Functional characterization of disease/comorbidity-associated lncRNA
Jing Tang, Yongheng Wang, Jianbo Fu, Xianglu Wu, Zhijie Han, Chuan Wang, Maiyuan Guo, Yingxiong Wang, Yubin Ding, Bo Yang, Feng Zhu
Functional characterization of disease/comorbidity-associated lncRNA
Background: Functional characterization of the long noncoding RNAs (lncRNAs) in disease attracts great attention, which results in a limited number of experimentally characterized lncRNAs. The major problems underlying the lack of experimental verifications are considered to come from the significant false-positive assignments and extensive genetic-heterogeneity of disease. These problems are even worse when it comes to the functional characterization in comorbidity (simultaneous/sequential presence of multiple diseases in a patient, and showing much wider prevalence, poorer treatment-response and longer illness-course than a single disease).
Methods: Herein, FCCLnc was developed to characterize lncRNA function by (1) integrating diverse SNPs that were associated with 193 diseases standardized by International Classification of Diseases (ICD-11), (2) condition-specific expression of lncRNAs, (3) weighted correlation network of lncRNAs and protein-coding neighboring genes.
Results: FCCLnc can characterize lncRNA function in both disease and comorbidity by not only controlling false discovery but also tolerating their disease heterogeneity. Moreover, FCCLnc can provide interactive visualization and full download of lncRNA-centered co-expression network.
Conclusion: In summary, FCCLnc is unique in characterizing lncRNA function in diverse diseases and comorbidities and is highly expected to emerge to be an indispensable complement to other available tools. FCCLnc is accessible at https://idrblab.org/fcclnc/.
Functional characterization of the long noncoding RNAs (lncRNAs) in disease attracts great attention, but has significant false-positive assignments and extensive genetic-heterogeneity of disease especially in comorbidity. Herein, FCCLnc was developed to characterize lncRNA function in diverse diseases and comorbidities, which can be expected to be an indispensable complement to other available tools.
comorbidity / long noncoding RNA / functional characterization / disease-associated SNPs / guilt-by-association
[1] |
Kopp, F. and Mendell, J. T. (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell, 172, 393–407
CrossRef
Pubmed
Google scholar
|
[2] |
Zhou, J., Zhang, S., Wang, H. and Sun, H. (2017) LncFunNet: an integrated computational framework for identification of functional long noncoding RNAs in mouse skeletal muscle cells. Nucleic Acids Res., 45, e108
CrossRef
Pubmed
Google scholar
|
[3] |
Antonov, I. V., Mazurov, E., Borodovsky, M. and Medvedeva, Y. A. (2019) Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Brief. Bioinform., 20, 551–564
CrossRef
Pubmed
Google scholar
|
[4] |
Yin, J., Sun, W., Li, F., Hong, J., Li, X., Zhou, Y., Lu, Y., Liu, M., Zhang, X., Chen, N.,
CrossRef
Pubmed
Google scholar
|
[5] |
Jiang, S., Cheng, S. J., Ren, L. C., Wang, Q., Kang, Y. J., Ding, Y., Hou, M., Yang, X. X., Lin, Y., Liang, N.,
CrossRef
Pubmed
Google scholar
|
[6] |
