Functional characterization of disease/comorbidity-associated lncRNA

Jing Tang, Yongheng Wang, Jianbo Fu, Xianglu Wu, Zhijie Han, Chuan Wang, Maiyuan Guo, Yingxiong Wang, Yubin Ding, Bo Yang, Feng Zhu

PDF(1980 KB)
PDF(1980 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 411-425. DOI: 10.15302/J-QB-021-0247
RESEARCH ARTICLE
RESEARCH ARTICLE

Functional characterization of disease/comorbidity-associated lncRNA

Author information +
History +

Abstract

Background: Functional characterization of the long noncoding RNAs (lncRNAs) in disease attracts great attention, which results in a limited number of experimentally characterized lncRNAs. The major problems underlying the lack of experimental verifications are considered to come from the significant false-positive assignments and extensive genetic-heterogeneity of disease. These problems are even worse when it comes to the functional characterization in comorbidity (simultaneous/sequential presence of multiple diseases in a patient, and showing much wider prevalence, poorer treatment-response and longer illness-course than a single disease).

Methods: Herein, FCCLnc was developed to characterize lncRNA function by (1) integrating diverse SNPs that were associated with 193 diseases standardized by International Classification of Diseases (ICD-11), (2) condition-specific expression of lncRNAs, (3) weighted correlation network of lncRNAs and protein-coding neighboring genes.

Results: FCCLnc can characterize lncRNA function in both disease and comorbidity by not only controlling false discovery but also tolerating their disease heterogeneity. Moreover, FCCLnc can provide interactive visualization and full download of lncRNA-centered co-expression network.

Conclusion: In summary, FCCLnc is unique in characterizing lncRNA function in diverse diseases and comorbidities and is highly expected to emerge to be an indispensable complement to other available tools. FCCLnc is accessible at https://idrblab.org/fcclnc/.

Author summary

Functional characterization of the long noncoding RNAs (lncRNAs) in disease attracts great attention, but has significant false-positive assignments and extensive genetic-heterogeneity of disease especially in comorbidity. Herein, FCCLnc was developed to characterize lncRNA function in diverse diseases and comorbidities, which can be expected to be an indispensable complement to other available tools.

Graphical abstract

Keywords

comorbidity / long noncoding RNA / functional characterization / disease-associated SNPs / guilt-by-association

Cite this article

Download citation ▾
Jing Tang, Yongheng Wang, Jianbo Fu, Xianglu Wu, Zhijie Han, Chuan Wang, Maiyuan Guo, Yingxiong Wang, Yubin Ding, Bo Yang, Feng Zhu. Functional characterization of disease/comorbidity-associated lncRNA. Quant. Biol., 2021, 9(4): 411‒425 https://doi.org/10.15302/J-QB-021-0247

