Synthetic gene circuits moving into the clinic
Shuguang Peng, Huiya Huang, Ping Wei, Zhen Xie
Synthetic gene circuits moving into the clinic
[1] |
Isabella, V. M., Ha, B. N., Castillo, M. J., Lubkowicz, D. J., Rowe, S. E., Millet, Y. A., Anderson, C. L., Li, N., Fisher, A. B., West, K. A.,
CrossRef
Pubmed
Google scholar
|
[2] |
Esensten, J. H., Bluestone, J. A. and Lim, W. A. (2017) Engineering therapeutic T cells: from synthetic biology to clinical trials. Annu. Rev. Pathol., 12, 305–330
CrossRef
Pubmed
Google scholar
|
[3] |
Tigges, M., Marquez-Lago, T. T., Stelling, J. and Fussenegger, M. (2009) A tunable synthetic mammalian oscillator. Nature, 457, 309–312
CrossRef
Pubmed
Google scholar
|
[4] |
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef
Pubmed
Google scholar
|
[5] |
Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202
CrossRef
Pubmed
Google scholar
|
[6] |
Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. and Benenson, Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1311
CrossRef
Pubmed
Google scholar
|
[7] |
Huang, H., Liu, Y., Liao, W., Cao, Y., Liu, Q., Guo, Y., Lu, Y. and Xie, Z. (2019) Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat. Commun., 10, 4801
CrossRef
Pubmed
Google scholar
|
[8] |
Nissim, L., Wu, M. R., Pery, E., Binder-Nissim, A., Suzuki, H. I., Stupp, D., Wehrspaun, C., Tabach, Y., Sharp, P. A. and Lu, T. K. (2017) Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell, 171, 1138–1150.e15
CrossRef
Pubmed
Google scholar
|
[9] |
Williams, J. Z., Allen, G. M., Shah, D., Sterin, I. S., Kim, K. H., Garcia, V. P., Shavey, G. E., Yu, W., Puig-Saus, C., Tsoi, J.,
Pubmed
|
[10] |
Kemmer, C., Gitzinger, M., Daoud-El Baba, M., Djonov, V., Stelling, J. and Fussenegger, M. (2010) Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol., 28, 355–360
CrossRef
Pubmed
Google scholar
|
[11] |
Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. and Lim, W. A. (2015) Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science, 350, aab4077
CrossRef
Pubmed
Google scholar
|
[12] |
Yin, J., Yang, L., Mou, L., Dong, K., Jiang, J., Xue, S., Xu, Y., Wang, X., Lu, Y. and Ye, H. (2019) A green tea-triggered genetic control system for treating diabetes in mice and monkeys. Sci. Transl. Med., 11, eaav8826
CrossRef
Pubmed
Google scholar
|
[13] |
Ye, H., Xie, M., Xue, S., Charpin-El Hamri, G., Yin, J., Zulewski, H., & Fussenegger, M. (2017) Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat. Biomed. Eng., 1, 0005
|
[14] |
Leventhal, D. S., Sokolovska, A., Li, N., Plescia, C., Kolodziej, S. A., Gallant, C. W., Christmas, R., Gao, J. R., James, M. J., Abin-Fuentes, A.,
CrossRef
Pubmed
Google scholar
|
[15] |
Kitada, T., DiAndreth, B., Teague, B. and Weiss, R. (2018) Programming gene and engineered-cell therapies with synthetic biology. Science, 359, eaad1067
Pubmed
|
/
〈 | 〉 |