Stojic, L., Niemczyk, M., Orjalo, A., Ito, Y., Ruijter, A. E., Uribe-Lewis, S., Joseph, N., Weston, S., Menon, S., Odom, D. T.,
CrossRef
Pubmed
Google scholar
|
[7] |
Kondrashov, A. V., Kiefmann, M., Ebnet, K., Khanam, T., Muddashetty, R. S. and Brosius, J. (2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J. Mol. Biol., 353, 88–103
CrossRef
Pubmed
Google scholar
|
[8] |
Signal, B., Gloss, B. S. and Dinger, M. E. (2016) Computational approaches for functional prediction and characterisation of long noncoding RNAs. Trends Genet., 32, 620–637
CrossRef
Pubmed
Google scholar
|
[9] |
Fu, T. T., Tu, G., Ping, M., Zheng, G. X., Yang, F. Y., Yang, J. Y., Zhang, Y., Yao, X. J., Xue, W. W. and Zhu, F. (2020) Subtype-selective mechanisms of negative allosteric modulators binding to group I metabotropic glutamate receptors. Acta Pharmacol. Sin., doi: 10.1038/s41401-020-00541-z
CrossRef
Pubmed
Google scholar
|
[10] |
Yang, Q., Li, B., Chen, S., Tang, J., Li, Y., Li, Y., Zhang, S., Shi, C., Zhang, Y., Mou, M.,
CrossRef
Pubmed
Google scholar
|
[11] |
Qu, S., Shi, Q., Xu, J., Yi, W. and Fan, H. (2020) Weighted gene coexpression network analysis reveals the dynamic transcriptome regulation and prognostic biomarkers of hepatocellular carcinoma. Evol. Bioinform. Online, 16, 1176934320920562
CrossRef
Pubmed
Google scholar
|
[12] |
Zhou, Y., Lutz, P. E., Wang, Y. C., Ragoussis, J. and Turecki, G. (2018) Global long non-coding RNA expression in the rostral anterior cingulate cortex of depressed suicides. Transl. Psychiatry, 8, 224
CrossRef
Pubmed
Google scholar
|
[13] |
Li, Y. H., Li, X. X., Hong, J. J., Wang, Y. X., Fu, J. B., Yang, H., Yu, C. Y., Li, F. C., Hu, J., Xue, W. W.,
CrossRef
Pubmed
Google scholar
|
[14] |
Tang, J., Mou, M., Wang, Y., Luo, Y. and Zhu, F. (2020) MetaFS: Performance assessment of biomarker discovery in metaproteomics. Brief. Bioinform., bbaa105
CrossRef
Pubmed
Google scholar
|
[15] |
Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., Zhang, Q., Yan, G. and Cui, Q. (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res., 41, D983–D986
CrossRef
Pubmed
Google scholar
|
[16] |
Chen, Y. G., Satpathy, A. T. and Chang, H. Y. (2017) Gene regulation in the immune system by long noncoding RNAs. Nat. Immunol., 18, 962–972
CrossRef
Pubmed
Google scholar
|
[17] |
Tang, J., Wang, Y., Fu, J., Zhou, Y., Luo, Y., Zhang, Y., Li, B., Yang, Q., Xue, W., Lou, Y.,
CrossRef
Pubmed
Google scholar
|
[18] |
Hong, J., Luo, Y., Mou, M., Fu, J., Zhang, Y., Xue, W., Xie, T., Tao, L., Lou, Y. and Zhu, F. (2020) Convolutional neural network-based annotation of bacterial type IV secretion system effectors with enhanced accuracy and reduced false discovery. Brief. Bioinform., 21, 1825–1836
CrossRef
Pubmed
Google scholar
|
[19] |
Lu, C., Wei, Y., Wang, X., Zhang, Z., Yin, J., Li, W., Chen, L., Lyu, X., Shi, Z., Yan, W.,
CrossRef
Pubmed
Google scholar
|
[20] |
Yin, J., Li, F., Zhou, Y., Mou, M., Lu, Y., Chen, K., Xue, J., Luo, Y., Fu, J., He, X.,
CrossRef
Pubmed
Google scholar
|
[21] |
Bao, Z., Yang, Z., Huang, Z., Zhou, Y., Cui, Q. and Dong, D. (2019) LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases. Nucleic Acids Res., 47, D1034–D1037
CrossRef
Pubmed
Google scholar
|
[22] |
Parikshak, N. N., Swarup, V., Belgard, T. G., Irimia, M., Ramaswami, G., Gandal, M. J., Hartl, C., Leppa, V., Ubieta, L. T., Huang, J.,