References

[1]
Kopp, F. and Mendell, J. T. (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell, 172, 393–407
CrossRef Pubmed Google scholar
[2]
Zhou, J., Zhang, S., Wang, H. and Sun, H. (2017) LncFunNet: an integrated computational framework for identification of functional long noncoding RNAs in mouse skeletal muscle cells. Nucleic Acids Res., 45, e108
CrossRef Pubmed Google scholar
[3]
Antonov, I. V., Mazurov, E., Borodovsky, M. and Medvedeva, Y. A. (2019) Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Brief. Bioinform., 20, 551–564
CrossRef Pubmed Google scholar
[4]
Yin, J., Sun, W., Li, F., Hong, J., Li, X., Zhou, Y., Lu, Y., Liu, M., Zhang, X., Chen, N., (2020) VARIDT 1.0: variability of drug transporter database. Nucleic Acids Res., 48, D1042–D1050
CrossRef Pubmed Google scholar
[5]
Jiang, S., Cheng, S. J., Ren, L. C., Wang, Q., Kang, Y. J., Ding, Y., Hou, M., Yang, X. X., Lin, Y., Liang, N., (2019) An expanded landscape of human long noncoding RNA. Nucleic Acids Res., 47, 7842–7856
CrossRef Pubmed Google scholar
[6]
Stojic, L., Niemczyk, M., Orjalo, A., Ito, Y., Ruijter, A. E., Uribe-Lewis, S., Joseph, N., Weston, S., Menon, S., Odom, D. T., (2016) Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions. Nat. Commun., 7, 10406
CrossRef Pubmed Google scholar
[7]
Kondrashov, A. V., Kiefmann, M., Ebnet, K., Khanam, T., Muddashetty, R. S. and Brosius, J. (2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J. Mol. Biol., 353, 88–103
CrossRef Pubmed Google scholar
[8]
Signal, B., Gloss, B. S. and Dinger, M. E. (2016) Computational approaches for functional prediction and characterisation of long noncoding RNAs. Trends Genet., 32, 620–637
CrossRef Pubmed Google scholar
[9]
Fu, T. T., Tu, G., Ping, M., Zheng, G. X., Yang, F. Y., Yang, J. Y., Zhang, Y., Yao, X. J., Xue, W. W. and Zhu, F. (2020) Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol. Sin., doi: 10.1038/s41401-020-00541-z
CrossRef Pubmed Google scholar
[10]
Yang, Q., Li, B., Chen, S., Tang, J., Li, Y., Li, Y., Zhang, S., Shi, C., Zhang, Y., Mou, M., (2021) MMEASE: Online meta-analysis of metabolomic data by enhanced metabolite annotation, marker selection and enrichment analysis. J. Proteomics, 232, 104023
CrossRef Pubmed Google scholar
[11]
Qu, S., Shi, Q., Xu, J., Yi, W. and Fan, H. (2020) Weighted gene coexpression network analysis reveals the dynamic transcriptome regulation and prognostic biomarkers of hepatocellular carcinoma. Evol. Bioinform. Online, 16, 1176934320920562
CrossRef Pubmed Google scholar
[12]
Zhou, Y., Lutz, P. E., Wang, Y. C., Ragoussis, J. and Turecki, G. (2018) Global long non-coding RNA expression in the rostral anterior cingulate cortex of depressed suicides. Transl. Psychiatry, 8, 224
CrossRef Pubmed Google scholar
[13]
Li, Y. H., Li, X. X., Hong, J. J., Wang, Y. X., Fu, J. B., Yang, H., Yu, C. Y., Li, F. C., Hu, J., Xue, W. W., (2020) Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Brief. Bioinform., 21, 649–662
CrossRef Pubmed Google scholar
[14]
Tang, J., Mou, M., Wang, Y., Luo, Y. and Zhu, F. (2020) MetaFS: Performance assessment of biomarker discovery in metaproteomics. Brief. Bioinform., bbaa105
CrossRef Pubmed Google scholar
[15]
Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., Zhang, Q., Yan, G. and Cui, Q. (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res., 41, D983–D986
CrossRef Pubmed Google scholar
[16]
Chen, Y. G., Satpathy, A. T. and Chang, H. Y. (2017) Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol., 18, 962–972
CrossRef Pubmed Google scholar
[17]
Tang, J., Wang, Y., Fu, J., Zhou, Y., Luo, Y., Zhang, Y., Li, B., Yang, Q., Xue, W., Lou, Y., (2020) A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies. Brief. Bioinform., 21, 1378–1390
CrossRef Pubmed Google scholar
[18]
Hong, J., Luo, Y., Mou, M., Fu, J., Zhang, Y., Xue, W., Xie, T., Tao, L., Lou, Y. and Zhu, F. (2020) Convolutional neural network-based annotation of bacterial type IV secretion system effectors with enhanced accuracy and reduced false discovery. Brief. Bioinform., 21, 1825–1836
CrossRef Pubmed Google scholar
[19]
Lu, C., Wei, Y., Wang, X., Zhang, Z., Yin, J., Li, W., Chen, L., Lyu, X., Shi, Z., Yan, W., (2020) DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol. Cancer, 19, 28
CrossRef Pubmed Google scholar
[20]
Yin, J., Li, F., Zhou, Y., Mou, M., Lu, Y., Chen, K., Xue, J., Luo, Y., Fu, J., He, X., (2021) INTEDE: interactome of drug-metabolizing enzymes. Nucleic Acids Res., 49, D1233–D1243
