Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio

Zongwei Guo, Fangkui Yin, Peiran Wang, Ting Song, Zhichao Zhang

PDF(1737 KB)
PDF(1737 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (3) : 329-340. DOI: 10.15302/J-QB-021-0237
RESEARCH ARTICLE
RESEARCH ARTICLE

Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio

Author information +
History +

Abstract

Background: Inhibitors of B-cell CLL/lymphoma 2 (Bcl-2) family proteins have shown hope as antitumor drugs. While the notion that it is efficient to coordinate, balance, and neutralize both arms of the anti-apoptotic Bcl-2 family has been validated in many cancer cells, the weights of the two arms contributing to apoptosis inhibition have not been explored. This study analyzed the best combination ratio for different Bcl-2 selective inhibitors.

Methods: We used a previously established mathematical model to study the weights of Bcl-2 (representing both Bcl-2 and Bcl-xL in this study) and myeloid cell leukemia-1 (Mcl-1). Correlation and single-parameter sensitivity analysis were used to find the major molecular determinants for Bcl-2 and Mcl-1 dependency, as well as their weights. Biological experiments were used to verify the mathematical model.

Results: Bcl-2 protein level and Mcl-1 protein level, production, and degradation rates were the major molecular determinants for Bcl-2 and Mcl-1 dependency. The model gained agreement with the experimental assays for ABT-737/A-1210477 and ABT-737/compound 5 combination effect in MCF-7 and MDA-MB-231. Two sets of equations composed of Bcl-2 and Mcl-1 levels were obtained to predict the best combination ratio for Bcl-2 inhibitors with Mcl-1 inhibitors that stabilize and downregulate Mcl-1, respectively.

Conclusions: The two sets of equations can be used as tools to bypass time-consuming and laborious experimental screening to predict the best drug combination ratio for treatment.

Author summary

We used a mathematical model combined with experimental verification to quantitatively examine the contribution of the two arms of anti-apoptotic Bcl-2 proteins to apoptosis by weight. The correlation analysis and single-parameter sensitivity analysis showed that Bcl-2 protein level and Mcl-1 protein level, production, and degradation rates were the major molecular determinants. We gained two sets of equations as tools to bypass the time-consuming and laborious experimental screening to predict the best drug combination ratio for treatment. Biological experiments have verified the efficiency of the tools in MCF-7, MDA-MB-231, OCI-AML3, and HCT-116 cells.

Graphical abstract

Keywords

weights of Bcl-2/Mcl-1 / drug-target network / Bcl-2/Mcl-1 inhibitors combination / mathematical modeling

Cite this article

Download citation ▾
Zongwei Guo, Fangkui Yin, Peiran Wang, Ting Song, Zhichao Zhang. Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio. Quant. Biol., 2021, 9(3): 329‒340 https://doi.org/10.15302/J-QB-021-0237