CrossRef
Pubmed
Google scholar
|
[23] |
Yang, Y., Chen, L., Gu, J., Zhang, H., Yuan, J., Lian, Q., Lv, G., Wang, S., Wu, Y., Yang, Y. T.,
CrossRef
Pubmed
Google scholar
|
[24] |
Volders, P. J., Anckaert, J., Verheggen, K., Nuytens, J., Martens, L., Mestdagh, P. and Vandesompele, J. (2019) LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res., 47, D135–D139
CrossRef
Pubmed
Google scholar
|
[25] |
Alam, T., Uludag, M., Essack, M., Salhi, A., Ashoor, H., Hanks, J. B., Kapfer, C., Mineta, K., Gojobori, T. and Bajic, V. B. (2017) FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res, 45, 2838–2848
Pubmed
|
[26] |
Liley, J., Todd, J. A. and Wallace, C. (2017) A method for identifying genetic heterogeneity within phenotypically defined disease subgroups. Nat. Genet., 49, 310–316
CrossRef
Pubmed
Google scholar
|
[27] |
Yan, X., Liang, A., Gomez, J., Cohn, L., Zhao, H. and Chupp, G. L. (2017) A novel pathway-based distance score enhances assessment of disease heterogeneity in gene expression. BMC Bioinformatics, 18, 309
CrossRef
Pubmed
Google scholar
|
[28] |
Kornienko, A. E., Dotter, C. P., Guenzl, P. M., Gisslinger, H., Gisslinger, B., Cleary, C., Kralovics, R., Pauler, F. M. and Barlow, D. P. (2016) Long non-coding RNAs display higher natural expression variation than protein-coding genes in healthy humans. Genome Biol., 17, 14
CrossRef
Pubmed
Google scholar
|
[29] |
Peng, F., Wang, R., Zhang, Y., Zhao, Z., Zhou, W., Chang, Z., Liang, H., Zhao, W., Qi, L., Guo, Z.,
CrossRef
Pubmed
Google scholar
|
[30] |
Castellanos-Rubio, A. and Ghosh, S. (2019) Disease-associated SNPs in inflammation-related lncRNAs. Front. Immunol., 10, 420
CrossRef
Pubmed
Google scholar
|
[31] |
Han, Z., Xue, W., Tao, L., Lou, Y., Qiu, Y. and Zhu, F. (2020) Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief. Bioinform., 21, 1023–1037
CrossRef
Pubmed
Google scholar
|
[32] |
Li, P., Guo, M., Wang, C., Liu, X. and Zou, Q. (2015) An overview of SNP interactions in genome-wide association studies. Brief. Funct. Genomics, 14, 143–155
CrossRef
Pubmed
Google scholar
|
[33] |
Ecker, S., Pancaldi, V., Rico, D. and Valencia, A. (2015) Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia. Genome Med., 7, 8
CrossRef
Pubmed
Google scholar
|
[34] |
Li, L., Cheng, W. Y., Glicksberg, B. S., Gottesman, O., Tamler, R., Chen, R., Bottinger, E. P. and Dudley, J. T. (2015) Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med., 7, 311ra174
CrossRef
Pubmed
Google scholar
|
[35] |
Nguyen, Q. and Carninci, P. (2016) Expression specificity of disease-associated lncRNAs: toward personalized medicine. Curr. Top. Microbiol. Immunol., 394, 237–258
CrossRef
Pubmed
Google scholar
|
[36] |
Shah, M. Y., Ferracin, M., Pileczki, V., Chen, B., Redis, R., Fabris, L., Zhang, X., Ivan, C., Shimizu, M., Rodriguez-Aguayo, C.,
CrossRef
Pubmed
Google scholar
|
[37] |
Liu, S. J. and Lim, D. A. (2018) Modulating the expression of long non-coding RNAs for functional studies. EMBO Rep., 19, e46955
CrossRef
Pubmed
Google scholar
|
[38] |
Wang, Y., Li, F., Zhang, Y., Zhou, Y., Tan, Y., Chen, Y. and Zhu, F. (2020) Databases for the targeted COVID-19 therapeutics. Br. J. Pharmacol., 177, 4999–5001
CrossRef
Pubmed
Google scholar
|
[39] |
Tang, J., Wang, Y., Luo, Y., Fu, J., Zhang, Y., Li, Y., Xiao, Z., Lou, Y., Qiu, Y. and Zhu, F. (2020) Computational advances of tumor marker selection and sample classification in cancer proteomics. Comput. Struct. Biotechnol. J., 18, 2012–2025
CrossRef
Pubmed
Google scholar
|
[40] |
Barnett, K., Mercer, S. W., Norbury, M., Watt, G., Wyke, S. and Guthrie, B. (2012) Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet, 380, 37–43
CrossRef
Pubmed
Google scholar
|
[41] |
Zhang, Y., Ying, J. B., Hong, J. J., Li, F. C., Fu, T. T., Yang, F. Y., Zheng, G. X., Yao, X. J., Lou, Y., Qiu, Y.,
CrossRef
Pubmed
Google scholar
|
[42] |
Cui, X., Yang, Q., Li, B., Tang, J., Zhang, X., Li, S., Li, F., Hu, J., Lou, Y., Qiu, Y.,
CrossRef
Pubmed
Google scholar
|
[43] |
Xue, W., Yang, F., Wang, P., Zheng, G., Chen, Y., Yao, X. and Zhu, F. (2018) What contributes to serotonin-norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem. Neurosci., 9, 1128–1140
CrossRef
Pubmed
Google scholar
|
[44] |
McIntyre, R. S., Rosenbluth, M., Ramasubbu, R., Bond, D. J., Taylor, V. H., Beaulieu, S. and Schaffer, A., and the Canadian Network for Mood and Anxiety Treatments (CANMAT) Task Force. (2012) Managing medical and psychiatric comorbidity in individuals with major depressive disorder and bipolar disorder. Ann Clin Psychiatry, 24, 163–169
Pubmed
|
[45] |
Kato, M. and Natarajan, R. (2014) Diabetic nephropathy‒emerging epigenetic mechanisms. Nat. Rev. Nephrol., 10, 517–530
CrossRef
Pubmed
Google scholar
|
[46] |
Reddy, M. A., Zhang, E. and Natarajan, R. (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 58, 443–455
CrossRef
Pubmed
Google scholar
|
[47] |
Geronazzo-Alman, L., Guffanti, G., Eisenberg, R., Fan, B., Musa, G. J., Wicks, J., Bresnahan, M., Duarte, C. S. and Hoven, C. (2018) Comorbidity classes and associated impairment, demographics and 9/11-exposures in 8,236 children and adolescents. J. Psychiatr. Res., 96, 171–177
CrossRef
Pubmed
Google scholar
|
[48] |
Schuckit, M. A. (2006) Comorbidity between substance use disorders and psychiatric conditions. Addiction, 101, 76–88
CrossRef
Pubmed
Google scholar
|
[49] |
Gao, Y., Wang, P., Wang, Y., Ma, X., Zhi, H., Zhou, D., Li, X., Fang, Y., Shen, W., Xu, Y.,
CrossRef
Pubmed
Google scholar
|
[50] |
Cheng, L., Wang, P., Tian, R., Wang, S., Guo, Q., Luo, M., Zhou, W., Liu, G., Jiang, H. and Jiang, Q. (2019) LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res., 47, D140–D144
CrossRef
Pubmed
Google scholar
|
[51] |
Frankish, A., Diekhans, M., Ferreira, A. M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J. M., Sisu, C., Wright, J., Armstrong, J.,
CrossRef
Pubmed
Google scholar
|
[52] |
Ma, L., Cao, J., Liu, L., Du, Q., Li, Z., Zou, D., Bajic, V. B. and Zhang, Z. (2019) LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res., 47, D128–D134
CrossRef
Pubmed
Google scholar
|
[53] |
Yang, Q. X., Wang, Y. X., Li, F. C., Zhang, S., Luo, Y. C., Li, Y., Tang, J., Li, B., Chen, Y. Z., Xue, W. W.,
CrossRef
Pubmed
Google scholar
|
[54] |
Fu, J., Tang, J., Wang, Y., Cui, X., Yang, Q., Hong, J., Li, X., Li, S., Chen, Y., Xue, W.,
CrossRef
Pubmed
Google scholar
|
[55] |