CrossRef Pubmed Google scholar
[21]
Bao, Z., Yang, Z., Huang, Z., Zhou, Y., Cui, Q. and Dong, D. (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res., 47, D1034–D1037
CrossRef Pubmed Google scholar
[22]
Parikshak, N. N., Swarup, V., Belgard, T. G., Irimia, M., Ramaswami, G., Gandal, M. J., Hartl, C., Leppa, V., Ubieta, L. T., Huang, J., (2016) Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature, 540, 423–427
CrossRef Pubmed Google scholar
[23]
Yang, Y., Chen, L., Gu, J., Zhang, H., Yuan, J., Lian, Q., Lv, G., Wang, S., Wu, Y., Yang, Y. T., (2017) Recurrently deregulated lncRNAs in hepatocellular carcinoma. Nat. Commun., 8, 14421
CrossRef Pubmed Google scholar
[24]
Volders, P. J., Anckaert, J., Verheggen, K., Nuytens, J., Martens, L., Mestdagh, P. and Vandesompele, J. (2019) LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res., 47, D135–D139
CrossRef Pubmed Google scholar
[25]
Alam, T., Uludag, M., Essack, M., Salhi, A., Ashoor, H., Hanks, J. B., Kapfer, C., Mineta, K., Gojobori, T. and Bajic, V. B. (2017) FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res, 45, 2838–2848
Pubmed
[26]
Liley, J., Todd, J. A. and Wallace, C. (2017) A method for identifying genetic heterogeneity within phenotypically defined disease subgroups. Nat. Genet., 49, 310–316
CrossRef Pubmed Google scholar
[27]
Yan, X., Liang, A., Gomez, J., Cohn, L., Zhao, H. and Chupp, G. L. (2017) A novel pathway-based distance score enhances assessment of disease heterogeneity in gene expression. BMC Bioinformatics, 18, 309
CrossRef Pubmed Google scholar
[28]
Kornienko, A. E., Dotter, C. P., Guenzl, P. M., Gisslinger, H., Gisslinger, B., Cleary, C., Kralovics, R., Pauler, F. M. and Barlow, D. P. (2016) Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biol., 17, 14
CrossRef Pubmed Google scholar
[29]
Peng, F., Wang, R., Zhang, Y., Zhao, Z., Zhou, W., Chang, Z., Liang, H., Zhao, W., Qi, L., Guo, Z., (2017) Differential expression analysis at the individual level reveals a lncRNA prognostic signature for lung adenocarcinoma. Mol. Cancer, 16, 98
CrossRef Pubmed Google scholar
[30]
Castellanos-Rubio, A. and Ghosh, S. (2019) Disease-associated SNPs in inflammation-related lncRNAs. Front. Immunol., 10, 420
CrossRef Pubmed Google scholar
[31]
Han, Z., Xue, W., Tao, L., Lou, Y., Qiu, Y. and Zhu, F. (2020) Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief. Bioinform., 21, 1023–1037
CrossRef Pubmed Google scholar
[32]
Li, P., Guo, M., Wang, C., Liu, X. and Zou, Q. (2015) An overview of SNP interactions in genome-wide association studies. Brief. Funct. Genomics, 14, 143–155
CrossRef Pubmed Google scholar
[33]
Ecker, S., Pancaldi, V., Rico, D. and Valencia, A. (2015) Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia. Genome Med., 7, 8
CrossRef Pubmed Google scholar
[34]
Li, L., Cheng, W. Y., Glicksberg, B. S., Gottesman, O., Tamler, R., Chen, R., Bottinger, E. P. and Dudley, J. T. (2015) Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med., 7, 311ra174
CrossRef Pubmed Google scholar
[35]
Nguyen, Q. and Carninci, P. (2016) Expression specificity of disease-associated lncRNAs: toward personalized medicine. Curr. Top. Microbiol. Immunol., 394, 237–258
CrossRef Pubmed Google scholar
[36]
Shah, M. Y., Ferracin, M., Pileczki, V., Chen, B., Redis, R., Fabris, L., Zhang, X., Ivan, C., Shimizu, M., Rodriguez-Aguayo, C., (2018) Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res., 28, 432–447
CrossRef Pubmed Google scholar
[37]
Liu, S. J. and Lim, D. A. (2018) Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep., 19, e46955
CrossRef Pubmed Google scholar
[38]
Wang, Y., Li, F., Zhang, Y., Zhou, Y., Tan, Y., Chen, Y. and Zhu, F. (2020) Databases for the targeted COVID-19 therapeutics. Br. J. Pharmacol., 177, 4999–5001
CrossRef Pubmed Google scholar
[39]
Tang, J., Wang, Y., Luo, Y., Fu, J., Zhang, Y., Li, Y., Xiao, Z., Lou, Y., Qiu, Y. and Zhu, F. (2020) Computational advances of tumor marker selection and sample classification in cancer proteomics. Comput. Struct. Biotechnol. J., 18, 2012–2025
CrossRef Pubmed Google scholar
[40]
Barnett, K., Mercer, S. W., Norbury, M., Watt, G., Wyke, S. and Guthrie, B. (2012) Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet, 380, 37–43
CrossRef Pubmed Google scholar
[41]
Zhang, Y., Ying, J. B., Hong, J. J., Li, F. C., Fu, T. T., Yang, F. Y., Zheng, G. X., Yao, X. J., Lou, Y., Qiu, Y., (2019) How does chirality determine the selective inhibition of histone deacetylase 6? A lesson from Trichostatin A enantiomers based on molecular dynamics. ACS Chem. Neurosci., 10, 2467–2480
CrossRef Pubmed Google scholar
[42]
Cui, X., Yang, Q., Li, B., Tang, J., Zhang, X., Li, S., Li, F., Hu, J., Lou, Y., Qiu, Y., (2019) Assessing the effectiveness of direct data merging strategy in long-term and large-scale pharmacometabonomics. Front. Pharmacol., 10, 127
CrossRef Pubmed Google scholar
[43]
Xue, W., Yang, F., Wang, P., Zheng, G., Chen, Y., Yao, X. and Zhu, F. (2018) What contributes to serotonin-norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem. Neurosci., 9, 1128–1140
CrossRef Pubmed Google scholar
[44]
McIntyre, R. S., Rosenbluth, M., Ramasubbu, R., Bond, D. J., Taylor, V. H., Beaulieu, S. and Schaffer, A., and the Canadian Network for Mood and Anxiety Treatments (CANMAT) Task Force. (2012) Managing medical and psychiatric comorbidity in individuals with major depressive disorder and bipolar disorder. Ann Clin Psychiatry, 24, 163–169
Pubmed
[45]
Kato, M. and Natarajan, R. (2014) Diabetic nephropathy‒emerging epigenetic mechanisms. Nat. Rev. Nephrol., 10, 517–530
CrossRef Pubmed Google scholar
[46]
Reddy, M. A., Zhang, E. and Natarajan, R. (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 58, 443–455
CrossRef Pubmed Google scholar
[47]
Geronazzo-Alman, L., Guffanti, G., Eisenberg, R., Fan, B., Musa, G. J., Wicks, J., Bresnahan, M., Duarte, C. S. and Hoven, C. (2018) Comorbidity classes and associated impairment, demographics and 9/11-exposures in 8,236 children and adolescents. J. Psychiatr. Res., 96, 171–177
CrossRef Pubmed Google scholar
[48]
Schuckit, M. A. (2006) Comorbidity between substance use disorders and psychiatric conditions. Addiction, 101, 76–88
CrossRef Pubmed Google scholar
[49]
Gao, Y., Wang, P., Wang, Y., Ma, X., Zhi, H., Zhou, D., Li, X., Fang, Y., Shen, W., Xu, Y., (2019) Lnc2Cancer v2.0: updated database of experimentally supported long non-coding RNAs in human cancers. Nucleic Acids Res., 47, D1028–D1033
CrossRef Pubmed Google scholar
[50]
Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., Zhou, W., Liu, G., Jiang, H. and Jiang, Q. (2019) LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res., 47, D140–D144
CrossRef Pubmed Google scholar
[51]
Frankish, A., Diekhans, M., Ferreira, A. M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J. M., Sisu, C., Wright, J., Armstrong, J., (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res., 47, D766–D773
CrossRef Pubmed Google scholar
[52]
Ma, L., Cao, J., Liu, L., Du, Q., Li, Z., Zou, D., Bajic, V. B. and Zhang, Z. (2019) LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res., 47, D128–D134
CrossRef Pubmed Google scholar
[53]
Yang, Q. X., Wang, Y. X., Li, F. C., Zhang, S., Luo, Y. C., Li, Y., Tang, J., Li, B., Chen, Y. Z., Xue, W. W., (2019) Identification of the gene signature reflecting schizophrenia’s etiology by constructing artificial intelligence-based method of enhanced reproducibility. CNS Neurosci. Ther., 25, 1054–1063
CrossRef Pubmed Google scholar
[54]
Fu, J., Tang, J., Wang, Y., Cui, X., Yang, Q., Hong, J., Li, X., Li, S., Chen, Y., Xue, W., (2018) Discovery of the consistently well-performed analysis chain for SWATH-MS based pharmacoproteomic quantification. Front. Pharmacol., 9, 681
CrossRef Pubmed Google scholar
[55]
Miao, Y. R., Liu, W., Zhang, Q. and Guo, A. Y. (2018) lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res., 46, D276–D280
CrossRef Pubmed Google scholar
[56]
Paraskevopoulou, M. D., Vlachos, I. S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., Zagganas, K., Tsanakas, P., Floros, E., Dalamagas, T., (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res., 44, D231–D238
CrossRef Pubmed Google scholar
[57]
Zheng, L. L., Li, J. H., Wu, J., Sun, W. J., Liu, S., Wang, Z. L., Zhou, H., Yang, J. H. and Qu, L. H. (2016) deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res., 44, D196–D202
CrossRef Pubmed Google scholar
[58]
Li, X. X., Yin, J., Tang, J., Li, Y., Yang, Q., Xiao, Z., Zhang, R., Wang, Y., Hong, J., Tao, L., (2018) Determining the balance between drug efficacy and safety by the network and biological system profile of its therapeutic target. Front. Pharmacol., 9, 1245
CrossRef Pubmed Google scholar
[59]
Quek, X. C., Thomson, D. W., Maag, J. L., Bartonicek, N., Signal, B., Clark, M. B., Gloss, B. S. and Dinger, M. E. (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res., 43, D168–D173
CrossRef Pubmed Google scholar
[60]