References

[1]
Leber, B., Lin, J. and Andrews, D. W. (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis, 12, 897–911
CrossRef Pubmed Google scholar
[2]
van Delft, M. F. and Huang, D. C. (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res., 16, 203–213
CrossRef Pubmed Google scholar
[3]
García-Sáez, A. J. (2012) The secrets of the Bcl-2 family. Cell Death Differ., 19, 1733–1740
CrossRef Pubmed Google scholar
[4]
Certo, M., Del Gaizo Moore, V., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S. A. and Letai, A. (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 9, 351–365
CrossRef Pubmed Google scholar
[5]
Opferman, J. T. (2016) Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J., 283, 2661–2675
CrossRef Pubmed Google scholar
[6]
Dewson, G. and Kluck, R. M. (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci., 122, 2801–2808
CrossRef Pubmed Google scholar
[7]
Shamas-Din, A., Kale, J., Leber, B. and Andrews, D. W. (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol., 5, a008714
CrossRef Pubmed Google scholar
[8]
Lee, S., Park, K. and Kim, D. (2009) Building a drug-target network and its applications. Expert Opin. Drug Discov., 4, 1177–1189
CrossRef Pubmed Google scholar
[9]
Adams, J. M. and Cory, S. (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
CrossRef Pubmed Google scholar
[10]
Youle, R. J. and Strasser, A. (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 9, 47–59
CrossRef Pubmed Google scholar
[11]
Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. (2010) The BCL-2 family reunion. Mol. Cell, 37, 299–310
CrossRef Pubmed Google scholar
[12]
Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M. and Huang, D. C. (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell, 17, 393–403
CrossRef Pubmed Google scholar
[13]
Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J., (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 435, 677–681
CrossRef Pubmed Google scholar
[14]
Del Gaizo Moore, V., Brown, J. R., Certo, M., Love, T. M., Novina, C. D. and Letai, A. (2007) Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest., 117, 112–121
CrossRef Pubmed Google scholar
[15]
Tahir, S. K., Yang, X., Anderson, M. G., Morgan-Lappe, S. E., Sarthy, A. V., Chen, J., Warner, R. B., Ng, S. C., Fesik, S. W., Elmore, S. W., (2007) Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res., 67, 1176–1183
CrossRef Pubmed Google scholar
[16]
Vogler, M., Dinsdale, D., Sun, X. M., Young, K. W., Butterworth, M., Nicotera, P., Dyer, M. J. and Cohen, G. M. (2008) A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ., 15, 820–830
CrossRef Pubmed Google scholar
[17]
van Delft, M. F., Wei, A. H., Mason, K. D., Vandenberg, C. J., Chen, L., Czabotar, P. E., Willis, S. N., Scott, C. L., Day, C. L., Cory, S., (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 10, 389–399
CrossRef Pubmed Google scholar
[18]
Nguyen, M., Marcellus, R. C., Roulston, A., Watson, M., Serfass, L., Murthy Madiraju, S. R., Goulet, D., Viallet, J., Bélec, L., Billot, X., (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 104, 19512–19517
CrossRef Pubmed Google scholar
[19]
Li, Z., He, S. and Look, A. T. (2019) The MCL1-specific inhibitor S63845 acts synergistically with venetoclax/ABT-199 to induce apoptosis in T-cell acute lymphoblastic leukemia cells. Leukemia, 33, 262–266
CrossRef Pubmed Google scholar
[20]
Moujalled, D. M., Pomilio, G., Ghiurau, C., Ivey, A., Salmon, J., Rijal, S., Macraild, S., Zhang, L., Teh, T. C., Tiong, I. S., (2019) Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia, 33, 905–917
CrossRef Pubmed Google scholar
[21]
Lee, E. F., Harris, T. J., Tran, S., Evangelista, M., Arulananda, S., John, T., Ramnac, C., Hobbs, C., Zhu, H., Gunasingh, G., (2019) BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis., 10, 342
CrossRef Pubmed Google scholar
[22]
Algarín, E. M., Díaz-Tejedor, A., Mogollón, P., Hernández-García, S., Corchete, L. A., San-Segundo, L., Martín-Sánchez, M., González-Méndez, L., Schoumacher, M., Banquet, S., (2020) Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma. Haematologica, 105, e116–e120
CrossRef Pubmed Google scholar
[23]
Lindner, A. U., Concannon, C. G., Boukes, G. J., Cannon, M. D., Llambi, F., Ryan, D., Boland, K., Kehoe, J., McNamara, D. A., Murray, F., (2013) Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res., 73, 519–528
CrossRef Pubmed Google scholar
[24]
Lindner, A. U., Salvucci, M., Morgan, C., Monsefi, N., Resler, A. J., Cremona, M., Curry, S., Toomey, S., O’Byrne, R., Bacon, O., (2017) BCL-2 system analysis identifies high-risk colorectal cancer patients. Gut, 66, 2141–2148
CrossRef Pubmed Google scholar
[25]
Lucantoni, F., Lindner, A. U., O’Donovan, N., Düssmann, H. and Prehn, J. H. M. (2018) Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis., 9, 42
CrossRef Pubmed Google scholar
[26]
Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T. and Rehm, M. (2018) Bax retrotranslocation potentiates Bcl-xL’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death Dis., 9, 430
CrossRef Pubmed Google scholar
[27]
Czabotar, P. E., Lee, E. F., van Delft, M. F., Day, C. L., Smith, B. J., Huang, D. C. S., Fairlie, W. D., Hinds, M. G. and Colman, P. M. (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA, 104, 6217–6222
CrossRef Pubmed Google scholar
[28]
