PDF
(1737KB)
Abstract
Background: Inhibitors of B-cell CLL/lymphoma 2 (Bcl-2) family proteins have shown hope as antitumor drugs. While the notion that it is efficient to coordinate, balance, and neutralize both arms of the anti-apoptotic Bcl-2 family has been validated in many cancer cells, the weights of the two arms contributing to apoptosis inhibition have not been explored. This study analyzed the best combination ratio for different Bcl-2 selective inhibitors.
Methods: We used a previously established mathematical model to study the weights of Bcl-2 (representing both Bcl-2 and Bcl-xL in this study) and myeloid cell leukemia-1 (Mcl-1). Correlation and single-parameter sensitivity analysis were used to find the major molecular determinants for Bcl-2 and Mcl-1 dependency, as well as their weights. Biological experiments were used to verify the mathematical model.
Results: Bcl-2 protein level and Mcl-1 protein level, production, and degradation rates were the major molecular determinants for Bcl-2 and Mcl-1 dependency. The model gained agreement with the experimental assays for ABT-737/A-1210477 and ABT-737/compound 5 combination effect in MCF-7 and MDA-MB-231. Two sets of equations composed of Bcl-2 and Mcl-1 levels were obtained to predict the best combination ratio for Bcl-2 inhibitors with Mcl-1 inhibitors that stabilize and downregulate Mcl-1, respectively.
Conclusions: The two sets of equations can be used as tools to bypass time-consuming and laborious experimental screening to predict the best drug combination ratio for treatment.
Graphical abstract
Keywords
weights of Bcl-2/Mcl-1
/
drug-target network
/
Bcl-2/Mcl-1 inhibitors combination
/
mathematical modeling
Cite this article
Download citation ▾
Zongwei Guo, Fangkui Yin, Peiran Wang, Ting Song, Zhichao Zhang.
Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio.
Quant. Biol., 2021, 9(3): 329-340 DOI:10.15302/J-QB-021-0237
| [1] |
Leber, B., Lin, J. and Andrews, D. W. (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis, 12, 897–911
|
| [2] |
van Delft, M. F. and Huang, D. C. (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res., 16, 203–213
|
| [3] |
García-Sáez, A. J. (2012) The secrets of the Bcl-2 family. Cell Death Differ., 19, 1733–1740
|
| [4] |
Certo, M., Del Gaizo Moore, V., Nishino, M., Wei, G., Korsmeyer, S., Armstrong, S. A. and Letai, A. (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 9, 351–365
|
| [5] |
Opferman, J. T. (2016) Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J., 283, 2661–2675
|
| [6] |
Dewson, G. and Kluck, R. M. (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J. Cell Sci., 122, 2801–2808
|
| [7] |
Shamas-Din, A., Kale, J., Leber, B. and Andrews, D. W. (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol., 5, a008714
|
| [8] |
Lee, S., Park, K. and Kim, D. (2009) Building a drug-target network and its applications. Expert Opin. Drug Discov., 4, 1177–1189
|
| [9] |
Adams, J. M. and Cory, S. (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
|
| [10] |
Youle, R. J. and Strasser, A. (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 9, 47–59
|
| [11] |
Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. (2010) The BCL-2 family reunion. Mol. Cell, 37, 299–310
|
| [12] |
Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., Colman, P. M., Day, C. L., Adams, J. M. and Huang, D. C. (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell, 17, 393–403
|
| [13] |
Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J., (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 435, 677–681
|
| [14] |
Del Gaizo Moore, V., Brown, J. R., Certo, M., Love, T. M., Novina, C. D. and Letai, A. (2007) Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest., 117, 112–121
|
| [15] |
Tahir, S. K., Yang, X., Anderson, M. G., Morgan-Lappe, S. E., Sarthy, A. V., Chen, J., Warner, R. B., Ng, S. C., Fesik, S. W., Elmore, S. W., (2007) Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res., 67, 1176–1183
|
| [16] |
Vogler, M., Dinsdale, D., Sun, X. M., Young, K. W., Butterworth, M., Nicotera, P., Dyer, M. J. and Cohen, G. M. (2008) A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ., 15, 820–830
|
| [17] |
van Delft, M. F., Wei, A. H., Mason, K. D., Vandenberg, C. J., Chen, L., Czabotar, P. E., Willis, S. N., Scott, C. L., Day, C. L., Cory, S., (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 10, 389–399
|
| [18] |
Nguyen, M., Marcellus, R. C., Roulston, A., Watson, M., Serfass, L., Murthy Madiraju, S. R., Goulet, D., Viallet, J., Bélec, L., Billot, X., (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA, 104, 19512–19517
|
| [19] |
Li, Z., He, S. and Look, A. T. (2019) The MCL1-specific inhibitor S63845 acts synergistically with venetoclax/ABT-199 to induce apoptosis in T-cell acute lymphoblastic leukemia cells. Leukemia, 33, 262–266
|
| [20] |
Moujalled, D. M., Pomilio, G., Ghiurau, C., Ivey, A., Salmon, J., Rijal, S., Macraild, S., Zhang, L., Teh, T. C., Tiong, I. S., (2019) Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia, 33, 905–917
|
| [21] |
Lee, E. F., Harris, T. J., Tran, S., Evangelista, M., Arulananda, S., John, T., Ramnac, C., Hobbs, C., Zhu, H., Gunasingh, G., (2019) BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis., 10, 342
|
| [22] |
Algarín, E. M., Díaz-Tejedor, A., Mogollón, P., Hernández-García, S., Corchete, L. A., San-Segundo, L., Martín-Sánchez, M., González-Méndez, L., Schoumacher, M., Banquet, S., (2020) Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma. Haematologica, 105, e116–e120
|
| [23] |
Lindner, A. U., Concannon, C. G., Boukes, G. J., Cannon, M. D., Llambi, F., Ryan, D., Boland, K., Kehoe, J., McNamara, D. A., Murray, F., (2013) Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res., 73, 519–528
|
| [24] |
Lindner, A. U., Salvucci, M., Morgan, C., Monsefi, N., Resler, A. J., Cremona, M., Curry, S., Toomey, S., O’Byrne, R., Bacon, O., (2017) BCL-2 system analysis identifies high-risk colorectal cancer patients. Gut, 66, 2141–2148
|
| [25] |
Lucantoni, F., Lindner, A. U., O’Donovan, N., Düssmann, H. and Prehn, J. H. M. (2018) Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells. Cell Death Dis., 9, 42
|
| [26] |
Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T. and Rehm, M. (2018) Bax retrotranslocation potentiates Bcl-xL’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death Dis., 9, 430
|
| [27] |
Czabotar, P. E., Lee, E. F., van Delft, M. F., Day, C. L., Smith, B. J., Huang, D. C. S., Fairlie, W. D., Hinds, M. G. and Colman, P. M. (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA, 104, 6217–6222
|
| [28] |
Yang, T., Buchan, H. L., Townsend, K. J. and Craig, R. W. (1996) MCL-1, a member of the BLC-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J. Cell. Physiol., 166, 523–536
|
| [29] |
Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F. and Wang, X. (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev., 17, 1475–1486
|
| [30] |
Zhang, H., Guttikonda, S., Roberts, L., Uziel, T., Semizarov, D., Elmore, S. W., Leverson, J. D. and Lam, L. T. (2011) Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines. Oncogene, 30, 1963–1968
|
| [31] |
Leverson, J. D., Zhang, H., Chen, J., Tahir, S. K., Phillips, D. C., Xue, J., Nimmer, P., Jin, S., Smith, M., Xiao, Y., (2015) Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis., 6, e1590
|
| [32] |
Song, T., Wang, Z., Ji, F., Feng, Y., Fan, Y., Chai, G., Li, X., Li, Z. and Zhang, Z. (2016) Deactivation of Mcl-1 by dual-function small-molecule inhibitors targeting the Bcl-2 homology 3 domain and facilitating Mcl-1 ubiquitination. Angew. Chem. Int. Ed. Engl., 55, 14250–14256
|
| [33] |
Tokar, T. and Ulicny, J. (2013) The mathematical model of the Bcl-2 family mediated MOMP regulation can perform a non-trivial pattern recognition. PLoS One, 8, e81861
|
| [34] |
Adams, J. M. and Cory, S. (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 26, 1324–1337
|
| [35] |
Soderquist, R. S., Crawford, L., Liu, E., Lu, M., Agarwal, A., Anderson, G. R., Lin, K. H., Winter, P. S., Cakir, M. and Wood, K. C. (2018) Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun., 9, 3513
|
| [36] |
Song, T., Zhang, M., Liu, P., Xue, Z., Fan, Y. and Zhang, Z. (2018) Identification of JNK1 as a predicting biomarker for ABT-199 and paclitaxel combination treatment. Biochem. Pharmacol., 155, 102–109
|
| [37] |
Song, T., Chai, G., Liu, Y., Yu, X., Wang, Z. and Zhang, Z. (2016) Bcl-2 phosphorylation confers resistance on chronic lymphocytic leukaemia cells to the BH3 mimetics ABT-737, ABT-263 and ABT-199 by impeding direct binding. Br. J. Pharmacol., 173, 471–483
|
| [38] |
Touzeau, C., Ryan, J., Guerriero, J., Moreau, P., Chonghaile, T. N., Le Gouill, S., Richardson, P., Anderson, K., Amiot, M. and Letai, A. (2016) BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia, 30, 761–764
|
| [39] |
Al-Harbi, S., Hill, B. T., Mazumder, S., Singh, K., Devecchio, J., Choudhary, G., Rybicki, L. A., Kalaycio, M., Maciejewski, J. P., Houghton, J. A., (2011) An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood, 118, 3579–3590
|
| [40] |
Goodwin, C. M., Rossanese, O. W., Olejniczak, E. T. and Fesik, S. W. (2015) Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ., 22, 2098–2106
|
| [41] |
Wang, Z., He, N., Guo, Z., Niu, C., Song, T., Guo, Y., Cao, K., Wang, A., Zhu, J., Zhang, X., (2019) Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J. Med. Chem., 62, 8152–8163
|
| [42] |
Lebraud, H. and Heightman, T. D. (2017) Protein degradation: a validated therapeutic strategy with exciting prospects. Essays Biochem., 61, 517–527
|
| [43] |
Papatzimas, J. W., Gorobets, E., Maity, R., Muniyat, M. I., MacCallum, J. L., Neri, P., Bahlis, N. J. and Derksen, D. J. (2019) From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J. Med. Chem., 62, 5522–5540
|
| [44] |
An, S. and Fu, L. (2018) Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 36, 553–562
|
| [45] |
Wang, X., Bathina, M., Lynch, J., Koss, B., Calabrese, C., Frase, S., Schuetz, J. D., Rehg, J. E. and Opferman, J. T. (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev., 27, 1351–1364
|
| [46] |
Song, T., Wang, P., Yu, X., Wang, A., Chai, G., Fan, Y. and Zhang, Z. (2019) Systems analysis of phosphorylation-regulated Bcl-2 interactions establishes a model to reconcile the controversy over the significance of Bcl-2 phosphorylation. Br. J. Pharmacol., 176, 491–504
|
| [47] |
Guo, Z., Song, T., Xue, Z., Liu, P., Zhang, M., Zhang, X. and Zhang, Z. (2020) Using CETSA assay and a mathematical model to reveal dual Bcl-2/Mcl-1 inhibition and on-target mechanism for ABT-199 and S1. Eur. J. Pharm. Sci., 142, 105105
|
| [48] |
Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A. M., Lieberenz, M., Savitski, M. M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., (2014) Mass-spectrometry-based draft of the human proteome. Nature, 509, 582–587
|
RIGHTS & PERMISSIONS
The Author(s) 2021. Published by Higher Education Press