Fu, T., Zheng, G., Tu, G., Yang, F., Chen, Y., Yao, X., Li, X., Xue, W. and Zhu, F. (2018) Exploring the binding mechanism of metabotropic glutamate receptor 5 negative allosteric modulators in clinical trials by molecular dynamics simulations. ACS Chem. Neurosci., 9, 1492–1502
CrossRef Pubmed Google scholar
[61]
Liu, K., Yan, Z., Li, Y. and Sun, Z. (2013) Linc2GO: a human LincRNA function annotation resource based on ceRNA hypothesis. Bioinformatics, 29, 2221–2222
CrossRef Pubmed Google scholar
[62]
Xue, W., Wang, P., Tu, G., Yang, F., Zheng, G., Li, X., Li, X., Chen, Y., Yao, X. and Zhu, F. (2018) Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys. Chem. Chem. Phys., 20, 6606–6616
CrossRef Pubmed Google scholar
[63]
Liao, Z. J., Li, D. P., Wang, X. R., Li, L. S. and Zou, Q. (2018) Cancer diagnosis through isomiR expression with machine learning method. Curr. Bioinform., 13, 57–63
CrossRef Google scholar
[64]
Ke, L., Yang, D. C., Wang, Y., Ding, Y. and Gao, G. (2020) AnnoLnc2: the one-stop portal to systematically annotate novel lncRNAs for human and mouse. Nucleic Acids Res., 48, W230–W238
CrossRef Pubmed Google scholar
[65]
Zhao, Z., Bai, J., Wu, A., Wang, Y., Zhang, J., Wang, Z., Li, Y., Xu, J. and Li, X. (2015) Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database (Oxford), 2015, bav082
CrossRef Pubmed Google scholar
[66]
Guo, X., Gao, L., Liao, Q., Xiao, H., Ma, X., Yang, X., Luo, H., Zhao, G., Bu, D., Jiao, F., (2013) Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks. Nucleic Acids Res., 41, e35
CrossRef Pubmed Google scholar
[67]
Wang, P., Zhang, X., Fu, T., Li, S., Li, B., Xue, W., Yao, X., Chen, Y. and Zhu, F. (2017) Differentiating physicochemical properties between addictive and nonaddictive ADHD drugs revealed by molecular dynamics simulation studies. ACS Chem. Neurosci., 8, 1416–1428
CrossRef Pubmed Google scholar
[68]
Li, Y. H., Xu, J. Y., Tao, L., Li, X. F., Li, S., Zeng, X., Chen, S. Y., Zhang, P., Qin, C., Zhang, C., (2016) SVM-Prot 2016: a web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One, 11, e0155290
CrossRef Pubmed Google scholar
[69]
Li, B., Tang, J., Yang, Q., Cui, X., Li, S., Chen, S., Cao, Q., Xue, W., Chen, N. and Zhu, F. (2016) Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted metabolomics analysis. Sci. Rep., 6, 38881
CrossRef Pubmed Google scholar
[70]
The Lancet. (2019) ICD-11. Lancet, 393, 2275
CrossRef Pubmed Google scholar
[71]
Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., Zhang, R., Zhu, J., Ren, Y., Tan, Y., (2020) Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res, 48, D1031–D1041
Pubmed
[72]
Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., Fu, T., Zhang, X., Cui, X., Tu, G., (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 46, D1121–D1127
CrossRef Pubmed Google scholar
[73]
Otasek, D., Morris, J. H., Bouças, J., Pico, A. R. and Demchak, B. (2019) Cytoscape Automation: empowering workflow-based network analysis. Genome Biol., 20, 185
CrossRef Pubmed Google scholar
[74]
Ravi, A., Koster, J., Dijkhuis, A., Bal, S. M., Sabogal Piñeros, Y. S., Bonta, P. I., Majoor, C. J., Sterk, P. J. and Lutter, R. (2019) Interferon-induced epithelial response to rhinovirus 16 in asthma relates to inflammation and FEV1. J. Allergy Clin. Immunol., 143, 442–447.e10
CrossRef Pubmed Google scholar
[75]
Pai, S., Li, P., Killinger, B., Marshall, L., Jia, P., Liao, J., Petronis, A., Szabó, P. E. and Labrie, V. (2019) Differential methylation of enhancer at IGF2 is associated with abnormal dopamine synthesis in major psychosis. Nat. Commun., 10, 2046
CrossRef Pubmed Google scholar
[76]
Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res., 41, D991–D995
CrossRef Pubmed Google scholar
[77]
Herring, B. P., Chen, M., Mihaylov, P., Hoggatt, A. M., Gupta, A., Nakeeb, A., Choi, J. N. and Wo, J. M. (2019) Transcriptome profiling reveals significant changes in the gastric muscularis externa with obesity that partially overlap those that occur with idiopathic gastroparesis. BMC Med. Genomics, 12, 89
CrossRef Pubmed Google scholar
[78]
Speake, C., Skinner, S. O., Berel, D., Whalen, E., Dufort, M. J., Young, W. C., Odegard, J. M., Pesenacker, A. M., Gorus, F. K., James, E. A., (2019) A composite immune signature parallels disease progression across T1D subjects. JCI Insight, 4, e126917
CrossRef Pubmed Google scholar
[79]
Hutter, C. and Zenklusen, J. C. (2018) The Cancer Genome Atlas: creating lasting value beyond its data. Cell, 173, 283–285
CrossRef Pubmed Google scholar
[80]
Hu, J., Xu, J., Pang, L., Zhao, H., Li, F., Deng, Y., Liu, L., Lan, Y., Zhang, X., Zhao, T., (2016) Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis. Oncotarget, 7, 71087–71098
CrossRef Pubmed Google scholar
[81]
Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. USA, 104, 8685–8690
CrossRef Pubmed Google scholar
[82]
Ko, Y., Cho, M., Lee, J. S. and Kim, J. (2016) Identification of disease comorbidity through hidden molecular mechanisms. Sci. Rep., 6, 39433
CrossRef Pubmed Google scholar
[83]
Leng, L., Zhang, C., Ren, L. and Li, Q. (2019) Construction of a long noncoding RNA-mediated competitive endogenous RNA network reveals global patterns and regulatory markers in gestational diabetes. Int J Mol Med, 43, 927–935
Pubmed
[84]
Brent, G. A. (2012) Mechanisms of thyroid hormone action. J. Clin. Invest., 122, 3035–3043
CrossRef Pubmed Google scholar
[85]
Pearce, E. N. (2012) Thyroid hormone and obesity. Curr. Opin. Endocrinol. Diabetes Obes., 19, 408–413
CrossRef Pubmed Google scholar
[86]
Biondi, B. (2010) Thyroid and obesity: an intriguing relationship. J. Clin. Endocrinol. Metab., 95, 3614–3617
CrossRef Pubmed Google scholar
[87]
Sinha, R. A., Singh, B. K. and Yen, P. M. (2014) Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab., 25, 538–545
CrossRef Pubmed Google scholar
[88]
Biondi, B., Kahaly, G. J. and Robertson, R. P. (2019) Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr. Rev., 40, 789–824
CrossRef Pubmed Google scholar
[89]
Broholm, C., Olsson, A. H., Perfilyev, A., Hansen, N. S., Schrölkamp, M., Strasko, K. S., Scheele, C., Ribel-Madsen, R., Mortensen, B., Jørgensen, S. W., (2016) Epigenetic programming of adipose-derived stem cells in low birthweight individuals. Diabetologia, 59, 2664–2673
CrossRef Pubmed Google scholar
[90]
Forstner, A. J., Basmanav, F. B., Mattheisen, M., Böhmer, A. C., Hollegaard, M. V., Janson, E., Strengman, E., Priebe, L., Degenhardt, F., Hoffmann, P., (2014) Investigation of the involvement of MIR185 and its target genes in the development of schizophrenia. J. Psychiatry Neurosci., 39, 386–396
CrossRef Pubmed Google scholar
[91]
Venkatasubramanian, G. (2015) Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives. Clin. Psychopharmacol. Neurosci., 13, 36–47
CrossRef Pubmed Google scholar
[92]
Swanger, S. A., Mattheyses, A. L., Gentry, E. G. and Herskowitz, J. H. (2016) ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell. Logist., 5, e1133266
CrossRef Pubmed Google scholar
[93]
Ross, K. A. (2011) Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn’s disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med., 9, 12
CrossRef Pubmed Google scholar
[94]
Li, M. J., Liu, Z., Wang, P., Wong, M. P., Nelson, M. R., Kocher, J. P., Yeager, M., Sham, P. C., Chanock, S. J., Xia, Z., (2016) GWASdb v2: an update database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res., 44, D869–D876
CrossRef Pubmed Google scholar
[95]
Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., McMahon, A., Morales, J., Mountjoy, E., Sollis, E., (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res., 47, D1005–D1012
CrossRef Pubmed Google scholar
[96]
Zhong, C., Yang, Y. and Yooseph, S. (2019) GRASP2: fast and memory-efficient gene-centric assembly and homolog search for metagenomic sequencing data. BMC Bioinformatics, 20, 276
CrossRef Pubmed Google scholar
[97]
Tang, J., Fu, J., Wang, Y., Luo, Y., Yang, Q., Li, B., Tu, G., Hong, J., Cui, X., Chen, Y., (2019) Simultaneous improvement in the precision, accuracy, and pobustness of label-free proteome quantification by optimizing data manipulation chains. Mol. Cell. Proteomics, 18, 1683–1699
CrossRef Pubmed Google scholar
[98]
Yang, Q., Hong, J., Li, Y., Xue, W., Li, S., Yang, H. and Zhu, F. (2020) A novel bioinformatics approach to identify the consistently well-performing normalization strategy for current metabolomic studies. Brief. Bioinform., 21, 2142–2152
CrossRef Pubmed Google scholar
[99]
Ros, G., Pegoraro, S., De Angelis, P., Sgarra, R., Zucchelli, S., Gustincich, S. and Manfioletti, G. (2020) HMGA2 antisense long non-coding RNAs as new players in the regulation of HMGA2 expression and pancreatic cancer promotion. Front. Oncol., 9, 1526
CrossRef Pubmed Google scholar
[100]
Han, Z. J., Xue, W. W., Tao, L. and Zhu, F. (2018) Identification of novel immune-relevant drug target genes for Alzheimer’s disease by combining ontology inference with network analysis. CNS Neurosci. Ther., 24, 1253–1263
CrossRef Pubmed Google scholar
[101]
Wang, M., Yuan, D., Tu, L., Gao, W., He, Y., Hu, H., Wang, P., Liu, N., Lindsey, K. and Zhang, X. (2015) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol., 207, 1181–1197
CrossRef Pubmed Google scholar
[102]
Cabili, M. N., Dunagin, M. C., McClanahan, P. D., Biaesch, A., Padovan-Merhar, O., Regev, A., Rinn, J. L. and Raj, A. (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol., 16, 20
CrossRef Pubmed Google scholar
[103]
Werner, M. S., Sullivan, M. A., Shah, R. N., Nadadur, R. D., Grzybowski, A. T., Galat, V., Moskowitz, I. P. and Ruthenburg, A. J. (2017) Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat. Struct. Mol. Biol., 24, 596–603
CrossRef Pubmed Google scholar
[104]
Teimuri, S., Hosseini, A., Rezaenasab, A., Ghaedi, K., Ghoveud, E., Etemadifar, M., Nasr-Esfahani, M. H. and Megraw, T. L. (2018) Integrative analysis of lncRNAs in Th17 cell lineage to discover new potential biomarkers and therapeutic targets in autoimmune diseases. Mol. Ther. Nucleic Acids, 12, 393–404
CrossRef Pubmed Google scholar
[105]
Li, S., Yu, X., Lei, N., Cheng, Z., Zhao, P., He, Y., Wang, W. and Peng, M. (2017) Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci. Rep., 7, 45981
CrossRef Pubmed Google scholar
[106]
Wang, X., Yang, C., Guo, F., Zhang, Y., Ju, Z., Jiang, Q., Zhao, X., Liu, Y., Zhao, H., Wang, J., (2019) Integrated analysis of mRNAs and long noncoding RNAs in the semen from Holstein bulls with high and low sperm motility. Sci. Rep., 9, 2092
CrossRef Pubmed Google scholar
[107]
Schultz, B. M., Gallicio, G. A., Cesaroni, M., Lupey, L. N. and Engel, N. (2015) Enhancers compete with a long non-coding RNA for regulation of the Kcnq1 domain. Nucleic Acids Res., 43, 745–759
CrossRef Pubmed Google scholar
[108]
Ørom, U. A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., Lai, F., Zytnicki, M., Notredame, C., Huang, Q., (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell, 143, 46–58
CrossRef Pubmed Google scholar
[109]
Pyfrom, S. C., Luo, H. and Payton, J. E. (2019) PLAIDOH: a novel method for functional prediction of long non-coding RNAs identifies cancer-specific LncRNA activities. BMC Genomics, 20, 137
CrossRef Pubmed Google scholar
[110]
Khyzha, N., Khor, M., DiStefano, P. V., Wang, L., Matic, L., Hedin, U., Wilson, M. D., Maegdefessel, L. and Fish, J. E. (2019) Regulation of CCL2 expression in human vascular endothelial cells by a neighboring divergently transcribed long noncoding RNA. Proc. Natl. Acad. Sci. USA, 116, 16410–16419
CrossRef Pubmed Google scholar
[111]
The Gene Ontology Consortium. (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res., 47, D330–D338
CrossRef Pubmed Google scholar
[112]
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 45, D353–D361
CrossRef Pubmed Google scholar
[113]
Yang, Q., Li, B., Tang, J., Cui, X., Wang, Y., Li, X., Hu, J., Chen, Y., Xue, W., Lou, Y., (2020) Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Brief. Bioinform., 21, 1058–1068
CrossRef Pubmed Google scholar
[114]
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545–15550
CrossRef Pubmed Google scholar
[115]
Hong, J., Luo, Y., Zhang, Y., Ying, J., Xue, W., Xie, T., Tao, L. and Zhu, F. (2020) Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning. Brief. Bioinform., 21, 1437–1447
CrossRef Pubmed Google scholar
[116]
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef Pubmed Google scholar
[117]
Yang, Q., Wang, Y., Zhang, Y., Li, F., Xia, W., Zhou, Y., Qiu, Y., Li, H. and Zhu, F. (2020) NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data. Nucleic Acids Res., 48, W436–W448
CrossRef Pubmed Google scholar
[118]
Li, B., Tang, J., Yang, Q., Li, S., Cui, X., Li, Y., Chen, Y., Xue, W., Li, X. and Zhu, F. (2017) NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res., 45, W162–W170
CrossRef Pubmed Google scholar
[119]
Tang, J., Fu, J., Wang, Y., Li, B., Li, Y., Yang, Q., Cui, X., Hong, J., Li, X., Chen, Y., (2020) ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies. Brief. Bioinform., 21, 621–636
CrossRef Pubmed Google scholar
[120]
Clough, E. and Barrett, T. (2016) The gene expression omnibus database. Methods Mol. Biol., 1418, 93–110
CrossRef Pubmed Google scholar
[121]
Li, F., Zhou, Y., Zhang, X., Tang, J., Yang, Q., Zhang, Y., Luo, Y., Hu, J., Xue, W., Qiu, Y., (2020) SSizer: determining the sample sufficiency for comparative biological study. J. Mol. Biol., 432, 3411–3421
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.15302/J-QB-021-0247.

