A personal journey on cracking the genomic codes

Michael Q. Zhang

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (1) : 8 -22.

PDF (620KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (1) : 8 -22. DOI: 10.15302/J-QB-021-0245
FEATURE
FEATURE

A personal journey on cracking the genomic codes

Author information +
History +
PDF (620KB)

Graphical abstract

Cite this article

Download citation ▾
Michael Q. Zhang. A personal journey on cracking the genomic codes. Quant. Biol., 2021, 9(1): 8-22 DOI:10.15302/J-QB-021-0245

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921

[2]

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., (2001) The sequence of the human genome. Science, 291, 1304–1351

[3]

Zhang, M. Q. (1988) Nonequilibrium steady states of some stochastic lattice gas models. Nucl. Phys. B Proc. Suppl., 5, 278–283

[4]

Zhang, M. Q., Wang, J. S., Lebowitz, J. L. and Valles, J. L. (1988) Power law decay of correlations in stationary nonequilibrium lattice gases with conservative dynamics. J. Stat. Phys., 52, 1461

[5]

Krug, J., Lebowitz, J.L., Spohn, H., and Zhang, M. Q. (1986) The fast rate limit of diffusive system. J. Stat. Phys., 44, 535.308

[6]

Zhang, M. Q. (1989) A fast vectorized multispin coding algorithm for 3D monte carlo simulations using Kawasaki Spin-exchange dynamics. J. Stat. Phys., 56, 939–950

[7]

Zhang, M. Q. (1987) Supersymmetrical approach to critical dynamics of relaxational models. Phys. Rev. B Condens. Matter, 36, 3824–3829

[8]

Mallick, K., Moshe, M. and Orland, H. (2011) A field-theoretic approach to non-equilibrium work identities. J. Phys. A, 44, 095002

[9]

Zhang, M. Q. and Percus, J. K. (1989) Direct correlations of the capillary wave model and construction of free energy density functional for the liquid-vapor interface system. J. Chem. Phys., 90, 3795–3799

[10]

Zhang, M. Q. and Percus, J. K. (1989) Inhomogeneous Ising model on a multiconnected networks. J. Stat. Phys., 56, 695–708

[11]

Zhang, M. Q. and Percus, J. K. (1990) A Recursive density functional formalism of nonuniform fluids. J. Chem. Phys., 92, 6779–6785

[12]

Zhang, M. Q. (1991) Exact response functions of a 2D fermion fluid. J. Math. Phys., 32, 1344–1349

[13]

Zhang, M. Q. (1991) How to find the Lax Pairs from the Yang-Baxter equations. Commun. Math. Phys., 141, 523–531

[14]

DeLisi, C. (1988) Computers in molecular biology: current applications and emerging trends. Science, 240, 47–52

[15]

Watson, J. D. (1990) The human genome project: past, present, and future. Science, 248, 44–49

[16]

Lander, E. S. and Waterman, M. S. (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics, 2, 231–239

[17]

Zhang, M. Q. and Marr, T. G. (1993) Genome mapping by nonrandom anchoring: a discrete theoretical analysis. Proc. Natl. Acad. Sci. USA, 90, 600–604

[18]

Zhang, M. Q. and Marr, T. G. (1994) Genome mapping with random anchored clones: A discrete theoretical analysis. J. Stat. Phys., 73, 611–623

[19]

Zhang, M. Q. and Marr, T. G. (1994) Fission yeast gene structure and recognition. Nucleic Acids Res., 22, 1750–1759

[20]

Chen, T. and Zhang, M. Q. (1998) Pombe: A gene-finding and exon-intron structure prediction system for fission yeast. Yeast, 14, 701–710

[21]

Zhang, M. Q. (1997) Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc. Natl. Acad. Sci. USA, 94, 565–568

[22]

Zhang, M. Q. (1998) Statistical features of human exons and their flanking regions. Hum. Mol. Genet., 7, 919–932

[23]

Liu, H. X., Zhang, M. and Krainer, A. R. (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev., 12, 1998–2012

[24]

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273–3297

[25]

Karlin, S. and Altschul, S. F. (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA, 87, 2264–2268

[26]

Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J. Mol. Biol., 268, 78–94

[27]

Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470

[28]

Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y., Brown, P. O. and Davis, R. W. (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA, 94, 13057–13062

[29]

Getz, G., Levine, E., Domany, E. and Zhang, M. Q. (2000) Super-paramagnetic clustering of yeast gene expression profiles. Physica A, 279, 457–464

[30]

Gilbert, W. (1991) Towards a paradigm shift in biology. Nature, 349, 99

[31]

Pennisi, E. (2003) Human genome: A low number wins the genedweep pool. Science, 300, 1484.

[32]

Guigó R., Birney, E., Brent, M., Dermitzakis, E., Pachter, L., Roest Crollius, H., Solovyev, V. and Zhang, M. Q. (2004) Needed for completion of the human genome: hypothesis driven experiments and biologically realistic mathematical models.

[33]

Zhu, J. and Zhang, M. Q. (1999) SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics, 15, 607–611

[34]

Zhang, M. Q. (1999) Promoter analysis of co-regulated genes in the yeast genome. Comput. Chem., 23, 233–250

[35]

Lydall, D., Ammerer, G. and Nasmyth, K. (1991) A new role for MCM1 in yeast: cell cycle regulation of SW15 transcription. Genes Dev., 5, 2405–2419

[36]

Zhu, G., Spellman, P.T., Volpe, T., Brown, P.O., Botstein, D., Davis, T.N. and Futcher, B. (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406, 90–94

[37]

Iyer, V. and Struhl, K. (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J., 14, 2570–2579

[38]

Blat, Y. and Kleckner, N. (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell, 98, 249–259

[39]

Ren, B., Robert, F., Wyrick, J.J., Aparico, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., (2000) Science Genome-wide location and function of DNA binding proteins. Science, 290, 2306–2309

[40]

Iyer, V. R., Horak, C. E., Scafe, C. S., Botstein, D., Snyder, M. and Brown, P. O. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409, 533–538

[41]

Simon, I., Barnett, J., Hannett, N., Harbison, C. T., Rinaldi, N. J., Volkert, T. L., Wyrick, J. J., Zeitlinger, J., Gifford, D. K., Jaakkola, T. S., (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell, 106, 697–708

[42]

Kato, M., Hata, N., Banerjee, N., Futcher, B. and Zhang, M. Q. (2004) Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol., 5, R56

[43]

Ioshikhes, I., Trifonov, E. N. and Zhang, M. Q. (1999) Periodical distribution of transcription factor sites in promoter regions and connection with chromatin structure. Proc. Natl. Acad. Sci. USA, 96, 2891–2895

[44]

Ioshikhes, I. P. and Zhang, M. Q. (2000) Large-scale human promoter mapping using CpG islands. Nat. Genet., 26, 61–63

[45]

Davuluri, R. V., Suzuki, Y., Sugano, S. and Zhang, M. Q. (2000) CART classification of human 5′ UTR sequences. Genome Res., 10, 1807–1816

[46]

Davuluri, R. V., Grosse, I. and Zhang, M. Q. (2001) Computational identification of promoters and first exons in the human genome. Nat. Genet., 29, 412–417

[47]

Kel, A. E., Kel-Margoulis, O. V., Farnham, P. J., Bartley, S. M., Wingender, E. and Zhang, M. Q. (2001) Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. J. Mol. Biol., 309, 99–120

[48]

Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q. and Farnham, P. J. (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell. Biol., 21, 6820–6832

[49]

Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R. A. and Dynlacht, B. D. (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev., 16, 245–256

[50]

Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., Piccolboni, A., Sementchenko,V., Cheng, J., Williams, A. J., (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116, 499–509

[51]

Kim, T. H., Barrera, L. O., Zheng, M., Qu, C., Singer, M. A., Richmond, T. A., Wu, Y., Green, R. D. and Ren, B. (2005) A high-resolution map of active promoters in the human genome. Nature, 436, 876–880

[52]

Alkema, W. and Wasserman, W. W. (2003) Understanding the language of gene regulation. Genome Biol., 4, 327

[53]

Bussemaker, H. J., Li, H. and Siggia, E. D. (2001) Regulatory element detection using correlation with expression. Nat. Genet., 27, 167–171

[54]

Das, D., Banerjee, N. and Zhang, M. Q. (2004) Interacting models of cooperative gene regulation. Proc. Natl. Acad. Sci. USA, 101, 16234–16239

[55]

Das, D., Nahle, Z. and Zhang, M. Q. (2006) Adaptively inferring human transcriptional subnetworks. Mol. Sys. Biol., 2:2006.0029

[56]

Das, D. and Zhang, M. Q. (2007) Predictive Models of Gene Regulation: Application of Regression Methods to Microarray Data, ed. Korenberg, M., 377: 95, In: Methods in Molecular Biology. Springer

[57]

Sumazin, P., Chen, G., Hata, N., Smith,A. D., Zhang, T. and Zhang, M. Q. (2005) DWE: discriminating word enumerator. Bioinformatics, 21, 31–38

[58]

Smith, A. D., Sumazin, P. and Zhang, M. Q. (2005) Identifying tissue-selective transcription factor binding sites in vertebrate promoters. Proc. Natl. Acad. Sci. USA, 102, 1560–1565

[59]

Smith, A. D., Sumazin, P., Das, D. and Zhang, M. Q. (2005) Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics, 21, i403–i412

[60]

Smith, A. D., Sumazin, P., Xuan, Z. and Zhang, M. Q. (2006) DNA motifs in human and mouse proximal promoters predict tissue-specific expression. Proc. Natl. Acad. Sci. USA, 103, 6275–6280

[61]

Smith, A. D., Sumazin, P. and Zhang, M. Q. (2007) Tissue-specific regulatory elements in mammalian promoters. Mol. Syst. Biol., 3, 73

[62]

Stamm, S., Zhang, M. Q., Marr, T. G. and Helfman, D. M. (1994) A sequence compilation and comparison of exons that are alternatively spliced in neurons. Nucleic Acids Res., 22, 1515–1526

[63]

Stamm, S., Zhu, J., Nakai, K., Stoilov,P., Stoss, O. and Zhang, M. Q. (2000) A database and statistical analysis of aternative exons. DNA Cell Biol., 19, 739–756

[64]

Zhang, M. Q. (2001) Discriminant analysis and its application in DNA sequence motif recognition. Brief. Bioinform., 1, 331–342

[65]

Wu, Q. and Maniatis, T. (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell, 97, 779–790

[66]

Wu, Q., Zhang, T., Cheng, J.-F., Kim, Y., Grimwood, J., Schmutz, J., Dickson, M., Noonan, J. P., Zhang, M. Q., Myers, R. M., (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res., 11, 389–404

[67]

Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y., (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell, 162, 900–910

[68]

Prasanth, K. V., Prasanth, S. G., Xuan, Z., Hearn, S., Freier, S. M., Bennett, C. F., Zhang, M. Q., Spector, D. L. and Spector, D. L. (2005) Regulating gene expression through RNA nuclear retention. Cell, 123, 249–263

[69]

Bernard, D., Prasanth, K. V., Tripathi, V., Colasse, S., Nakamura, T., Xuan, Z., Zhang, M. Q., Sedel, F., Jourdren, L., Coulpier, F., (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J., 29, 3082–3093

[70]

Chen, G., Li, W., Zhang, Q.-S., Regulski, M., Sinha, N., Barditch, J., Tully, T., Krainer, A. R., Zhang, M. Q. and Dubnau, J. (2008) Identification of synaptic targets of Drosophila pumilio. PLOS Comput. Biol., 4, e1000026

[71]

Xie, P., Liu, Y., Li, Y., Zhang, M. Q. and Wang, X. (2014) MIROR: a method for cell-type specific microRNA occupancy rate prediction. Mol. Biosyst., 10, 1377–1384

[72]

Yuan, Y., Liu, B., Xie, P., Zhang,M. Q., Li, Y., Xie, Z. and Wang, X. (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112, 3158–3163

[73]

He, M., Liu, Y., Wang, X., Zhang, M. Q., Hannon, G. J. and Huang, Z. J. (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron, 73, 35–48

[74]

Zhang, M. Q. and Marr, T. G. (1993) A weight array method for splicing signal analysis. Comput. Appl. Biosci., 9, 499–509

[75]

Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q. and Krainer, A. R. (2003) ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res., 31, 3568–3571

[76]

Zhang, C., Hastings, M. L., Krainer, A. R. and Zhang, M. Q. (2007) Dual-specificity splice sites function alternatively as 5′ and 3′ splice sites. Proc. Natl. Acad. Sci. USA, 104, 15028–15033

[77]

Zhang, C., Krainer, A. R. and Zhang, M. Q. (2007) Evolutionary impact of limited splicing fidelity in mammalian genes. Trends Genet., 23, 484–488

[78]

Zhang, C., Zhang, Z., Castle, J., Sun, S., Johnson, J., Krainer, A. R. and Zhang, M. Q. (2008) Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev., 22, 2550–2563

[79]

Weyn-Vanhentenryck, S., Sun, S., Yan, Q., Mele, A., Farny, N., Silver, Z., Zhang,M. Q., Krainer, A.R., Darnell, R.B. and Zhang, C. (2014) HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep., 6, 1139–1152

[80]

Castle, J. C., Zhang, C., Shah, J. K., Kulkarni, A. V., Cooper, T. A. and Johnson, J. M. (2008) Differential expression of 24,426 human alternative splicing events and predicted cis-regulation in 48 tissues. Nat. Genet., 40, 1416

[81]

Wu, J., Akerman, M., Sun, S., McCombie, W. R., Krainer, A. R. and Zhang, M. Q. (2011) SpliceTrap: a method to quantify alternative splicing under single cellular conditions. Bioinformatics, 27, 3010–3016

[82]

Wu, J., Anczuków, O., Krainer, A. R., Zhang, M. Q. and Zhang, C. (2013) OLego: fast and sensitive mapping of spliced mRNA-Seq reads using small seeds. Nucleic Acids Res., 41, 5149–5163

[83]

Akerman, M., Fregoso, O. I., Das, S., Ruse, C., Jensen, M. A., Pappin, D. J., Zhang, M. Q. and Krainer, A. R. (2015) Differential connectivity of splicing activators and repressors to the human spliceosome. Genome Biol., 16, 119

[84]

Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J. and Bestor, T. H. (2006) Large-scale structure of genomic methylation patterns. Genome Res., 16, 157–163

[85]

Das, R., Dimitrova, N., Xuan, Z., Rollins, R. A., Haghighi, F., Edwards, J. R., Ju, J., Bestor, T. H. and Zhang, M. Q. (2006) Computational prediction of methylation status in human genomic sequences. Proc. Natl. Acad. Sci. USA, 103, 10713–10716

[86]

Hodges, E., Smith, A.D., Kendall, J., Xuan, Z., Ravi, K., Rooks, M., Zhang, M.Q., Ye, K., Bhattacharjee, A., Brizuela, L., (2009) High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res., 19,1593–1605

[87]

Zhang, M. Q. and Smith, A. D. (2010) Challenges in understanding genome-wide DNA methylation. J. Comp. & Tech., 25, 26–34

[88]

Harris, R. A., Wang, T., Coarfa, C., Nagarajan,R. P., Hong, C., Downey, S. L., Johnson, B. E., Fouse, S. D., Delaney, A., Zhao, Y., (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol., 28, 1097–1105

[89]

Chung, W.-Y., Schmitz, R. J., Biorac, T., Ye, D., Dudas, M., Meredith, G. D., Adams, C. C., Ecker, J. R. and Zhang, M. Q. (2013) Constructing hepitypes: phasing local genotype and DNA methylation. JNSNE, 4, 335–346

[90]

Wu, D., Gu, J. and Zhang, M. Q. (2013) FastDMA: an infinium humanmethylation450 beadchip analyzer. PLoS One, 8, e74275

[91]

Ma, X., Wang, Y. W., Zhang, M. Q. and Gazdar, A. F. (2013) DNA methylation data analysis and its application to cancer research. Epigenomics, 5, 301–316

[92]

Zhang, Y.A., Ma, X., Sathe, A., Fujimoto, J., Wistuba, I.I., Lam, S., Yatabe, Y., Wang, Y.W., Stastny V, Gao, B., (2016) Validation of SCT Methylation As a Hallmark Biomarker for Lung Cancers. J. Thorac. Oncol., 11, 346–360

[93]