Miao, Y. R., Liu, W., Zhang, Q. and Guo, A. Y. (2018) lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res., 46, D276–D280
CrossRef
Pubmed
Google scholar
|
[56] |
Paraskevopoulou, M. D., Vlachos, I. S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., Zagganas, K., Tsanakas, P., Floros, E., Dalamagas, T.,
CrossRef
Pubmed
Google scholar
|
[57] |
Zheng, L. L., Li, J. H., Wu, J., Sun, W. J., Liu, S., Wang, Z. L., Zhou, H., Yang, J. H. and Qu, L. H. (2016) deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res., 44, D196–D202
CrossRef
Pubmed
Google scholar
|
[58] |
Li, X. X., Yin, J., Tang, J., Li, Y., Yang, Q., Xiao, Z., Zhang, R., Wang, Y., Hong, J., Tao, L.,
CrossRef
Pubmed
Google scholar
|
[59] |
Quek, X. C., Thomson, D. W., Maag, J. L., Bartonicek, N., Signal, B., Clark, M. B., Gloss, B. S. and Dinger, M. E. (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res., 43, D168–D173
CrossRef
Pubmed
Google scholar
|
[60] |
Fu, T., Zheng, G., Tu, G., Yang, F., Chen, Y., Yao, X., Li, X., Xue, W. and Zhu, F. (2018) Exploring the binding mechanism of metabotropic glutamate receptor 5 negative allosteric modulators in clinical trials by molecular dynamics simulations. ACS Chem. Neurosci., 9, 1492–1502
CrossRef
Pubmed
Google scholar
|
[61] |
Liu, K., Yan, Z., Li, Y. and Sun, Z. (2013) Linc2GO: a human LincRNA function annotation resource based on ceRNA hypothesis. Bioinformatics, 29, 2221–2222
CrossRef
Pubmed
Google scholar
|
[62] |
Xue, W., Wang, P., Tu, G., Yang, F., Zheng, G., Li, X., Li, X., Chen, Y., Yao, X. and Zhu, F. (2018) Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys. Chem. Chem. Phys., 20, 6606–6616
CrossRef
Pubmed
Google scholar
|
[63] |
Liao, Z. J., Li, D. P., Wang, X. R., Li, L. S. and Zou, Q. (2018) Cancer diagnosis through isomiR expression with machine learning method. Curr. Bioinform., 13, 57–63
CrossRef
Google scholar
|
[64] |
Ke, L., Yang, D. C., Wang, Y., Ding, Y. and Gao, G. (2020) AnnoLnc2: the one-stop portal to systematically annotate novel lncRNAs for human and mouse. Nucleic Acids Res., 48, W230–W238
CrossRef
Pubmed
Google scholar
|
[65] |
Zhao, Z., Bai, J., Wu, A., Wang, Y., Zhang, J., Wang, Z., Li, Y., Xu, J. and Li, X. (2015) Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database (Oxford), 2015, bav082
CrossRef
Pubmed
Google scholar
|
[66] |
Guo, X., Gao, L., Liao, Q., Xiao, H., Ma, X., Yang, X., Luo, H., Zhao, G., Bu, D., Jiao, F.,
CrossRef
Pubmed
Google scholar
|
[67] |
Wang, P., Zhang, X., Fu, T., Li, S., Li, B., Xue, W., Yao, X., Chen, Y. and Zhu, F. (2017) Differentiating physicochemical properties between addictive and nonaddictive ADHD drugs revealed by molecular dynamics simulation studies. ACS Chem. Neurosci., 8, 1416–1428
CrossRef
Pubmed
Google scholar
|
[68] |
Li, Y. H., Xu, J. Y., Tao, L., Li, X. F., Li, S., Zeng, X., Chen, S. Y., Zhang, P., Qin, C., Zhang, C.,
CrossRef
Pubmed
Google scholar
|
[69] |
Li, B., Tang, J., Yang, Q., Cui, X., Li, S., Chen, S., Cao, Q., Xue, W., Chen, N. and Zhu, F. (2016) Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted metabolomics analysis. Sci. Rep., 6, 38881
CrossRef
Pubmed
Google scholar
|
[70] |
The Lancet. (2019) ICD-11. Lancet, 393, 2275
CrossRef
Pubmed
Google scholar
|
[71] |
Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., Zhang, R., Zhu, J., Ren, Y., Tan, Y.,