AUTHOR CONTRIBUTIONS

F.Z. conceived the idea, supervised the work and wrote the manuscript. J.T., Y.W. and J.F. performed the research. J.T., Y.W. and J.F. constructed the web-server and wrote the scripts. J.T., Y.W., J.F., X.W., Z.H., C.W., M.G., Y.W., Y.D. and B.Y. prepared and analyzed the data. All authors reviewed and approved the final version of the manuscript.

ACKNOWLEDGEMENTS

This work was funded by the National Natural Science Foundation of China (81872798 & U1909208), Natural Science Foundation of Zhejiang Province (LR21H300001), National Key R&D Program of China (2018YFC0910500), Leading Talent of the “Ten Thousand Plan” ‒ National High-Level Talents Special Support Plan of China; Fundamental Research Fund for Central Universities (2018QNA7023), “Double Top-Class” University Project (181201*194232101), and Key R&D Program of Zhejiang Province (2020C03010). This work was supported by Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare; Alibaba Cloud; Information Technology Center of Zhejiang University.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Jing Tang, Yongheng Wang, Jianbo Fu, Xianglu Wu, Zhijie Han, Chuan Wang, Maiyuan Guo, Yingxiong Wang, Yubin Ding, Bo Yang and Feng Zhu declare that they have no conflict of interests or financial conflicts to disclose.
All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press
AI Summary AI Mindmap
PDF(1980 KB)

Accesses

Citations

Detail

Sections
Recommended

/