Microfluidic approaches for synthetic gene circuits’ construction and analysis

Fengyu Zhang , Yanhong Sun , Chunxiong Luo

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (1) : 47 -60.

PDF (2971KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (1) : 47 -60. DOI: 10.15302/J-QB-021-0235
REVIEW
REVIEW

Microfluidic approaches for synthetic gene circuits’ construction and analysis

Author information +
History +
PDF (2971KB)

Abstract

Background: Microfluidic systems have advantages such as a high throughput, small reaction volume, and precise control of the cellular position and environment. These advantages have allowed microfluidics to be widely used in several fields of synthetic biology in recent years.

Results: In this article, we reviewed the microfluidic-based methods for synthetic biology from two aspects: the construction of synthetic gene circuits and the analysis of synthetic gene systems. We used some examples to illuminate the progresses and challenges in the steps of synthetic gene circuits construction and approaches of gene expression analysis with microfluidic systems.

Conclusion: Comparing to traditional methods, microfluidic tools promise great advantages in the synthetic genetic circuit building and analysis process. Moreover, new microfluidic systems together with the mathematical modeling of synthetic circuits or consortiums are desirable to perform complex genetic circuit construction and understand the natural gene regulation in cells and population interactions better.

Graphical abstract

Keywords

microfluidics / synthetic gene circuit / analysis

Cite this article

Download citation ▾
Fengyu Zhang, Yanhong Sun, Chunxiong Luo. Microfluidic approaches for synthetic gene circuits’ construction and analysis. Quant. Biol., 2021, 9(1): 47-60 DOI:10.15302/J-QB-021-0235

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Whitesides, G. M. (2006) The origins and the future of microfluidics. Nature 442, 368–373

[2]

Wang, B. L., Ghaderi, A., Zhou, H., Agresti, J., Weitz, D. A., Fink, G. R. and Stephanopoulos, G. (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol., 32, 473–478

[3]

Chabert, M. and Viovy, J. L. (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl. Acad. Sci. USA, 105, 3191–3196

[4]

Potvin-Trottier, L., Luro, S. and Paulsson, J. (2018) Microfluidics and single-cell microscopy to study stochastic processes in bacteria. Curr. Opin. Microbiol., 43, 186–192

[5]

Cooksey, G. A., Sip, C. G. and Folch, A. (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip, 9, 417–426

[6]

Duncan, P. N., Nguyen, T. V. and Hui, E. E. (2013) Pneumatic oscillator circuits for timing and control of integrated microfluidics. Proc. Natl. Acad. Sci. USA. 110, 18104–18109

[7]

Okumus, B., Landgraf, D., Lai, G. C., Bakshi, S., Arias-Castro, J. C., Yildiz, S., Huh, D., Fernandez-Lopez, R., Peterson, C. N., Toprak, E., (2016) Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells. Nat. Commun., 7, 11641

[8]

Frey, O., Rudolf, F., Schmidt, G. W. and Hierlemann, A. (2015) Versatile, simple-to-use microfluidic cell-culturing chip for long-term, high-resolution, time-lapse imaging. Anal. Chem., 87, 4144–4151

[9]

Damiati, S. (2019) New opportunities for creating man-made bioarchitectures utilizing microfluidics. Biomed. Microdevices, 21, 62

[10]

Kuhn, P., Wagner, K., Heil, K., Liss, M. and Netuschil, N. (2017) Next generation gene synthesis: From microarrays to genomes. Eng. Life Sci., 17, 6–13

[11]

Lee, C. C., Snyder, T. M., & Quake, S. R. . (2010) A microfluidic oligonucleotide synthesizer. Nucleic Acids Research, 38, 2514–2521

[12]

Khilko, Y., Weyman, P. D., Glass, J. I., Adams, M. D., McNeil, M. A. and Griffin, P. B. (2018) DNA assembly with error correction on a droplet digital microfluidics platform. BMC Biotechnol., 18, 37

[13]

Casini, A., Storch, M., Baldwin, G. S. and Ellis, T. (2015) Bricks and blueprints: methods and standards for DNA assembly. Nat. Rev. Mol. Cell Biol., 16, 568–576

[14]

Szita, N., Polizzi, K., Jaccard, N. and Baganz, F. (2010) Microfluidic approaches for systems and synthetic biology. Curr. Opin. Biotechnol., 21, 517–523

[15]

Shih, S. C. C., Goyal, G., Kim, P. W., Koutsoubelis, N., Keasling, J. D., Adams, P. D., Hillson, N. J. and Singh, A. K. (2015) A versatile microfluidic device for automating synthetic biology. ACS Synth. Biol., 4, 1151–1164

[16]

Kong, D. S., Thorsen, T. A., Babb, J., Wick, S. T., Gam, J. J., Weiss, R. and Carr, P. A. (2017) Open-source, community-driven microfluidics with Metafluidics. Nat. Biotechnol., 35, 523–529

[17]

Baneyx, F. (1999) Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol., 10, 411–421

[18]

Botstein, D., Chervitz, S. A. and Cherry, J. M. (1997) Yeast as a model organism. Science, 277, 1259–1260

[19]

Chen, C. and Okayama, H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol., 7, 2745–2752

[20]

Woodruff, K. and Maerkl, S. J. (2016) A high-throughput microfluidic platform for mammalian cell transfection and culturing. Sci. Rep., 6, 23937

[21]

Zhang, J., Hu, Y., Wang, X., Liu, P. and Chen, X. (2019) High-throughput platform for efficient chemical transfection, virus packaging, and transduction. Micromachines (Basel), 10, 387

[22]

Hori, Y., Kantak, C., Murray, R. M. and Abate, A. R. (2017) Cell-free extract based optimization of biomolecular circuits with droplet microfluidics. Lab Chip, 17, 3037–3042

[23]

Gach, P. C., Shih, S. C., Sustarich, J., Keasling, J. D., Hillson, N. J., Adams, P. D. and Singh, A. K. (2016) A droplet microfluidic platform for automating genetic engineering. ACS Synth. Biol., 5, 426–433

[24]

Forster, A. C. and Church, G. M. (2007) Synthetic biology projects in vitro. Genome Res., 17, 1–6

[25]

Gach, P. C., Iwai, K., Kim, P. W., Hillson, N. J. and Singh, A. K. (2017) Droplet microfluidics for synthetic biology. Lab Chip, 17, 3388–3400

[26]

Weiss, M., Frohnmayer, J. P., Benk, L. T., Haller, B., Janiesch, J. W., Heitkamp, T., Börsch, M., Lira, R. B., Dimova, R., Lipowsky, R., (2018) Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater., 17, 89–96

[27]

Haller, B., Göpfrich, K., Schröter, M., Janiesch, J. W., Platzman, I. and Spatz, J. P. (2018) Charge-controlled microfluidic formation of lipid-based single- and multi-compartment systems. Lab Chip, 18, 2665–2674

[28]

Moazami, E., Perry, J. M., Soffer, G., Husser, M. C. and Shih, S. C. C. (2019) Integration of world-to-chip interfaces with digital microfluidics for bacterial transformation and enzymatic assays. Anal. Chem., 91, 5159–5168

[29]

Tangen, U., Minero, G. A., Sharma, A., Wagler, P. F., Cohen, R., Raz, O., Marx, T., Ben-Yehezkel, T. and McCaskill, J. S. (2015) DNA-library assembly programmed by on-demand nano-liter droplets from a custom microfluidic chip. Biomicrofluidics, 9, 044103

[30]

Kaiser, M., Jug, F., Julou, T., Deshpande, S., Pfohl, T., Silander, O. K., Myers, G. and van Nimwegen, E. (2018) Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nat. Commun., 9, 212

[31]

Long, Z., Nugent, E., Javer, A., Cicuta, P., Sclavi, B., Cosentino Lagomarsino, M. and Dorfman, K. D. (2013) Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip, 13, 947–954

