Microfluidic approaches for synthetic gene circuits’ construction and analysis

Fengyu Zhang, Yanhong Sun, Chunxiong Luo

PDF(2971 KB)
PDF(2971 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (1) : 47-60. DOI: 10.15302/J-QB-021-0235
REVIEW
REVIEW

Microfluidic approaches for synthetic gene circuits’ construction and analysis

Author information +
History +

Abstract

Background: Microfluidic systems have advantages such as a high throughput, small reaction volume, and precise control of the cellular position and environment. These advantages have allowed microfluidics to be widely used in several fields of synthetic biology in recent years.

Results: In this article, we reviewed the microfluidic-based methods for synthetic biology from two aspects: the construction of synthetic gene circuits and the analysis of synthetic gene systems. We used some examples to illuminate the progresses and challenges in the steps of synthetic gene circuits construction and approaches of gene expression analysis with microfluidic systems.

Conclusion: Comparing to traditional methods, microfluidic tools promise great advantages in the synthetic genetic circuit building and analysis process. Moreover, new microfluidic systems together with the mathematical modeling of synthetic circuits or consortiums are desirable to perform complex genetic circuit construction and understand the natural gene regulation in cells and population interactions better.

Author summary

Microfluidics-based methods for synthetic biology include the construction of synthetic gene circuits and the analysis of synthetic gene systems. In the former, the high-throughput, automated control of reaction media and the mini reaction systems of microfluidic systems for gene circuit synthesis can substantially improve efficiency, which leads to a significant cost reduction. In the latter, the precise control of cellular growth directions and environments combined with time-lapse microscopy makes the description of cell behavior or gene expression easier and more accurate. Accordingly, there is a great opportunity for microfluidics to be applied in synthetic biology research in the future.

Graphical abstract

Keywords

microfluidics / synthetic gene circuit / analysis

Cite this article

Download citation ▾
Fengyu Zhang, Yanhong Sun, Chunxiong Luo. Microfluidic approaches for synthetic gene circuits’ construction and analysis. Quant. Biol., 2021, 9(1): 47‒60 https://doi.org/10.15302/J-QB-021-0235

References

[1]
Whitesides, G. M. (2006) The origins and the future of microfluidics. Nature 442, 368–373
CrossRef Pubmed Google scholar
[2]
Wang, B. L., Ghaderi, A., Zhou, H., Agresti, J., Weitz, D. A., Fink, G. R. and Stephanopoulos, G. (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol., 32, 473–478
CrossRef Pubmed Google scholar
[3]
Chabert, M. and Viovy, J. L. (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl. Acad. Sci. USA, 105, 3191–3196
CrossRef Pubmed Google scholar
[4]
Potvin-Trottier, L., Luro, S. and Paulsson, J. (2018) Microfluidics and single-cell microscopy to study stochastic processes in bacteria. Curr. Opin. Microbiol., 43, 186–192
CrossRef Pubmed Google scholar
[5]
Cooksey, G. A., Sip, C. G. and Folch, A. (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip, 9, 417–426
CrossRef Pubmed Google scholar
[6]
Duncan, P. N., Nguyen, T. V. and Hui, E. E. (2013) Pneumatic oscillator circuits for timing and control of integrated microfluidics. Proc. Natl. Acad. Sci. USA. 110, 18104–18109
Pubmed
[7]
Okumus, B., Landgraf, D., Lai, G. C., Bakshi, S., Arias-Castro, J. C., Yildiz, S., Huh, D., Fernandez-Lopez, R., Peterson, C. N., Toprak, E., (2016) Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells. Nat. Commun., 7, 11641
CrossRef Pubmed Google scholar
[8]
Frey, O., Rudolf, F., Schmidt, G. W. and Hierlemann, A. (2015) Versatile, simple-to-use microfluidic cell-culturing chip for long-term, high-resolution, time-lapse imaging. Anal. Chem., 87, 4144–4151
CrossRef Pubmed Google scholar
[9]
Damiati, S. (2019) New opportunities for creating man-made bioarchitectures utilizing microfluidics. Biomed. Microdevices, 21, 62
[10]
Kuhn, P., Wagner, K., Heil, K., Liss, M. and Netuschil, N. (2017) Next generation gene synthesis: From microarrays to genomes. Eng. Life Sci., 17, 6–13
CrossRef Pubmed Google scholar
[11]
Lee, C. C., Snyder, T. M., & Quake, S. R. . (2010) A microfluidic oligonucleotide synthesizer. Nucleic Acids Research, 38, 2514–2521
[12]
Khilko, Y., Weyman, P. D., Glass, J. I., Adams, M. D., McNeil, M. A. and Griffin, P. B. (2018) DNA assembly with error correction on a droplet digital microfluidics platform. BMC Biotechnol., 18, 37
CrossRef Pubmed Google scholar
[13]
Casini, A., Storch, M., Baldwin, G. S. and Ellis, T. (2015) Bricks and blueprints: methods and standards for DNA assembly. Nat. Rev. Mol. Cell Biol., 16, 568–576
CrossRef Pubmed Google scholar
[14]
Szita, N., Polizzi, K., Jaccard, N. and Baganz, F. (2010) Microfluidic approaches for systems and synthetic biology. Curr. Opin. Biotechnol., 21, 517–523
CrossRef Pubmed Google scholar
[15]
Shih, S. C. C., Goyal, G., Kim, P. W., Koutsoubelis, N., Keasling, J. D., Adams, P. D., Hillson, N. J. and Singh, A. K. (2015) A versatile microfluidic device for automating synthetic biology. ACS Synth. Biol., 4, 1151–1164
CrossRef Pubmed Google scholar
[16]
Kong, D. S., Thorsen, T. A., Babb, J., Wick, S. T., Gam, J. J., Weiss, R. and Carr, P. A. (2017) Open-source, community-driven microfluidics with Metafluidics. Nat. Biotechnol., 35, 523–529
CrossRef Pubmed Google scholar
[17]
Baneyx, F. (1999) Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol., 10, 411–421
CrossRef Pubmed Google scholar
[18]
Botstein, D., Chervitz, S. A. and Cherry, J. M. (1997) Yeast as a model organism. Science, 277, 1259–1260
CrossRef Pubmed Google scholar
[19]
Chen, C. and Okayama, H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol., 7, 2745–2752
CrossRef Pubmed Google scholar
[20]
Woodruff, K. and Maerkl, S. J. (2016) A high-throughput microfluidic platform for mammalian cell transfection and culturing. Sci. Rep., 6, 23937https://doi.org/10.1038/srep23937
[21]
Zhang, J., Hu, Y., Wang, X., Liu, P. and Chen, X. (2019) High-throughput platform for efficient chemical transfection, virus packaging, and transduction. Micromachines (Basel), 10, 387
CrossRef Pubmed Google scholar
[22]
Hori, Y., Kantak, C., Murray, R. M. and Abate, A. R. (2017) Cell-free extract based optimization of biomolecular circuits with droplet microfluidics. Lab Chip, 17, 3037–3042
CrossRef Pubmed Google scholar
[23]
Gach, P. C., Shih, S. C., Sustarich, J., Keasling, J. D., Hillson, N. J., Adams, P. D. and Singh, A. K. (2016) A droplet microfluidic platform for automating genetic engineering. ACS Synth. Biol., 5, 426–433
CrossRef Pubmed Google scholar
[24]
Forster, A. C. and Church, G. M. (2007) Synthetic biology projects in vitro. Genome Res., 17, 1–6
CrossRef Pubmed Google scholar
[25]
Gach, P. C., Iwai, K., Kim, P. W., Hillson, N. J. and Singh, A. K. (2017) Droplet microfluidics for synthetic biology. Lab Chip, 17, 3388–3400
CrossRef Pubmed Google scholar
[26]
Weiss, M., Frohnmayer, J. P., Benk, L. T., Haller, B., Janiesch, J. W., Heitkamp, T., Börsch, M., Lira, R. B., Dimova, R., Lipowsky, R., (2018) Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater., 17, 89–96
CrossRef Pubmed Google scholar
[27]
Haller, B., Göpfrich, K., Schröter, M., Janiesch, J. W., Platzman, I. and Spatz, J. P. (2018) Charge-controlled microfluidic formation of lipid-based single- and multi-compartment systems. Lab Chip, 18, 2665–2674
CrossRef Pubmed Google scholar
[28]
Moazami, E., Perry, J. M., Soffer, G., Husser, M. C. and Shih, S. C. C. (2019) Integration of world-to-chip interfaces with digital microfluidics for bacterial transformation and enzymatic assays. Anal. Chem., 91, 5159–5168
CrossRef Pubmed Google scholar
[29]
Tangen, U., Minero, G. A., Sharma, A., Wagler, P. F., Cohen, R., Raz, O., Marx, T., Ben-Yehezkel, T. and McCaskill, J. S. (2015) DNA-library assembly programmed by on-demand nano-liter droplets from a custom microfluidic chip. Biomicrofluidics, 9, 044103
CrossRef Pubmed Google scholar
[30]
Kaiser, M., Jug, F., Julou, T., Deshpande, S., Pfohl, T., Silander, O. K., Myers, G. and van Nimwegen, E. (2018) Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software. Nat. Commun., 9, 212
CrossRef Pubmed Google scholar
[31]
Long, Z., Nugent, E., Javer, A., Cicuta, P., Sclavi, B., Cosentino Lagomarsino, M. and Dorfman, K. D. (2013) Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip, 13, 947–954
CrossRef Pubmed Google scholar
[32]
Wang, Y., Ran, M., Wang, J., Ouyang, Q. and Luo, C. (2015) Studies of antibiotic resistance of beta-lactamase bacteria under different nutrition limitations at the single-cell level. PLoS One, 10, e0127115
CrossRef Pubmed Google scholar
[33]
Pitruzzello, G., Thorpe, S., Johnson, S., Evans, A., Gadêlha, H. and Krauss, T. F. (2019) Multiparameter antibiotic resistance detection based on hydrodynamic trapping of individual E. coli. Lab Chip, 19, 1417–1426
CrossRef Pubmed Google scholar
[34]
Graham, G., Csicsery, N., Stasiowski, E., Thouvenin, G., Mather, W. H., Ferry, M., Cookson, S. and Hasty, J. (2020) Genome-scale transcriptional dynamics and environmental biosensing. Proc. Natl. Acad. Sci. USA, 117, 3301–3306
CrossRef Pubmed Google scholar
[35]
Okumus, B., Landgraf, D., Lai, G. C., Bakshi, S., Arias-Castro, J. C., Yildiz, S., Huh, D., Fernandez-Lopez, R., Peterson, C. N., Toprak, E., (2016) Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells. Nat. Commun., 7, 12130
CrossRef Pubmed Google scholar
[36]
Jo, M. C., Liu, W., Gu, L., Dang, W. and Qin, L. (2015) High-throughput analysis of yeast replicative aging using a microfluidic system. Proc. Natl. Acad. Sci. USA, 112, 9364–9369
CrossRef Pubmed Google scholar
[37]
Zhao, X., Luo, C. and Wang, H. (2019) Protein dynamic analysis of the budding yeast sporulation process at the single-cell level in an air-enriched microfluidic device. Integr. Biol., 11, 79–86
CrossRef Google scholar
[38]
Zhang, Y., Luo, C., Zou, K., Xie, Z., Brandman, O., Ouyang, Q. and Li, H. (2012) Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One, 7, e48275
CrossRef Pubmed Google scholar
[39]
Crane, M. M., Clark, I. B., Bakker, E., Smith, S. and Swain, P. S. (2014) A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast. PLoS One, 9, e100042
CrossRef Pubmed Google scholar
[40]
Li, Y., Jin, M., O’Laughlin, R., Bittihn, P., Tsimring, L. S., Pillus, L., Hasty, J. and Hao, N. (2017) Multigenerational silencing dynamics control cell aging. Proc. Natl. Acad. Sci. USA, 114, 11253–11258
CrossRef Pubmed Google scholar
[41]
Zhang, R., Yuan, H., Wang, S., Ouyang, Q., Chen, Y., Hao, N. and Luo, C. (2017) High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response. Sci. Rep., 7, 42200
CrossRef Pubmed Google scholar
[42]
Armbrecht, L., Müller, R. S., Nikoloff, J. and Dittrich, P. S. (2019) Single-cell protein profiling in microchambers with barcoded beads. Microsyst. Nanoeng., 5, 55
CrossRef Pubmed Google scholar
[43]
Zhai, J., Li, H., Wong, A. H., Dong, C., Yi, S., Jia, Y., Mak, P.-I., Deng, C.-X. and Martins, R. P. (2020) A digital microfluidic system with 3D microstructures for single-cell culture. Microsyst. Nanoeng., 6, 6
CrossRef Google scholar
[44]
Sinkala, E., Sollier-Christen, E., Renier, C., Rosàs-Canyelles, E., Che, J., Heirich, K., Duncombe, T. A., Vlassakis, J., Yamauchi, K. A., Huang, H., (2017) Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun., 8, 14622
CrossRef Pubmed Google scholar
[45]
Sinha, H., Quach, A. B. V., Vo, P. Q. N. and Shih, S. C. C. (2018) An automated microfluidic gene-editing platform for deciphering cancer genes. Lab Chip, 18, 2300–2312
CrossRef Pubmed Google scholar
[46]
Lee, A. C., Svedlund, J., Darai, E., Lee, Y., Lee, D., Lee, H. B., Kim, S. M., Kim, O., Bae, H. J., Choi, A., (2020) OPENchip: an on-chip in situ molecular profiling platform for gene expression analysis and oncogenic mutation detection in single circulating tumour cells. Lab Chip, 20, 912–922
CrossRef Pubmed Google scholar
[47]
Huang, P. H., Chan, C. Y., Li, P., Wang, Y., Nama, N., Bachman, H. and Huang, T. J. (2018) A sharp-edge-based acoustofluidic chemical signal generator. Lab Chip, 18, 1411–1421
CrossRef Pubmed Google scholar
[48]
Woodruff, K. and Maerkl, S. J. (2018) Microfluidic module for real-time generation of complex multimolecule temporal concentration profiles. Anal. Chem., 90, 696–701
CrossRef Pubmed Google scholar
[49]
Tang, Y., Gan, M., Xie, Y., Li, X. and Chen, L. (2014) Fast screening of bacterial suspension culture conditions on chips. Lab Chip, 14, 1162–1167
CrossRef Pubmed Google scholar
[50]
Li, L., Wu, T., Wang, Y., Ran, M., Kang, Y., Ouyang, Q. and Luo, C. (2019) Spatial coordination in a mutually beneficial bacterial community enhances its antibiotic resistance. Commun. Biol., 2, 301
CrossRef Pubmed Google scholar
[51]
Wang, B. L., Ghaderi, A., Zhou, H., Agresti, J., Weitz, D. A., Fink, G. R. and Stephanopoulos, G. (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol., 32, 473–478
CrossRef Pubmed Google scholar
[52]
Bennett, M. R. and Hasty, J. (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet., 10, 628–638
CrossRef Pubmed Google scholar
[53]
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
CrossRef Pubmed Google scholar
[54]
Graham, G., Csicsery, N., Stasiowski, E., Thouvenin, G., Mather, W. H., Ferry, M., Cookson, S. and Hasty, J. (2020) Genome-scale transcriptional dynamics and environmental biosensing. Proc. Natl. Acad. Sci. USA, 117, 3301–3306
CrossRef Pubmed Google scholar
[55]
Dénervaud, N., Becker, J., Delgado-Gonzalo, R., Damay, P., Rajkumar, A. S., Unser, M., Shore, D., Naef, F. and Maerkl, S. J. (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc. Natl. Acad. Sci. USA, 110, 15842–15847
CrossRef Pubmed Google scholar
[56]
Luro, S., Potvin-Trottier, L., Okumus, B. and Paulsson, J. (2020) Isolating live cells after high-throughput, long-term, time-lapse microscopy. Nat. Methods, 17, 93–100
CrossRef Pubmed Google scholar
[57]
Xu, J. G., Huang, M. S., Wang, H. F. and Fang, Q. (2019) Forming a large-scale droplet array in a microcage array chip for high-throughput screening. Anal. Chem., 91, 10757–10763
CrossRef Pubmed Google scholar
[58]
Kim, H. S., Devarenne, T. P. and Han, A. (2015) A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Lab Chip, 15, 2467–2475
CrossRef Pubmed Google scholar
[59]
Burmeister, A., Hilgers, F., Langner, A., Westerwalbesloh, C., Kerkhoff, Y., Tenhaef, N., Drepper, T., Kohlheyer, D., von Lieres, E., Noack, S., (2019) A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip, 19, 98–110
CrossRef Pubmed Google scholar
[60]
Scott, S. R., Din, M. O., Bittihn, P., Xiong, L., Tsimring, L. S. and Hasty, J. (2017) A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat. Microbiol., 2, 17083
CrossRef Pubmed Google scholar
[61]
Chen, Y., Kim, J. K., Hirning, A. J., Josić, K. and Bennett, M. R. (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science, 349, 986–989
CrossRef Pubmed Google scholar
[62]
Kim, J. K., Chen, Y., Hirning, A. J., Alnahhas, R. N., Josić, K. and Bennett, M. R. (2019) Long-range temporal coordination of gene expression in synthetic microbial consortia. Nat. Chem. Biol., 15, 1102–1109
CrossRef Pubmed Google scholar
[63]
Alnahhas, R. N., Winkle, J. J., Hirning, A. J., Karamched, B., Ott, W., Josić, K. and Bennett, M. R. (2019) Spatiotemporal dynamics of synthetic microbial consortia in microfluidic devices. ACS Synth. Biol., 8, 2051–2058
CrossRef Pubmed Google scholar
[64]
Hsu, R. H., Clark, R. L., Tan, J. W., Ahn, J. C., Gupta, S., Romero, P. A. and Venturelli, O. S. (2019) Microbial interaction network inference in microfluidic droplets. Cell Syst., 9, 229–242.e4
CrossRef Pubmed Google scholar
[65]
Park, J., Kerner, A., Burns, M. A. and Lin, X. N. (2011) Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One, 6, e17019
CrossRef Pubmed Google scholar
[66]
Osmekhina, E., Jonkergouw, C., Schmidt, G., Jahangiri, F., Jokinen, V., Franssila, S. and Linder, M. B. (2018) Controlled communication between physically separated bacterial populations in a microfluidic device. Commun. Biol., 1, 97
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This study was supported the National Key Research and Development Project (2018YFA0900700 and 2020YFA0906900) and the National Natural Science Foundation of China (Nos.11974002, 11674010).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Fengyu Zhang, Yanhong Sun, and Chunxiong Luo declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2971 KB)

Accesses

Citations

Detail

Sections
Recommended

/