Pubmed
|
[72] |
Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., Fu, T., Zhang, X., Cui, X., Tu, G.,
CrossRef
Pubmed
Google scholar
|
[73] |
Otasek, D., Morris, J. H., Bouças, J., Pico, A. R. and Demchak, B. (2019) Cytoscape Automation: empowering workflow-based network analysis. Genome Biol., 20, 185
CrossRef
Pubmed
Google scholar
|
[74] |
Ravi, A., Koster, J., Dijkhuis, A., Bal, S. M., Sabogal Piñeros, Y. S., Bonta, P. I., Majoor, C. J., Sterk, P. J. and Lutter, R. (2019) Interferon-induced epithelial response to rhinovirus 16 in asthma relates to inflammation and FEV1. J. Allergy Clin. Immunol., 143, 442–447.e10
CrossRef
Pubmed
Google scholar
|
[75] |
Pai, S., Li, P., Killinger, B., Marshall, L., Jia, P., Liao, J., Petronis, A., Szabó, P. E. and Labrie, V. (2019) Differential methylation of enhancer at IGF2 is associated with abnormal dopamine synthesis in major psychosis. Nat. Commun., 10, 2046
CrossRef
Pubmed
Google scholar
|
[76] |
Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M.,
CrossRef
Pubmed
Google scholar
|
[77] |
Herring, B. P., Chen, M., Mihaylov, P., Hoggatt, A. M., Gupta, A., Nakeeb, A., Choi, J. N. and Wo, J. M. (2019) Transcriptome profiling reveals significant changes in the gastric muscularis externa with obesity that partially overlap those that occur with idiopathic gastroparesis. BMC Med. Genomics, 12, 89
CrossRef
Pubmed
Google scholar
|
[78] |
Speake, C., Skinner, S. O., Berel, D., Whalen, E., Dufort, M. J., Young, W. C., Odegard, J. M., Pesenacker, A. M., Gorus, F. K., James, E. A.,
CrossRef
Pubmed
Google scholar
|
[79] |
Hutter, C. and Zenklusen, J. C. (2018) The Cancer Genome Atlas: creating lasting value beyond its data. Cell, 173, 283–285
CrossRef
Pubmed
Google scholar
|
[80] |
Hu, J., Xu, J., Pang, L., Zhao, H., Li, F., Deng, Y., Liu, L., Lan, Y., Zhang, X., Zhao, T.,
CrossRef
Pubmed
Google scholar
|
[81] |
Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. USA, 104, 8685–8690
CrossRef
Pubmed
Google scholar
|
[82] |
Ko, Y., Cho, M., Lee, J. S. and Kim, J. (2016) Identification of disease comorbidity through hidden molecular mechanisms. Sci. Rep., 6, 39433
CrossRef
Pubmed
Google scholar
|
[83] |
Leng, L., Zhang, C., Ren, L. and Li, Q. (2019) Construction of a long noncoding RNA-mediated competitive endogenous RNA network reveals global patterns and regulatory markers in gestational diabetes. Int J Mol Med, 43, 927–935
Pubmed
|
[84] |
Brent, G. A. (2012) Mechanisms of thyroid hormone action. J. Clin. Invest., 122, 3035–3043
CrossRef
Pubmed
Google scholar
|
[85] |
Pearce, E. N. (2012) Thyroid hormone and obesity. Curr. Opin. Endocrinol. Diabetes Obes., 19, 408–413
CrossRef
Pubmed
Google scholar
|
[86] |
Biondi, B. (2010) Thyroid and obesity: an intriguing relationship. J. Clin. Endocrinol. Metab., 95, 3614–3617
CrossRef
Pubmed
Google scholar
|
[87] |
Sinha, R. A., Singh, B. K. and Yen, P. M. (2014) Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab., 25, 538–545
CrossRef
Pubmed
Google scholar
|
[88] |
Biondi, B., Kahaly, G. J. and Robertson, R. P. (2019) Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr. Rev., 40, 789–824
CrossRef
Pubmed
Google scholar
|
[89] |