Yang, T., Buchan, H. L., Townsend, K. J. and Craig, R. W. (1996) MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J. Cell. Physiol., 166, 523–536
CrossRef Pubmed Google scholar
[29]
Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F. and Wang, X. (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev., 17, 1475–1486
CrossRef Pubmed Google scholar
[30]
Zhang, H., Guttikonda, S., Roberts, L., Uziel, T., Semizarov, D., Elmore, S. W., Leverson, J. D. and Lam, L. T. (2011) Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines. Oncogene, 30, 1963–1968
CrossRef Pubmed Google scholar
[31]
Leverson, J. D., Zhang, H., Chen, J., Tahir, S. K., Phillips, D. C., Xue, J., Nimmer, P., Jin, S., Smith, M., Xiao, Y., (2015) Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 6, e1590
CrossRef Pubmed Google scholar
[32]
Song, T., Wang, Z., Ji, F., Feng, Y., Fan, Y., Chai, G., Li, X., Li, Z. and Zhang, Z. (2016) Deactivation of Mcl-1 by dual-function small-molecule inhibitors targeting the Bcl-2 homology 3 domain and facilitating Mcl-1 ubiquitination. Angew. Chem. Int. Ed. Engl., 55, 14250–14256
CrossRef Pubmed Google scholar
[33]
Tokar, T. and Ulicny, J. (2013) The mathematical model of the Bcl-2 family mediated MOMP regulation can perform a non-trivial pattern recognition. PLoS One, 8, e81861
CrossRef Pubmed Google scholar
[34]
Adams, J. M. and Cory, S. (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
CrossRef Pubmed Google scholar
[35]
Soderquist, R. S., Crawford, L., Liu, E., Lu, M., Agarwal, A., Anderson, G. R., Lin, K. H., Winter, P. S., Cakir, M. and Wood, K. C. (2018) Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun., 9, 3513
CrossRef Pubmed Google scholar
[36]
Song, T., Zhang, M., Liu, P., Xue, Z., Fan, Y. and Zhang, Z. (2018) Identification of JNK1 as a predicting biomarker for ABT-199 and paclitaxel combination treatment. Biochem. Pharmacol., 155, 102–109
CrossRef Pubmed Google scholar
[37]
Song, T., Chai, G., Liu, Y., Yu, X., Wang, Z. and Zhang, Z. (2016) Bcl-2 phosphorylation confers resistance on chronic lymphocytic leukaemia cells to the BH3 mimetics ABT-737, ABT-263 and ABT-199 by impeding direct binding. Br. J. Pharmacol., 173, 471–483
CrossRef Pubmed Google scholar
[38]
Touzeau, C., Ryan, J., Guerriero, J., Moreau, P., Chonghaile, T. N., Le Gouill, S., Richardson, P., Anderson, K., Amiot, M. and Letai, A. (2016) BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia, 30, 761–764
CrossRef Pubmed Google scholar
[39]
Al-Harbi, S., Hill, B. T., Mazumder, S., Singh, K., Devecchio, J., Choudhary, G., Rybicki, L. A., Kalaycio, M., Maciejewski, J. P., Houghton, J. A., (2011) An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood, 118, 3579–3590
CrossRef Pubmed Google scholar
[40]
Goodwin, C. M., Rossanese, O. W., Olejniczak, E. T. and Fesik, S. W. (2015) Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ., 22, 2098–2106
CrossRef Pubmed Google scholar
[41]
Wang, Z., He, N., Guo, Z., Niu, C., Song, T., Guo, Y., Cao, K., Wang, A., Zhu, J., Zhang, X., (2019) Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J. Med. Chem., 62, 8152–8163
CrossRef Pubmed Google scholar
[42]
Lebraud, H. and Heightman, T. D. (2017) Protein degradation: a validated therapeutic strategy with exciting prospects. Essays Biochem., 61, 517–527
CrossRef Pubmed Google scholar
[43]
Papatzimas, J. W., Gorobets, E., Maity, R., Muniyat, M. I., MacCallum, J. L., Neri, P., Bahlis, N. J. and Derksen, D. J. (2019) From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J. Med. Chem., 62, 5522–5540
CrossRef Pubmed Google scholar
[44]
An, S. and Fu, L. (2018) Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 36, 553–562
Pubmed
[45]
Wang, X., Bathina, M., Lynch, J., Koss, B., Calabrese, C., Frase, S., Schuetz, J. D., Rehg, J. E. and Opferman, J. T. (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev., 27, 1351–1364
CrossRef Pubmed Google scholar
[46]
Song, T., Wang, P., Yu, X., Wang, A., Chai, G., Fan, Y. and Zhang, Z. (2019) Systems analysis of phosphorylation-regulated Bcl-2 interactions establishes a model to reconcile the controversy over the significance of Bcl-2 phosphorylation. Br. J. Pharmacol., 176, 491–504
CrossRef Pubmed Google scholar
[47]
Guo, Z., Song, T., Xue, Z., Liu, P., Zhang, M., Zhang, X. and Zhang, Z. (2020) Using CETSA assay and a mathematical model to reveal dual Bcl-2/Mcl-1 inhibition and on-target mechanism for ABT-199 and S1. Eur. J. Pharm. Sci., 142, 105105
CrossRef Pubmed Google scholar
[48]
Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A. M., Lieberenz, M., Savitski, M. M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., (2014) Mass-spectrometry-based draft of the human proteome. Nature, 509, 582–587
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/ 10.15302/J-QB-021-0237.

ACKNOWLEDGEMENTS

This research was supported by the National Natural Science Foundation of China (81430083 and 81903462), the China Postdoctoral Science Foundation (2018M641694), and the Fundamental Research Funds for the Central Universities (DUT20LK28 and DUT20YG133).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Zongwei Guo, Fangkui Yin, Peiran Wang, Ting Song and Zhichao Zhang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. Published by Higher Education Press
AI Summary AI Mindmap
PDF(1737 KB)

Accesses

Citations

Detail

Sections
Recommended

/