Guo, W., Fiziev, P., Yan, W., Cokus, S., Sun, X., Zhang, M. Q., Chen, P. Y. and Pellegrini, M. (2013) BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14, 774

[94]

Guo, W., Chung, W. Y., Qian, M., Pellegrini, M. and Zhang, M. Q. (2014) Characterizing the strand-specific distribution of non-CpG methylation in human pluripotent cells. Nucleic Acids Res., 42, 3009–3016

[95]

Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903

[96]

Xie, W., Schultz, M. D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J. W., Tian, S., Hawkins, R. D., Leung, D., (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell, 153, 1134–1148

[97]

Leung, D., Jung, I., Rajagopal, N., Schmitt, A., Selvaraj, S., Lee, A. Y., Yen, C. A., Lin, S., Lin, Y., Qiu,Y., (2015) Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature, 518, 350–354

[98]

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330

[99]

Zhao, X., Xuan, Z. and Zhang, M. Q. (2007) Boosting with stumps for predicting transcription start sites. Genome Biol., 8, R17

[100]

Wang, X., Xuan, Z., Zhao, X., Li, Y. and Zhang, M. Q. (2009) High-resolution human core-promoter prediction with CoreBoost_HM. Genome Res., 19, 266–275

[101]

Xing, H., Liao, W., Mo, Y. and Zhang, M. Q. (2012) A novel Bayesian change-point algorithm for genome-wide analysis of diverse ChIPseq data types. J. Vis. Exp., 70, e4273

[102]

Xing, H., Mo, Y., Liao, W. and Zhang, M. Q. (2012) Genomewide localization of protein-DNA binding and histone modification by BCP with ChIP-seq data. PLoS. Comput. Biol., 8, e1002613

[103]

Thomas, R., Thomas, S., Holloway, A. K. and Pollard, K. S. (2017) Features that define the best ChIP-seq peak calling algorithms. Brief Bioinform., 18, 441–450

[104]

Ouyang, W., Liao, W., Luo, C. T., Yin,N., Huse, M., Kim, M. V., Peng, M., Chan, P., Ma,Q., Mo, Y., (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature, 491, 554–559

[105]

Xuan, Z. and Zhang, M. Q. (2005) From worm to human: bioinformatics approaches to identify FOXO target genes. Mech. Ageing Dev., 126, 209–215

[106]

Renault, V. M., Thekkat, P. U., Hoang, K. L., White, J. L., Brady, C. A., Kenzelmann Broz, D., Venturelli, O. S., Johnson, T. M., Oskoui, P. R., Xuan, Z., (2011) The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene, 30, 3207–3221

[107]

Kim, T. H., Abdullaev, Z. K., Smith, A. D., Ching, K. A., Loukinov, D. I., Green, R. D., Zhang, M. Q., Lobanenkov,V. V. and Ren, B. (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell, 128, 1231–1245

[108]

Barrera, L. O., Li, Z., Smith, A. D., Arden, K. C., Cavenee, W. K., Zhang, M. Q., Green, R. D. and Ren, B. (2008) Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res., 18, 46–59

[109]

He, C., Zhang, M. Q. and Wang, X. (2015) MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31, 3832–3834

[110]

Li, G., Chen, Y., Snyder, M. P. and Zhang, M. Q. (2017) ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Nucleic Acids Res., 45, e4

[111]

Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16, 288

[112]

Djekidel, M. N., Chen, Y. and Zhang, M. Q. (2018) FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res., 28, 412–422

[113]

Chen, F., Li, G., Zhang, M. Q. and Chen, Y. (2018) HiCDB: a sensitive and robust method for detecting contact domain boundaries. Nucleic Acids Res., 46, 11239–11250

[114]

He, C., Wang, X., and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen receoptor alpha associated long-range interactions. Nucleic Acids Res., 42, 6935–6944

[115]

Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., Zhang, M. Q. and Snyder, M.P. (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res., 24, 1905–1917

[116]

Chen, Y., Wang, Y., Xuan, Z., Chen, M. and Zhang, M. Q. (2016) De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles. Nucleic Acids Res., 44, e106

[117]

Ramanand, S. G., Chen, Y., Yuan, J., Daescu,K., Lambros, M. B., Houlahan, K. E., Carreira, S., Yuan, W., Baek, G., Sharp, A., (2020) The landscape of RNA polymerase II-associated chromatin interactions in prostate cancer. J Clin Invest, 130, 3987–4005

[118]

Liu, X., Zhang, Y., Chen, Y., Li, M., Shao, Z., Zhang, M.Q. and Xu, J. (2018) CAPTURE: In situ analysis of chromatin composition of endogenous genomic loci by biotinylated dCas9. Curr. Protoc. Mol. Biol. 123, e64

[119]

Liu, X., Chen, Y., Zhang, Y., Liu,Y., Liu, N., Botten, G. A., Cao, H., Orkin, S. H., Zhang, M. Q. and Xu, J. (2020) Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. Genome Biol., 21, 59

[120]

Liang, Z., Li, G., Wang, Z., Djekidel,M. N., Li, Y., Qian, M. P.Zhang, M.Q. and Chen, Y. (2017) BL-Hi-C: efficient and sensitive approach for structural and regulatory chromatin interactions. Nat. Commun., 8, 1622

[121]

Xiao, R., Chen, J. Y., Liang, Z., Luo, D., Chen, G., Lu, Z. J., Chen, Y., Zhou, B., Li,H., Du, X., (2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell, 178, 107–121.e18

[122]

Chen, F. X., Xie, P., Collings, C. K., Cao, K., Aoi, Y., Marshall, S. A., Rendleman, E. J., Ugarenko,M., Ozark, P. A., Zhang, A., (2017) PAF1 regulation of promoter-proximal pause release via enhancer activation. Science, 357, 1294–1298

[123]

Kim, Y. J., Xie, P., Cao, L., Zhang, M.Q., and Kim, T.H. (2018) Global transcriptional activity dynamics reveal functional enhancer RNAs. Genome Res., 28, 1799–1811

[124]

Ni, Y., Cao, B., Ma, T., Niu,G., Huo, Y., Huang, J., Chen, D., Liu, Y., Yu,B., Zhang, M. Q., (2017) Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes. eLife, 6, e21660

[125]

Zhanghao, K., Chen, L., Yang, X., Wang, M., Jing, Z., Han, H., Zhang, M. Q., Jin, D., Gao, J. and Xi, P. (2016) Super-resolution dipole orientation mapping via polarization demodulation. Light Sci. Appl., 5, e16166

[126]

Shi, M., Gao, J. and Zhang, M. Q. (2017) Web3DMol: interactive protein structure visualization based on WebGL. Nucleic Acids Res., 45, W523–W527

[127]

Niu, J., Zhang, X., Li, G., Yan, P. X., Yan, Q., Dai, Q. H., Jin, D. Y., Shen, X. H., Wang, J. G., Zhang, M. Q., (2020) Novel cytogenetic method to image chromatin interactions with sub-kilobase resolution: Tn5-FISH. J. Genet. Genomics, 47, 123

[128]

Li, X., Chen, W., Chen, Y., Zhang, X., Gu, J. and Zhang, M. Q. (2017) Network embedding-based representation learning for single cell RNA-seq data. Nucleic Acids Res., 45, e166

[129]

Liu, Z., Lou, H., Xie, K., Wang, H., Chen, N., Aparicio, O. M., Zhang, M. Q., Jiang, R. and Chen, T. (2017) Reconstructing cell cycle pseudo time-series via single-cell transcriptome data. Nat. Commun., 8, 22

[130]

Xie, P., Gao, M., Wang, C., Zhang, J., Noel, P., Yang, C., Von Hoff, D., Han, H., Zhang, M. Q. and Lin, W. (2019) SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Res., 47, e48

[131]

Xiong, L., Xu, K., Tian, K., Shao,Y., Tang, L., Gao, G., Zhang, M., Jiang, T. and Zhang, Q. C. (2019) SCALE method for single-cell ATAC-seq analysis via latent feature extraction. Nat. Commun., 10, 4576

[132]

MacArthor, B. (2021) Truth and beauty in physics and biology. Nat. Phys., 17, 149–151

[133]

Jiang, R., Zhang , X., and Zhang, M. Q., (2013) Basics of Bioinformatics: Lecture Notes of Graduate Summer School on Bioinformatics of China. Springer

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (620KB)

7130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/