Broholm, C., Olsson, A. H., Perfilyev, A., Hansen, N. S., Schrölkamp, M., Strasko, K. S., Scheele, C., Ribel-Madsen, R., Mortensen, B., Jørgensen, S. W.,
CrossRef
Pubmed
Google scholar
|
[90] |
Forstner, A. J., Basmanav, F. B., Mattheisen, M., Böhmer, A. C., Hollegaard, M. V., Janson, E., Strengman, E., Priebe, L., Degenhardt, F., Hoffmann, P.,
CrossRef
Pubmed
Google scholar
|
[91] |
Venkatasubramanian, G. (2015) Understanding schizophrenia as a disorder of consciousness: biological correlates and translational implications from quantum theory perspectives. Clin. Psychopharmacol. Neurosci., 13, 36–47
CrossRef
Pubmed
Google scholar
|
[92] |
Swanger, S. A., Mattheyses, A. L., Gentry, E. G. and Herskowitz, J. H. (2016) ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell. Logist., 5, e1133266
CrossRef
Pubmed
Google scholar
|
[93] |
Ross, K. A. (2011) Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn’s disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med., 9, 12
CrossRef
Pubmed
Google scholar
|
[94] |
Li, M. J., Liu, Z., Wang, P., Wong, M. P., Nelson, M. R., Kocher, J. P., Yeager, M., Sham, P. C., Chanock, S. J., Xia, Z.,
CrossRef
Pubmed
Google scholar
|
[95] |
Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., McMahon, A., Morales, J., Mountjoy, E., Sollis, E.,
CrossRef
Pubmed
Google scholar
|
[96] |
Zhong, C., Yang, Y. and Yooseph, S. (2019) GRASP2: fast and memory-efficient gene-centric assembly and homolog search for metagenomic sequencing data. BMC Bioinformatics, 20, 276
CrossRef
Pubmed
Google scholar
|
[97] |
Tang, J., Fu, J., Wang, Y., Luo, Y., Yang, Q., Li, B., Tu, G., Hong, J., Cui, X., Chen, Y.,
CrossRef
Pubmed
Google scholar
|
[98] |
Yang, Q., Hong, J., Li, Y., Xue, W., Li, S., Yang, H. and Zhu, F. (2020) A novel bioinformatics approach to identify the consistently well-performing normalization strategy for current metabolomic studies. Brief. Bioinform., 21, 2142–2152
CrossRef
Pubmed
Google scholar
|
[99] |
Ros, G., Pegoraro, S., De Angelis, P., Sgarra, R., Zucchelli, S., Gustincich, S. and Manfioletti, G. (2020) HMGA2 antisense long non-coding RNAs as new players in the regulation of HMGA2 expression and pancreatic cancer promotion. Front. Oncol., 9, 1526
CrossRef
Pubmed
Google scholar
|
[100] |
Han, Z. J., Xue, W. W., Tao, L. and Zhu, F. (2018) Identification of novel immune-relevant drug target genes for Alzheimer’s disease by combining ontology inference with network analysis. CNS Neurosci. Ther., 24, 1253–1263
CrossRef
Pubmed
Google scholar
|
[101] |
Wang, M., Yuan, D., Tu, L., Gao, W., He, Y., Hu, H., Wang, P., Liu, N., Lindsey, K. and Zhang, X. (2015) Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol., 207, 1181–1197
CrossRef
Pubmed
Google scholar
|
[102] |
Cabili, M. N., Dunagin, M. C., McClanahan, P. D., Biaesch, A., Padovan-Merhar, O., Regev, A., Rinn, J. L. and Raj, A. (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol., 16, 20
CrossRef
Pubmed
Google scholar
|
[103] |
Werner, M. S., Sullivan, M. A., Shah, R. N., Nadadur, R. D., Grzybowski, A. T., Galat, V., Moskowitz, I. P. and Ruthenburg, A. J. (2017) Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat. Struct. Mol. Biol., 24, 596–603
CrossRef
Pubmed
Google scholar
|
[104] |
Teimuri, S., Hosseini, A., Rezaenasab, A., Ghaedi, K., Ghoveud, E., Etemadifar, M., Nasr-Esfahani, M. H. and Megraw, T. L. (2018) Integrative analysis of lncRNAs in Th17 cell lineage to discover new potential biomarkers and therapeutic targets in autoimmune diseases. Mol. Ther. Nucleic Acids, 12, 393–404
CrossRef
Pubmed
Google scholar
|
[105] |
Li, S., Yu, X., Lei, N., Cheng, Z., Zhao, P., He, Y., Wang, W. and Peng, M. (2017) Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci. Rep., 7, 45981
CrossRef
Pubmed
Google scholar
|
[106] |
Wang, X., Yang, C., Guo, F., Zhang, Y., Ju, Z., Jiang, Q., Zhao, X., Liu, Y., Zhao, H., Wang, J.,
CrossRef
Pubmed
Google scholar
|
[107] |
Schultz, B. M., Gallicio, G. A., Cesaroni, M., Lupey, L. N. and Engel, N. (2015) Enhancers compete with a long non-coding RNA for regulation of the Kcnq1 domain. Nucleic Acids Res., 43, 745–759
CrossRef
Pubmed
Google scholar
|
[108] |
Ørom, U. A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., Lai, F., Zytnicki, M., Notredame, C., Huang, Q.,
CrossRef
Pubmed
Google scholar
|
[109] |
Pyfrom, S. C., Luo, H. and Payton, J. E. (2019) PLAIDOH: a novel method for functional prediction of long non-coding RNAs identifies cancer-specific LncRNA activities. BMC Genomics, 20, 137
CrossRef
Pubmed
Google scholar
|
[110] |
Khyzha, N., Khor, M., DiStefano, P. V., Wang, L., Matic, L., Hedin, U., Wilson, M. D., Maegdefessel, L. and Fish, J. E. (2019) Regulation of CCL2 expression in human vascular endothelial cells by a neighboring divergently transcribed long noncoding RNA. Proc. Natl. Acad. Sci. USA, 116, 16410–16419
CrossRef
Pubmed
Google scholar
|
[111] |
The Gene Ontology Consortium. (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res., 47, D330–D338
CrossRef
Pubmed
Google scholar
|
[112] |
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 45, D353–D361
CrossRef
Pubmed
Google scholar
|
[113] |
Yang, Q., Li, B., Tang, J., Cui, X., Wang, Y., Li, X., Hu, J., Chen, Y., Xue, W., Lou, Y.,
CrossRef
Pubmed
Google scholar
|
[114] |
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.,
CrossRef
Pubmed
Google scholar
|
[115] |
Hong, J., Luo, Y., Zhang, Y., Ying, J., Xue, W., Xie, T., Tao, L. and Zhu, F. (2020) Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning. Brief. Bioinform., 21, 1437–1447
CrossRef
Pubmed
Google scholar
|
[116] |
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef
Pubmed
Google scholar
|
[117] |
Yang, Q., Wang, Y., Zhang, Y., Li, F., Xia, W., Zhou, Y., Qiu, Y., Li, H. and Zhu, F. (2020) NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data. Nucleic Acids Res., 48, W436–W448
CrossRef
Pubmed
Google scholar
|
[118] |
Li, B., Tang, J., Yang, Q., Li, S., Cui, X., Li, Y., Chen, Y., Xue, W., Li, X. and Zhu, F. (2017) NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res., 45, W162–W170
CrossRef
Pubmed
Google scholar
|
[119] |
Tang, J., Fu, J., Wang, Y., Li, B., Li, Y., Yang, Q., Cui, X., Hong, J., Li, X., Chen, Y.,
CrossRef
Pubmed
Google scholar
|
[120] |
Clough, E. and Barrett, T. (2016) The gene expression omnibus database. Methods Mol. Biol., 1418, 93–110
CrossRef
Pubmed
Google scholar
|
[121] |
Li, F., Zhou, Y., Zhang, X., Tang, J., Yang, Q., Zhang, Y., Luo, Y., Hu, J., Xue, W., Qiu, Y.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |