Exploring the underlying mechanism of action of a traditional Chinese medicine formula, Youdujing ointment, for cervical cancer treatment
Lei Zhang, Ji Lv, Ming Xiao, Li Yang, Le Zhang
Exploring the underlying mechanism of action of a traditional Chinese medicine formula, Youdujing ointment, for cervical cancer treatment
Background: A traditional Chinese medicine formula, Youdujing (YDJ) ointment, is widely used for treatment of human papilloma virus-related diseases, such as cervical cancer. However, the underlying mechanisms by which active compounds of YDJ alleviates cervical cancer are still unclear.
Methods: We applied a comprehensive network pharmacology approach to explore the key mechanisms of YDJ by integrating potential target identification, network analysis, and enrichment analysis into classical molecular docking procedures. First, we used network and enrichment analyses to identify potential therapeutic targets. Second, we performed molecular docking to investigate the potential active compounds of YDJ. Finally, we carried out a network-based analysis to unravel potentially effective drug combinations.
Results: Network analysis yielded four potential therapeutic targets: ESR1, NFKB1, TNF, and AKT1. Molecular docking highlighted that these proteins may interact with four potential active compounds of YDJ: E4, Y2, Y20, and Y21. Finally, we found that Y2 or Y21 can act alone or together with E4 to trigger apoptotic cascades via the mitochondrial apoptotic pathway and estrogen receptors.
Conclusion: Our study not only explained why YDJ is effective for cervical cancer treatment, but also lays a strong foundation for future clinical studies based on this traditional medicine.
The mechanisms underlying the effect of many traditional Chinese medicine remained unclear, so we developed a network pharmacology method to investigate the active compounds and their possible combinations by integrating network and enrichment analyses with molecular docking. In this paper, we found four potential active compounds and four potential therapeutic targets of YDJ. However, these findings should be confirmed by further experiments in vitro and in vivo, whose results can be integrated in the present bioinformatic algorithm in order to optimize our method in the future.
Youdujing / cervical cancer / traditional Chinese medicine / network pharmacological / molecular docking / synergy effect
[1] |
Cohen, P. A., Jhingran, A., Oaknin, A. and Denny, L. (2019) Cervical cancer. Lancet, 393, 169–182
CrossRef
Pubmed
Google scholar
|
[2] |
Wu, W., Song, L., Yang, Y., Wang, J., Liu, H. and Zhang, L. (2020) Exploring the dynamics and interplay of human papillomavirus and cervical tumorigenesis by integrating biological data into a mathematical model. BMC Bioinformatics, 21, 152
CrossRef
Pubmed
Google scholar
|
[3] |
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, Ca-A Cancer J. Clin., 6, 394–424
CrossRef
Google scholar
|
[4] |
Cleveland, A. A., Gargano, J. W., Park, I. U., Griffin, M. R., Niccolai, L. M., Powell, M., Bennett, N. M., Saadeh, K., Pemmaraju, M., Higgins, K.,
CrossRef
Pubmed
Google scholar
|
[5] |
Roden, R. and Wu, T.-C. (2006) How will HPV vaccines affect cervical cancer? Nat. Rev. Cancer, 6, 753–763
CrossRef
Pubmed
Google scholar
|
[6] |
Vaccarella, S., Laversanne, M., Ferlay, J. and Bray, F. (2017) Cervical cancer in Africa, Latin America and the Caribbean and Asia: Regional inequalities and changing trends. Int. J. Cancer, 141, 1997–2001
CrossRef
Pubmed
Google scholar
|
[7] |
Toots, M., Ustav, M. Jr, Männik, A., Mumm, K., Tämm, K., Tamm, T., Ustav, E. and Ustav, M. (2017) Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay. PLoS Pathog., 13, e1006168
CrossRef
Pubmed
Google scholar
|
[8] |
Kolluru, S., Momoh, R., Lin, L., Mallareddy, J. R., and Krstenansky, J. L. (2019) Identification of potential binding pocket on viral oncoprotein HPV16 E6: a promising anti-cancer target for small molecule drug discovery. BMC Mol. Cell. Biol., 20, 30
CrossRef
Google scholar
|
[9] |
Celegato, M., Messa, L., Goracci, L., Mercorelli, B., Bertagnin, C., Spyrakis, F., Suarez, I., Cousido-Siah, A., Travé, G., Banks, L.,
CrossRef
Pubmed
Google scholar
|
[10] |
Gyawali, B. and Iddawela, M. (2017) Bevacizumab in advanced cervical cancer: issues and challenges for low- and middle-income countries. J. Glob. Oncol., 3, 93–97
CrossRef
Pubmed
Google scholar
|
[11] |
Corr, B. R., Breed, C., Sheeder, J., Weisdack, S. and Behbakht, K. (2016) Bevacizumab induced hypertension in gynecologic cancer: Does it resolve after completion of therapy? Gynecol. Oncol. Rep., 17, 65–68
CrossRef
Pubmed
Google scholar
|
[12] |
Tewari, K. S., Sill, M. W., Penson, R. T., Huang, H., Ramondetta, L. M., Landrum, L. M., Oaknin, A., Reid, T. J., Leitao, M. M., Michael, H. E.,
CrossRef
Pubmed
Google scholar
|
[13] |
Lin, J., Chen, L., Qiu, X., Zhang, N., Guo, Q., Wang, Y., Wang, M., Gober, H. J., Li, D. and Wang, L. (2017) Traditional Chinese medicine for human papillomavirus (HPV) infections: A systematic review. Biosci. Trends, 11, 267–273
CrossRef
Pubmed
Google scholar
|
[14] |
Chen, X., Hu, X., Liu, L., Liang, X. and Xiao, J. (2019) Extracts derived from a traditional Chinese herbal formula triggers necroptosis in ectocervical Ect1/E6E7 cells through activation of RIP1 kinase. J. Ethnopharmacol., 239, 111922
CrossRef
Pubmed
Google scholar
|
[15] |
Tang, F., Zhang, Q., Nie, Z., Yao, S. and Chen, B. (2009) Sample preparation for analyzing traditional Chinese medicines. Trends Analyt. Chem., 28, 1253–1262
CrossRef
Google scholar
|
[16] |
Gao, H., Wang, Z., Li, Y. and Qian, Z. (2011) Overview of the quality standard research of traditional Chinese medicine. Front. Med., 5, 195–202
CrossRef
Pubmed
Google scholar
|
[17] |
Xiao, J., Wu, J., and Yu, B. (2012) Therapeutic efficacy of Youdujing preparation in treating cervical high-risk human papilloma virus infection patients. Chinese journal of integrated traditional and Western medicine, 9, 1212–1215, in Chinese
|
[18] |
Cheng, F., Kovács, I. A. and Barabási, A.-L. (2019) Network-based prediction of drug combinations. Nat. Commun., 1, 1–11
|
[19] |
Zhang, L., Fu, C., Li, J., Zhao, Z., Hou, Y., Zhou, W. and Fu, A. (2019) Discovery of a ruthenium complex for the theranosis of glioma through targeting the mitochondrial DNA with bioinformatic methods. Int. J. Mol. Sci., 20, 4643
CrossRef
Pubmed
Google scholar
|
[20] |
Liu, G.-D., Li, Y.-C., Zhang, W. and Zhang, L. (2020) A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering (Beijing), 6, 462–467
|
[21] |
Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27–30
CrossRef
Pubmed
Google scholar
|
[22] |
Zhang, L., Qiao, M., Gao, H., Hu, B., Tan, H., Zhou, X. and Li, C. M. (2016) Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale, 8, 14877–14887
CrossRef
Pubmed
Google scholar
|
[23] |
Zhang, L., Liu, Y., Wang, M., Wu, Z., Li, N., Zhang, J. and Yang, C. (2017) EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J. Mol. Cell Biol., 9, 477–488
CrossRef
Pubmed
Google scholar
|
[24] |
Zhang, L. and Zhang, S. (2017) Using game theory to investigate the epigenetic control mechanisms of embryo development: Comment on: “Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al. Phys. Life Rev., 20, 140–142
CrossRef
Pubmed
Google scholar
|
[25] |
Zhang, L., Zheng, C., Li, T., Xing, L., Zeng, H., Li, T., Yang, H., Cao, J., Chen, B. and Zhou, Z. (2017) Building up a robust risk mathematical platform to predict colorectal cancer. Complexity, 2017, 1–14
CrossRef
Google scholar
|
[26] |
Zhang, L., Xiao, M., Zhou, J. and Yu, J. (2018) Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics, 34, 3624–3630
CrossRef
Pubmed
Google scholar
|
[27] |
Xiao, M., Yang, X., Yu, J., and Zhang, L. (2019) CGIDLA: Developing the Web Server for CpG Island related Density and LAUPs (Lineage-associated Underrepresented Permutations) Study, IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 2148–2154
CrossRef
Google scholar
|
[28] |
Zhang, L., Bai, W., Yuan, N. and Du, Z. (2019) Comprehensively benchmarking applications for detecting copy number variation. PLOS Comput. Biol., 15, e1007069
CrossRef
Pubmed
Google scholar
|
[29] |
Zhang, L., Liu, G., Kong, M., Li, T., Wu, D., Zhou, X., Yang, C., Xia, L., Yang, Z. and Chen, L. (2019) Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. Bioinformatics, btz542
CrossRef
Pubmed
Google scholar
|
[30] |
Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31, 455–461
Pubmed
|
[31] |
Brake, T. and Lambert, P. F. (2005) Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc. Natl. Acad. Sci. USA, 102, 2490–2495
CrossRef
Pubmed
Google scholar
|
[32] |
James, M. A., Lee, J. H. and Klingelhutz, A. J. (2006) Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J. Virol., 80, 5301–5307
CrossRef
Pubmed
Google scholar
|
[33] |
Beevi, S. S., Rasheed, M. H. and Geetha, A. (2007) Evidence of oxidative and nitrosative stress in patients with cervical squamous cell carcinoma. Clin. Chim. Acta, 375, 119–123
CrossRef
Pubmed
Google scholar
|
[34] |
Cui, N., Yang, W. T. and Zheng, P. S. (2016) Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/beta-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression, Oncotarget. Article, 7, 26152–26167
CrossRef
Google scholar
|
[35] |
Rasul, A., Millimouno, F. M., Ali Eltayb, W., Ali, M., Li, J. and Li, X. (2013) Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res. Int., 2013, 379850
CrossRef
Pubmed
Google scholar
|
[36] |
Rajavel, T., Mohankumar, R., Archunan, G., Ruckmani, K. and Devi, K. P. (2017) Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells. Sci. Rep., 7, 3418
CrossRef
Pubmed
Google scholar
|
[37] |
Wang, G., Wang, Y.-Z., Yu, Y., Wang, J.-J., Yin, P.-H. and Xu, K. (2019) Triterpenoids extracted from Rhus chinensis Mill act against colorectal cancer by inhibiting enzymes in glycolysis and glutaminolysis: network analysis and experimental validation. Nutr. Cancer, 72, 293–319
Pubmed
|
[38] |
Kumar, M. S., Nair, M., Hema, P., Mohan, J., and Santhoshkumar, T. (2007) Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol. Carcinog., 3, 231-241. Mol Carcinog., 46, 231–41
CrossRef
Google scholar
|
[39] |
Galluzzo, P., Martini, C., Bulzomi, P., Leone, S., Bolli, A., Pallottini, V. and Marino, M. (2009) Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor α-dependent mechanisms. Mol. Nutr. Food Res., 53, 699–708
CrossRef
Pubmed
Google scholar
|
[40] |
Miller, D. W. (2012) Improving potency and ADMET properties using matched molecular pair analysis. Abstracts of Papers of the American Chemical Society
|
[41] |
Safran, M., Dalah, I., Alexander, J., Rosen, N., Stein, T., Shmoish, M., Nativ, N., Bahir, I., Doniger, T., Krug, H.,
|
[42] |
Huang, W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
CrossRef
Pubmed
Google scholar
|
[43] |
Walboomers, J. M. M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., and Muñoz, N., (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol., 189, 12–19
CrossRef
Google scholar
|
[44] |
Moktar, A., Singh, R., Vadhanam, M. V., Ravoori, S., Lillard, J. W., Gairola, C. G. and Gupta, R. C. (2011) Cigarette smoke condensate-induced oxidative DNA damage and its removal in human cervical cancer cells. Int J Oncol, 39, 941–947
Pubmed
|
[45] |
Wang, S. S., Zuna, R. E., Wentzensen, N., Dunn, S. T., Sherman, M. E., Gold, M. A., Schiffman, M., Wacholder, S., Allen, R. A., Block, I.,
CrossRef
Pubmed
Google scholar
|
[46] |
Chung, S.-H., Franceschi, S. and Lambert, P. F. (2010) Estrogen and ERalpha: culprits in cervical cancer? Trends Endocrinol. Metab., 21, 504–511
CrossRef
Pubmed
Google scholar
|
[47] |
De Savi, C., Bradbury, R. H., Rabow, A. A., Norman, R. A., de Almeida, C., Andrews, D. M., Ballard, P., Buttar, D., Callis, R. J., Currie, G. S.,
CrossRef
Pubmed
Google scholar
|
[48] |
He, M. M., Smith, A. S., Oslob, J. D., Flanagan, W. M., Braisted, A. C., Whitty, A., Cancilla, M. T., Wang, J., Lugovskoy, A. A., Yoburn, J. C.,
CrossRef
Pubmed
Google scholar
|
[49] |
Blake, J. F., Kallan, N. C., Xiao, D., Xu, R., Bencsik, J. R., Skelton, N. J., Spencer, K. L., Mitchell, I. S., Woessner, R. D., Gloor, S. L.,
CrossRef
Pubmed
Google scholar
|
[50] |
Park, H., Shin, Y., Choe, H. and Hong, S. (2015) Computational design and discovery of nanomolar inhibitors of IκB kinase β. J. Am. Chem. Soc., 137, 337–348
CrossRef
Pubmed
Google scholar
|
[51] |
Chen, L., Du, J., Dai, Q., Zhang, H., Pang, W., and Hu, J., (2014) Prediction of anti-tumor chemical probes of a traditional Chinese medicine formula by HPLC fingerprinting combined with molecular docking. Eur. J. Med. Chem., 83, 294–306
CrossRef
Pubmed
Google scholar
|
[52] |
Rajavel, T., Banu Priya, G., Suryanarayanan, V., Singh, S. K. and Pandima Devi, K., (2019) Daucosterol disturbs redox homeostasis and elicits oxidative-stress mediated apoptosis in A549 cells via targeting thioredoxin reductase by a p53 dependent mechanism. Eur J Pharmacol, 855, 112–123
Pubmed
|
[53] |
Zhao, C., She, T., Wang, L., Su, Y., Qu, L., Gao, Y., Xu, S., Cai, S. and Shou, C. (2015) Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner. Life Sci., 137, 37–43
CrossRef
Pubmed
Google scholar
|
[54] |
Wang, G., Wang, Y.-Z., Yu, Y. and Wang, J.-J. (2019) Inhibitory ASIC2-mediated calcineurin/NFAT against colorectal cancer by triterpenoids extracted from Rhus chinensis Mill. J Ethnopharmacol, 235, 255–267
Pubmed
|
[55] |
Zheng, Y., Wang, K., Wu, Y., Chen, Y., Chen, X., Hu, C. W. and Hu, F. (2018) Pinocembrin induces ER stress mediated apoptosis and suppresses autophagy in melanoma cells. Cancer Lett, 431, 31–42
Pubmed
|
[56] |
Cokol, M., Chua, H. N., Tasan, M., Mutlu, B., Weinstein, Z. B., Suzuki, Y., Nergiz, M. E., Costanzo, M., Baryshnikova, A., Giaever, G.,
CrossRef
Pubmed
Google scholar
|
[57] |
Zou, J., Ji, P., Zhao, Y. L., Li, L. L., Wei, Y. Q., Chen, Y. Z. and Yang, S. Y. (2012) Neighbor communities in drug combination networks characterize synergistic effect. Mol. Biosyst., 8, 3185–3196
CrossRef
Pubmed
Google scholar
|
[58] |
den Boon, J. A., Pyeon, D., Wang, S. S., Horswill, M., Schiffman, M., Sherman, M., Zuna, R. E., Wang, Z., Hewitt, S. M., Pearson, R.,
CrossRef
Pubmed
Google scholar
|
[59] |
Chung, S.-H. and Lambert, P. F. (2009) Prevention and treatment of cervical cancer in mice using estrogen receptor antagonists. Proc. Natl. Acad. Sci. USA, 106, 19467–19472
CrossRef
Pubmed
Google scholar
|
[60] |
Naka, T., Sugamura, K., Hylander, B. L., Widmer, M. B., Rustum, Y. M. and Repasky, E. A. (2002) Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors grown in SCID mice. Cancer Res, 62, 5800–5806
Pubmed
|
[61] |
Chang, K. J.Reid, T., Senzer, N., Swisher, S., Pinto, H., Hanna, N., Chak, A., and Soetikno, R., (2012) Phase I evaluation of TNFerade biologic plus chemoradiotherapy before esophagectomy for locally advanced resectable esophageal cancer. Gastrointes. Endos., 6, 1139–1146. e1132
CrossRef
Google scholar
|
[62] |
D’Archivio, M., Santangelo, C., Scazzocchio, B., Varì, R., Filesi, C., Masella, R. and Giovannini, C. (2008) Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int. J. Mol. Sci., 9, 213–228
CrossRef
Pubmed
Google scholar
|
[63] |
Gopalakrishnan, A. and Tony Kong, A. N. (2008) Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-κB and AP-1 in abnormal cancer cells. Food Chem. Toxicol., 46, 1257–1270
CrossRef
Pubmed
Google scholar
|
[64] |
Zhao, J., Dasmahapatra, A. K., Khan, S. I. and Khan, I. A. (2008) Anti-aromatase activity of the constituents from damiana (Turnera diffusa). J Ethnopharmacol, 120, 387–393
Pubmed
|
[65] |
Wang, L., Zhou, G. B., Liu, P., Song, J. H., Liang, Y., Yan, X. J., Xu, F., Wang, B. S., Mao, J. H., Shen, Z. X.,
CrossRef
Pubmed
Google scholar
|
[66] |
Tian, P. (2011) Convergence: Where West meets East. Nature, 480, S84–S86
Pubmed
|
[67] |
Chen, Z., Rasul, A., Zhao, C., Millimouno, F. M., Tsuji, I., Yamamura, T., Iqbal, R., Malhi, M., Li, X. and Li, J., (2013) Antiproliferative and apoptotic effects of pinocembrin in human prostate cancer cells. Bangladesh J. Pharmacol., 3, 255–262
CrossRef
Google scholar
|
[68] |
Zhang, L., Dai, Z., Yu, J. and Xiao, M. (2020) CpG-island-based annotation and analysis of human housekeeping genes. Brief. Bioinform. bbz134
CrossRef
Pubmed
Google scholar
|
[69] |
Xu, H.-Y., Zhang, Y. Q., Liu, Z. M., Chen, T., Lv, C. Y., Tang, S. H., Zhang, X. B., Zhang, W., Li, Z. Y., Zhou, R. R.,
CrossRef
Pubmed
Google scholar
|
[70] |
Xue, L., Godden, J. W., Stahura, F. L., Bajorath, J. (2003) Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme. J. Chem. Inf. Comput. Sci., 4, 1151–1157
CrossRef
Google scholar
|
[71] |
Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia-Vallvé, S. and Pujadas, G. J. M. (2015) Molecular fingerprint similarity search in virtual screening. Methods, 71, 58–63
CrossRef
Google scholar
|
[72] |
Wishart, D. S.,Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z.,
CrossRef
Google scholar
|
[73] |
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P.,
CrossRef
Pubmed
Google scholar
|
[74] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498– 2504
CrossRef
Pubmed
Google scholar
|
[75] |
Barabási, A.-L. and Oltvai, Z. N. (2004) Network biology: understanding the cell’s functional organization. Nat. Rev. Genet., 5, 101–113
CrossRef
Pubmed
Google scholar
|
[76] |
Albert, R., Jeong, H. and Barabási, A.-L. (2000) Error and attack tolerance of complex networks. Nature. 6794, 378–382
|
[77] |
Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.P., Subramanian, A., Ross, K.N.,
CrossRef
Google scholar
|
[78] |
Yu, H., Kim, P. M., Sprecher, E., Trifonov, V. and Gerstein, M. (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLOS Comput. Biol., 3, e59
CrossRef
Pubmed
Google scholar
|
[79] |
Goñi, J., Esteban, F. J., de Mendizábal, N. V., Sepulcre, J., Ardanza-Trevijano, S., Agirrezabal, I. and Villoslada, P. (2008) A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Syst. Biol., 2, 52
CrossRef
Pubmed
Google scholar
|
[80] |
Consortium, G. O. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., suppl_1, D258–D261
|
[81] |
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 30, 2785–2791
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |