Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio
Zongwei Guo, Fangkui Yin, Peiran Wang, Ting Song, Zhichao Zhang
Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio
Background: Inhibitors of B-cell CLL/lymphoma 2 (Bcl-2) family proteins have shown hope as antitumor drugs. While the notion that it is efficient to coordinate, balance, and neutralize both arms of the anti-apoptotic Bcl-2 family has been validated in many cancer cells, the weights of the two arms contributing to apoptosis inhibition have not been explored. This study analyzed the best combination ratio for different Bcl-2 selective inhibitors.
Methods: We used a previously established mathematical model to study the weights of Bcl-2 (representing both Bcl-2 and Bcl-xL in this study) and myeloid cell leukemia-1 (Mcl-1). Correlation and single-parameter sensitivity analysis were used to find the major molecular determinants for Bcl-2 and Mcl-1 dependency, as well as their weights. Biological experiments were used to verify the mathematical model.
Results: Bcl-2 protein level and Mcl-1 protein level, production, and degradation rates were the major molecular determinants for Bcl-2 and Mcl-1 dependency. The model gained agreement with the experimental assays for ABT-737/A-1210477 and ABT-737/compound 5 combination effect in MCF-7 and MDA-MB-231. Two sets of equations composed of Bcl-2 and Mcl-1 levels were obtained to predict the best combination ratio for Bcl-2 inhibitors with Mcl-1 inhibitors that stabilize and downregulate Mcl-1, respectively.
Conclusions: The two sets of equations can be used as tools to bypass time-consuming and laborious experimental screening to predict the best drug combination ratio for treatment.
We used a mathematical model combined with experimental verification to quantitatively examine the contribution of the two arms of anti-apoptotic Bcl-2 proteins to apoptosis by weight. The correlation analysis and single-parameter sensitivity analysis showed that Bcl-2 protein level and Mcl-1 protein level, production, and degradation rates were the major molecular determinants. We gained two sets of equations as tools to bypass the time-consuming and laborious experimental screening to predict the best drug combination ratio for treatment. Biological experiments have verified the efficiency of the tools in MCF-7, MDA-MB-231, OCI-AML3, and HCT-116 cells.
weights of Bcl-2/Mcl-1 / drug-target network / Bcl-2/Mcl-1 inhibitors combination / mathematical modeling
[1] |
Leber, B., Lin, J. and Andrews, D. W. (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis, 12, 897–911
CrossRef
Pubmed
Google scholar
|
[2] |
van Delft, M. F. and Huang, D. C. (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res., 16, 203–213
CrossRef
Pubmed
Google scholar
|
[3] |
García-Sáez, A. J. (2012) The secrets of the Bcl-2 family. Cell Death Differ., 19, 1733–1740
CrossRef
Pubmed
Google scholar
|
[4] |
Certo, M., Del Gaizo Moore, V., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S. A. and Letai, A. (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 9, 351–365
CrossRef
Pubmed
Google scholar
|
[5] |
Opferman, J. T. (2016) Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J., 283, 2661–2675
CrossRef
Pubmed
Google scholar
|
[6] |
Dewson, G. and Kluck, R. M. (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci., 122, 2801–2808
CrossRef
Pubmed
Google scholar
|
[7] |
Shamas-Din, A., Kale, J., Leber, B. and Andrews, D. W. (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol., 5, a008714
CrossRef
Pubmed
Google scholar
|
[8] |
Lee, S., Park, K. and Kim, D. (2009) Building a drug-target network and its applications. Expert Opin. Drug Discov., 4, 1177–1189
CrossRef
Pubmed
Google scholar
|
[9] |
Adams, J. M. and Cory, S. (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
CrossRef
Pubmed
Google scholar
|
[10] |
Youle, R. J. and Strasser, A. (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 9, 47–59
CrossRef
Pubmed
Google scholar
|
[11] |
Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. (2010) The BCL-2 family reunion. Mol. Cell, 37, 299–310
CrossRef
Pubmed
Google scholar
|
[12] |
Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M. and Huang, D. C. (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell, 17, 393–403
CrossRef
Pubmed
Google scholar
|
[13] |
Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J.,
CrossRef
Pubmed
Google scholar
|
[14] |
Del Gaizo Moore, V., Brown, J. R., Certo, M., Love, T. M., Novina, C. D. and Letai, A. (2007) Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest., 117, 112–121
CrossRef
Pubmed
Google scholar
|
[15] |
Tahir, S. K., Yang, X., Anderson, M. G., Morgan-Lappe, S. E., Sarthy, A. V., Chen, J., Warner, R. B., Ng, S. C., Fesik, S. W., Elmore, S. W.,
CrossRef
Pubmed
Google scholar
|
[16] |
Vogler, M., Dinsdale, D., Sun, X. M., Young, K. W., Butterworth, M., Nicotera, P., Dyer, M. J. and Cohen, G. M. (2008) A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ., 15, 820–830
CrossRef
Pubmed
Google scholar
|
[17] |
van Delft, M. F., Wei, A. H., Mason, K. D., Vandenberg, C. J., Chen, L., Czabotar, P. E., Willis, S. N., Scott, C. L., Day, C. L., Cory, S.,
CrossRef
Pubmed
Google scholar
|
[18] |
Nguyen, M., Marcellus, R. C., Roulston, A., Watson, M., Serfass, L., Murthy Madiraju, S. R., Goulet, D., Viallet, J., Bélec, L., Billot, X.,
CrossRef
Pubmed
Google scholar
|
[19] |
Li, Z., He, S. and Look, A. T. (2019) The MCL1-specific inhibitor S63845 acts synergistically with venetoclax/ABT-199 to induce apoptosis in T-cell acute lymphoblastic leukemia cells. Leukemia, 33, 262–266
CrossRef
Pubmed
Google scholar
|
[20] |
Moujalled, D. M., Pomilio, G., Ghiurau, C., Ivey, A., Salmon, J., Rijal, S., Macraild, S., Zhang, L., Teh, T. C., Tiong, I. S.,
CrossRef
Pubmed
Google scholar
|
[21] |
Lee, E. F., Harris, T. J., Tran, S., Evangelista, M., Arulananda, S., John, T., Ramnac, C., Hobbs, C., Zhu, H., Gunasingh, G.,
CrossRef
Pubmed
Google scholar
|
[22] |
Algarín, E. M., Díaz-Tejedor, A., Mogollón, P., Hernández-García, S., Corchete, L. A., San-Segundo, L., Martín-Sánchez, M., González-Méndez, L., Schoumacher, M., Banquet, S.,
CrossRef
Pubmed
Google scholar
|
[23] |
Lindner, A. U., Concannon, C. G., Boukes, G. J., Cannon, M. D., Llambi, F., Ryan, D., Boland, K., Kehoe, J., McNamara, D. A., Murray, F.,
CrossRef
Pubmed
Google scholar
|
[24] |
Lindner, A. U., Salvucci, M., Morgan, C., Monsefi, N., Resler, A. J., Cremona, M., Curry, S., Toomey, S., O’Byrne, R., Bacon, O.,
CrossRef
Pubmed
Google scholar
|
[25] |
Lucantoni, F., Lindner, A. U., O’Donovan, N., Düssmann, H. and Prehn, J. H. M. (2018) Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis., 9, 42
CrossRef
Pubmed
Google scholar
|
[26] |
Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T. and Rehm, M. (2018) Bax retrotranslocation potentiates Bcl-xL’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death Dis., 9, 430
CrossRef
Pubmed
Google scholar
|
[27] |
Czabotar, P. E., Lee, E. F., van Delft, M. F., Day, C. L., Smith, B. J., Huang, D. C. S., Fairlie, W. D., Hinds, M. G. and Colman, P. M. (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA, 104, 6217–6222
CrossRef
Pubmed
Google scholar
|
[28] |
Yang, T., Buchan, H. L., Townsend, K. J. and Craig, R. W. (1996) MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J. Cell. Physiol., 166, 523–536
CrossRef
Pubmed
Google scholar
|
[29] |
Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F. and Wang, X. (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev., 17, 1475–1486
CrossRef
Pubmed
Google scholar
|
[30] |
Zhang, H., Guttikonda, S., Roberts, L., Uziel, T., Semizarov, D., Elmore, S. W., Leverson, J. D. and Lam, L. T. (2011) Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines. Oncogene, 30, 1963–1968
CrossRef
Pubmed
Google scholar
|
[31] |
Leverson, J. D., Zhang, H., Chen, J., Tahir, S. K., Phillips, D. C., Xue, J., Nimmer, P., Jin, S., Smith, M., Xiao, Y.,
CrossRef
Pubmed
Google scholar
|
[32] |
Song, T., Wang, Z., Ji, F., Feng, Y., Fan, Y., Chai, G., Li, X., Li, Z. and Zhang, Z. (2016) Deactivation of Mcl-1 by dual-function small-molecule inhibitors targeting the Bcl-2 homology 3 domain and facilitating Mcl-1 ubiquitination. Angew. Chem. Int. Ed. Engl., 55, 14250–14256
CrossRef
Pubmed
Google scholar
|
[33] |
Tokar, T. and Ulicny, J. (2013) The mathematical model of the Bcl-2 family mediated MOMP regulation can perform a non-trivial pattern recognition. PLoS One, 8, e81861
CrossRef
Pubmed
Google scholar
|
[34] |
Adams, J. M. and Cory, S. (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
CrossRef
Pubmed
Google scholar
|
[35] |
Soderquist, R. S., Crawford, L., Liu, E., Lu, M., Agarwal, A., Anderson, G. R., Lin, K. H., Winter, P. S., Cakir, M. and Wood, K. C. (2018) Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun., 9, 3513
CrossRef
Pubmed
Google scholar
|
[36] |
Song, T., Zhang, M., Liu, P., Xue, Z., Fan, Y. and Zhang, Z. (2018) Identification of JNK1 as a predicting biomarker for ABT-199 and paclitaxel combination treatment. Biochem. Pharmacol., 155, 102–109
CrossRef
Pubmed
Google scholar
|
[37] |
Song, T., Chai, G., Liu, Y., Yu, X., Wang, Z. and Zhang, Z. (2016) Bcl-2 phosphorylation confers resistance on chronic lymphocytic leukaemia cells to the BH3 mimetics ABT-737, ABT-263 and ABT-199 by impeding direct binding. Br. J. Pharmacol., 173, 471–483
CrossRef
Pubmed
Google scholar
|
[38] |
Touzeau, C., Ryan, J., Guerriero, J., Moreau, P., Chonghaile, T. N., Le Gouill, S., Richardson, P., Anderson, K., Amiot, M. and Letai, A. (2016) BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia, 30, 761–764
CrossRef
Pubmed
Google scholar
|
[39] |
Al-Harbi, S., Hill, B. T., Mazumder, S., Singh, K., Devecchio, J., Choudhary, G., Rybicki, L. A., Kalaycio, M., Maciejewski, J. P., Houghton, J. A.,
CrossRef
Pubmed
Google scholar
|
[40] |
Goodwin, C. M., Rossanese, O. W., Olejniczak, E. T. and Fesik, S. W. (2015) Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ., 22, 2098–2106
CrossRef
Pubmed
Google scholar
|
[41] |
Wang, Z., He, N., Guo, Z., Niu, C., Song, T., Guo, Y., Cao, K., Wang, A., Zhu, J., Zhang, X.,
CrossRef
Pubmed
Google scholar
|
[42] |
Lebraud, H. and Heightman, T. D. (2017) Protein degradation: a validated therapeutic strategy with exciting prospects. Essays Biochem., 61, 517–527
CrossRef
Pubmed
Google scholar
|
[43] |
Papatzimas, J. W., Gorobets, E., Maity, R., Muniyat, M. I., MacCallum, J. L., Neri, P., Bahlis, N. J. and Derksen, D. J. (2019) From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J. Med. Chem., 62, 5522–5540
CrossRef
Pubmed
Google scholar
|
[44] |
An, S. and Fu, L. (2018) Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 36, 553–562
Pubmed
|
[45] |
Wang, X., Bathina, M., Lynch, J., Koss, B., Calabrese, C., Frase, S., Schuetz, J. D., Rehg, J. E. and Opferman, J. T. (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev., 27, 1351–1364
CrossRef
Pubmed
Google scholar
|
[46] |
Song, T., Wang, P., Yu, X., Wang, A., Chai, G., Fan, Y. and Zhang, Z. (2019) Systems analysis of phosphorylation-regulated Bcl-2 interactions establishes a model to reconcile the controversy over the significance of Bcl-2 phosphorylation. Br. J. Pharmacol., 176, 491–504
CrossRef
Pubmed
Google scholar
|
[47] |
Guo, Z., Song, T., Xue, Z., Liu, P., Zhang, M., Zhang, X. and Zhang, Z. (2020) Using CETSA assay and a mathematical model to reveal dual Bcl-2/Mcl-1 inhibition and on-target mechanism for ABT-199 and S1. Eur. J. Pharm. Sci., 142, 105105
CrossRef
Pubmed
Google scholar
|
[48] |
Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A. M., Lieberenz, M., Savitski, M. M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |