. Through integrative modeling of multiple types of genetic variants, gene-level annotations, and reference data from large population cohorts, our method accurately characterizes the expected frequencies of both de novo and transmitted variants and shows improved statistical power compared to analyses based on DNMs only.

Results: Applied to WES data of 2,645 CHD proband-parent trios, our method identified 15 significant genes, half of which are novel, leading to new insights into the genetic bases of CHD.

Conclusion: These results showcase the power of integrative analysis of transmitted and de novo variants for disease gene discovery.

Graphical abstract

Keywords

rare variants / gene-level association test / congenital heart disease / de novo mutation

Cite this article

Download citation ▾
Mo Li, Xue Zeng, Chentian Jin, Sheng Chih Jin, Weilai Dong, Martina Brueckner, Richard Lifton, Qiongshi Lu, Hongyu Zhao. Integrative modeling of transmitted and de novo variants identifies novel risk genes for congenital heart disease. Quant. Biol., 2021, 9(2): 216-227 DOI:10.15302/J-QB-021-0248

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zaidi, S., Choi, M., Wakimoto, H., Ma, L., Jiang, J., Overton, J. D., Romano-Adesman, A., Bjornson, R. D., Breitbart, R. E., Brown, K. K., (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature, 498, 220–223

[2]

Postma, A. V., Bezzina, C. R. and Christoffels, V. M. (2016) Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J. Hum. Genet., 61, 13–19

[3]

Gilboa, S. M., Salemi, J. L., Nembhard, W. N., Fixler, D. E. and Correa, A. (2010) Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation, 122, 2254–2263

[4]

Wienke, A., Herskind, A. M., Christensen, K., Skytthe, A. and Yashin, A. I. (2005) The heritability of CHD mortality in danish twins after controlling for smoking and BMI. Twin Res. Hum. Genet., 8, 53–59

[5]

Lalani, S. R. and Belmont, J. W. (2014) Genetic basis of congenital cardiovascular malformations. Eur. J. Med. Genet., 57, 402–413

[6]

Bentham, J. and Bhattacharya, S. (2008) Genetic mechanisms controlling cardiovascular development. Ann. N. Y. Acad. Sci., 1123, 10–19

[7]

Teer, J. K. and Mullikin, J. C. (2010) Exome sequencing: the sweet spot before whole genomes. Hum. Mol. Genet., 19, R145–R151

[8]

Rabbani, B., Tekin, M. and Mahdieh, N. (2014) The promise of whole-exome sequencing in medical genetics. J. Hum. Genet., 59, 5–15

[9]

Jin, S. C., Homsy, J., Zaidi, S., Lu, Q., Morton, S., DePalma, S. R., Zeng, X., Qi, H., Chang, W., Sierant, M. C., (2017) Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet., 49, 1593–1601

[10]

Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S. A., Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475

[11]

Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237–241

[12]

He, X., Sanders, S. J., Liu, L., De Rubeis, S., Lim, E. T., Sutcliffe, J. S., Schellenberg, G. D., Gibbs, R. A., Daly, M. J., Buxbaum, J. D., (2013) Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet., 9, e1003671

[13]

De Rubeis , S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., Kou, Y., Liu, L., Fromer, M., Walker, S., (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215

[14]

Singh, T., Kurki, M. I., Curtis, D., Purcell, S. M., Crooks, L., McRae, J., Suvisaari, J., Chheda, H., Blackwood, D., Breen, G., (2016) Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci., 19, 571–577

[15]

Samocha, K. E., Robinson, E. B., Sanders, S. J., Stevens, C., Sabo, A., McGrath, L. M., Kosmicki, J. A., Rehnström, K., Mallick, S., Kirby, A., (2014) A framework for the interpretation of de novo mutation in human disease. Nat. Genet., 46, 944–950

[16]

Bruneau, B. G. (2008) The developmental genetics of congenital heart disease. Nature, 451, 943–948

[17]

Shanks, M. E.,Downes, S. M., Copley, R. R., Lise, S., Broxholme, J., Hudspith, K. A., Kwasniewska, A., Davies, W. I., Hankins, M. W., Packham, E. R., (2013) Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur. J. Hum. Genet., 21, 274–280

[18]

Chahrour, M. H., Yu, T. W., Lim, E. T., Ataman, B., Coulter, M. E., Hill, R. S., Stevens, C. R., Schubert, C. R., Greenberg, M. E., Gabriel, S. B., (2012) Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet., 8, e1002635

[19]

Schormair, B., Kemlink, D., Mollenhauer, B., Fiala, O., Machetanz, G., Roth, J., Berutti, R., Strom, T. M., Haslinger, B., Trenkwalder, C., (2018) Diagnostic exome sequencing in early-onset Parkinson’s disease confirms VPS13C as a rare cause of autosomal-recessive Parkinson’s disease. Clin. Genet., 93, 603–612

[20]

Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581, 434–443

[21]

Bajpai, R., Chen, D. A., Rada-Iglesias, A., Zhang, J., Xiong, Y., Helms, J., Chang, C. P., Zhao, Y., Swigut, T. and Wysocka, J. (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463, 958–962

[22]

Digilio, M. C., Gnazzo, M., Lepri, F., Dentici, M. L., Pisaneschi, E., Baban, A., Passarelli, C., Capolino, R., Angioni, A., Novelli, A., (2017) Congenital heart defects in molecularly proven Kabuki syndrome patients. Am. J. Med. Genet. A., 173, 2912–2922

[23]

Kasahara, A., Cipolat, S., Chen, Y., Dorn, G. W. 2nd and Scorrano, L. (2013) Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science, 342, 734–737

[24]

Garg, V., Muth, A. N., Ransom, J. F., Schluterman, M. K., Barnes, R., King, I. N., Grossfeld, P. D. and Srivastava, D. (2005) Mutations in NOTCH1 cause aortic valve disease. Nature, 437, 270–274

[25]

Mohamed, S. A., Aherrahrou, Z., Liptau, H., Erasmi, A. W., Hagemann, C., Wrobel, S., Borzym, K., Schunkert, H., Sievers, H. H. and Erdmann, J. (2006) Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem. Biophys. Res. Commun., 345, 1460–1465

[26]

McBride, K. L., Riley, M. F., Zender, G. A., Fitzgerald-Butt, S. M., Towbin, J. A., Belmont, J . W. and Cole, S. E. (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum. Mol. Genet., 17, 2886–2893

[27]

Homsy, J., Zaidi, S., Shen, Y., Ware, J. S., Samocha, K. E., Karczewski, K. J., DePalma, S. R., McKean, D., Wakimoto, H., Gorham, J., (2015) De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science, 350, 1262–1266

[28]

Verma, S. K., Deshmukh, V., Nutter, C. A., Jaworski, E., Jin, W., Wadhwa, L., Abata, J., Ricci, M., Lincoln, J., Martin, J. F., (2016) Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci. Rep., 6, 30896

[29]

Lek, M., Karczewski, K. J., Minikel, E. V.,Samocha, K. E., Banks, E., Fennell, T., O’Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536, 285–291

[30]

Stessman, H. A. F., Willemsen, M. H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I., (2016) Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am. J. Hum. Genet., 98, 541–552

[31]

The Deciphering Developmental Disorders Study (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature, 519, 223–228

[32]

Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., Krause, C., Hackmann, K., Hahn, G., Schrock, E., (2014) Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations. Eur. J. Hum. Genet., 22, 179–183

[33]

Cuvertino, S., Stuart, H. M., Chandler, K. E., Roberts, N. A., Armstrong, R., Bernardini, L., Bhaskar, S., Callewaert, B., Clayton-Smith, J., Davalillo, C. H., (2017) ACTB loss-of-function mutations result in a pleiotropic developmental disorder. Am. J. Hum. Genet., 101, 1021–1033

[34]

Krumm, N., Turner, T. N., Baker, C., Vives, L., Mohajeri, K., Witherspoon, K., Raja, A., Coe, B. P., Stessman, H. A., He, Z. X., (2015) Excess of rare, inherited truncating mutations in autism. Nat. Genet., 47, 582–588

[35]

Fischbach, G. D. and Lord, C. (2010) The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron, 68, 192–195

[36]

1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature, 526, 68–74

[37]

NHLBI Exome Sequencing Project (ESP) website. http://evs.gs.washington.edu/EVS/. Accessed: Sep 1, 2020

[38]

Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164

RIGHTS & PERMISSIONS

The Author(s) 2021. Published by Higher Education Press

AI Summary AI Mindmap
PDF (329KB)

2978

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/