[32]

Wang, Y., Ran, M., Wang, J., Ouyang, Q. and Luo, C. (2015) Studies of antibiotic resistance of beta-lactamase bacteria under different nutrition limitations at the single-cell level. PLoS One, 10, e0127115

[33]

Pitruzzello, G., Thorpe, S., Johnson, S., Evans, A., Gadêlha, H. and Krauss, T. F. (2019) Multiparameter antibiotic resistance detection based on hydrodynamic trapping of individual E. coli. Lab Chip, 19, 1417–1426

[34]

Graham, G., Csicsery, N., Stasiowski, E., Thouvenin, G., Mather, W. H., Ferry, M., Cookson, S. and Hasty, J. (2020) Genome-scale transcriptional dynamics and environmental biosensing. Proc. Natl. Acad. Sci. USA, 117, 3301–3306

[35]

Okumus, B., Landgraf, D., Lai, G. C., Bakshi, S., Arias-Castro, J. C., Yildiz, S., Huh, D., Fernandez-Lopez, R., Peterson, C. N., Toprak, E., (2016) Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells. Nat. Commun., 7, 12130

[36]

Jo, M. C., Liu, W., Gu, L., Dang, W. and Qin, L. (2015) High-throughput analysis of yeast replicative aging using a microfluidic system. Proc. Natl. Acad. Sci. USA, 112, 9364–9369

[37]

Zhao, X., Luo, C. and Wang, H. (2019) Protein dynamic analysis of the budding yeast sporulation process at the single-cell level in an air-enriched microfluidic device. Integr. Biol., 11, 79–86

[38]

Zhang, Y., Luo, C., Zou, K., Xie, Z., Brandman, O., Ouyang, Q. and Li, H. (2012) Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One, 7, e48275

[39]

Crane, M. M., Clark, I. B., Bakker, E., Smith, S. and Swain, P. S. (2014) A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast. PLoS One, 9, e100042

[40]

Li, Y., Jin, M., O’Laughlin, R., Bittihn, P., Tsimring, L. S., Pillus, L., Hasty, J. and Hao, N. (2017) Multigenerational silencing dynamics control cell aging. Proc. Natl. Acad. Sci. USA, 114, 11253–11258

[41]

Zhang, R., Yuan, H., Wang, S., Ouyang, Q., Chen, Y., Hao, N. and Luo, C. (2017) High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response. Sci. Rep., 7, 42200

[42]

Armbrecht, L., Müller, R. S., Nikoloff, J. and Dittrich, P. S. (2019) Single-cell protein profiling in microchambers with barcoded beads. Microsyst. Nanoeng., 5, 55

[43]

Zhai, J., Li, H., Wong, A. H., Dong, C., Yi, S., Jia, Y., Mak, P.-I., Deng, C.-X. and Martins, R. P. (2020) A digital microfluidic system with 3D microstructures for single-cell culture. Microsyst. Nanoeng., 6, 6

[44]

Sinkala, E., Sollier-Christen, E., Renier, C., Rosàs-Canyelles, E., Che, J., Heirich, K., Duncombe, T. A., Vlassakis, J., Yamauchi, K. A., Huang, H., (2017) Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun., 8, 14622

[45]

Sinha, H., Quach, A. B. V., Vo, P. Q. N. and Shih, S. C. C. (2018) An automated microfluidic gene-editing platform for deciphering cancer genes. Lab Chip, 18, 2300–2312

[46]

Lee, A. C., Svedlund, J., Darai, E., Lee, Y., Lee, D., Lee, H. B., Kim, S. M., Kim, O., Bae, H. J., Choi, A., (2020) OPENchip: an on-chip in situ molecular profiling platform for gene expression analysis and oncogenic mutation detection in single circulating tumour cells. Lab Chip, 20, 912–922

[47]

Huang, P. H., Chan, C. Y., Li, P., Wang, Y., Nama, N., Bachman, H. and Huang, T. J. (2018) A sharp-edge-based acoustofluidic chemical signal generator. Lab Chip, 18, 1411–1421

[48]

Woodruff, K. and Maerkl, S. J. (2018) Microfluidic module for real-time generation of complex multimolecule temporal concentration profiles. Anal. Chem., 90, 696–701

[49]

Tang, Y., Gan, M., Xie, Y., Li, X. and Chen, L. (2014) Fast screening of bacterial suspension culture conditions on chips. Lab Chip, 14, 1162–1167

[50]

Li, L., Wu, T., Wang, Y., Ran, M., Kang, Y., Ouyang, Q. and Luo, C. (2019) Spatial coordination in a mutually beneficial bacterial community enhances its antibiotic resistance. Commun. Biol., 2, 301

[51]

Wang, B. L., Ghaderi, A., Zhou, H., Agresti, J., Weitz, D. A., Fink, G. R. and Stephanopoulos, G. (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol., 32, 473–478

[52]

Bennett, M. R. and Hasty, J. (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet., 10, 628–638

[53]

Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186

[54]

Graham, G., Csicsery, N., Stasiowski, E., Thouvenin, G., Mather, W. H., Ferry, M., Cookson, S. and Hasty, J. (2020) Genome-scale transcriptional dynamics and environmental biosensing. Proc. Natl. Acad. Sci. USA, 117, 3301–3306

[55]

Dénervaud, N., Becker, J., Delgado-Gonzalo, R., Damay, P., Rajkumar, A. S., Unser, M., Shore, D., Naef, F. and Maerkl, S. J. (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc. Natl. Acad. Sci. USA, 110, 15842–15847

[56]

Luro, S., Potvin-Trottier, L., Okumus, B. and Paulsson, J. (2020) Isolating live cells after high-throughput, long-term, time-lapse microscopy. Nat. Methods, 17, 93–100

[57]

Xu, J. G., Huang, M. S., Wang, H. F. and Fang, Q. (2019) Forming a large-scale droplet array in a microcage array chip for high-throughput screening. Anal. Chem., 91, 10757–10763

[58]

Kim, H. S., Devarenne, T. P. and Han, A. (2015) A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Lab Chip, 15, 2467–2475

[59]

Burmeister, A., Hilgers, F., Langner, A., Westerwalbesloh, C., Kerkhoff, Y., Tenhaef, N., Drepper, T., Kohlheyer, D., von Lieres, E., Noack, S., (2019) A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip, 19, 98–110

[60]

Scott, S. R., Din, M. O., Bittihn, P., Xiong, L., Tsimring, L. S. and Hasty, J. (2017) A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat. Microbiol., 2, 17083

[61]

Chen, Y., Kim, J. K., Hirning, A. J., Josić K. and Bennett, M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989

[62]

Kim, J. K., Chen, Y., Hirning, A. J., Alnahhas, R. N., Josić K. and Bennett, M. R. (2019) Long-range temporal coordination of gene expression in synthetic microbial consortia. Nat. Chem. Biol., 15, 1102–1109

[63]

Alnahhas, R. N., Winkle, J. J., Hirning, A. J., Karamched, B., Ott, W., Josić K. and Bennett, M. R. (2019) Spatiotemporal dynamics of synthetic microbial consortia in microfluidic devices. ACS Synth. Biol., 8, 2051–2058

[64]

Hsu, R. H., Clark, R. L., Tan, J. W., Ahn, J. C., Gupta, S., Romero, P. A. and Venturelli, O. S. (2019) Microbial interaction network inference in microfluidic droplets. Cell Syst., 9, 229–242.e4

[65]

Park, J., Kerner, A., Burns, M. A. and Lin, X. N. (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One, 6, e17019

[66]

Osmekhina, E., Jonkergouw, C., Schmidt, G., Jahangiri, F., Jokinen, V., Franssila, S. and Linder, M. B. (2018) Controlled communication between physically separated bacterial populations in a microfluidic device. Commun. Biol., 1, 97

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2971KB)

4707

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/