Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein
Cecylia S. Lupala, Xuanxuan Li, Jian Lei, Hong Chen, Jianxun Qi, Haiguang Liu, Xiao-Dong Su
Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein
Background: A novel coronavirus (the SARS-CoV-2) has been identified in January 2020 as the causal pathogen for COVID-19 , a pandemic started near the end of 2019. The Angiotensin converting enzyme 2 protein (ACE2) utilized by the SARS-CoV as a receptor was found to facilitate the infection of SARS-CoV-2, initiated by the binding of the spike protein to human ACE2.
Methods: Using homology modeling and molecular dynamics (MD) simulation methods, we report here the detailed structure and dynamics of the ACE2 in complex with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein.
Results: The predicted model is highly consistent with the experimentally determined structures, validating the homology modeling results. Besides the binding interface reported in the crystal structures, novel binding poses are revealed from all-atom MD simulations. The simulation data are used to identify critical residues at the complex interface and provide more details about the interactions between the SARS-CoV-2 RBD and human ACE2.
Conclusion: Simulations reveal that RBD binds to both open and closed state of ACE2. Two human ACE2 mutants and rat ACE2 are modeled to study the mutation effects on RBD binding to ACE2. The simulations show that the N-terminal helix and the K353 are very important for the tight binding of the complex, the mutants are found to alter the binding modes of the CoV2-RBD to ACE2.
SARS-CoV-2 / COVID-19 / ACE2 / mutation / molecular dynamics simulations
[1] |
Zhu, N., Zhang, D., Wang, W.,Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W.,Lu, R.,
|
[2] |
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y.,
CrossRef
Pubmed
Google scholar
|
[3] |
Othman, H., Bouslama, Z., Brandenburg, J.T., da Rocha, J., Hamdi, Y., Ghedira, K., Srairi-Abid, N. and Hazelhurst, S. (2020) Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem. Biophys. Res. Commun., 527, 702–708.
CrossRef
Google scholar
|
[4] |
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N.,
CrossRef
Pubmed
Google scholar
|
[5] |
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C.,
CrossRef
Pubmed
Google scholar
|
[6] |
Wong, S. K., Li, W., Moore, M. J., Choe, H. and Farzan, M. (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem., 279, 3197–3201.
CrossRef
Pubmed
Google scholar
|
[7] |
Li, F., Li, W., Farzan, M. and Harrison, S. C. (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309, 1864–1868.
CrossRef
Pubmed
Google scholar
|
[8] |
Kuba, K., Imai, Y., Ohto-Nakanishi, T. and Penninger, J. M. (2010) Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther., 128, 119–128.
CrossRef
Pubmed
Google scholar
|
[9] |
Bao, L.,Deng, W.,Huang, B.,Gao, H.,Ren, L., Wei, Q., Yu, P., Xu, Y., Liu, J., Qi, F., Qu, Y.,
|
[10] |
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L.,
CrossRef
Pubmed
Google scholar
|
[11] |
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y.,
CrossRef
Pubmed
Google scholar
|
[12] |
D. E. Shaw Research, Molecular Dynamics Simulations Related to SARS-CoV-2, 2020. http://www.deshawresearch.com/resources_sarscov2.html.
|
[13] |
Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S. K., Huang, I. C., Xu, K., Vasilieva, N.,
CrossRef
Pubmed
Google scholar
|
[14] |
Lavillette, D., Barbouche, R., Yao, Y., Boson, B., Cosset, F. L., Jones, I. M. and Fenouillet, E. (2006) Significant redox insensitivity of the functions of the SARS-CoV spike glycoprotein: comparison with HIV envelope. J. Biol. Chem., 281, 9200–9204.
CrossRef
Pubmed
Google scholar
|
[15] |
Li, W., Greenough, T. C., Moore, M. J., Vasilieva, N., Somasundaran, M., Sullivan, J. L., Farzan, M. and Choe, H. (2004) Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J. Virol., 78, 11429–11433.
CrossRef
Pubmed
Google scholar
|
[16] |
Li, F. (2008) Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol., 82, 6984–6991.
CrossRef
Pubmed
Google scholar
|
[17] |
Li, F. (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J. Virol., 89, 1954–1964.
CrossRef
Pubmed
Google scholar
|
[18] |
Lee, H. S., Qi, Y. and Im, W. (2015) Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci. Rep., 5, 8926
CrossRef
Pubmed
Google scholar
|
[19] |
Wang, Y., Liu, M. and Gao, J. (2020) Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA, 117, 13967–13974.
CrossRef
Pubmed
Google scholar
|
[20] |
SCMP (2020) Coronavirus: Hong Kong confirms a second dog is infected. https://www.scmp.com/news/hong-kong/health-environment/article/3075993/coronavirus-hong-kong-confirms-second-dog (Accessed: March 15, 2020).
|
[21] |
CASP (2020) CASP and Covid-19. http://predictioncenter.org/caspcommons/index.cgi (Accessed: March 25, 2020).
|
[22] |
Institute for Protein Design (2020) Coronavirus (SARS-CoV-2/COVID-19/nCoV-2019). https://www.ipd.uw.edu/coronavirus/ (Accessed on March 20, 2020).
|
[23] |
Zhang, C., Zheng, W., Huang, X., Bell, E. W., Zhou, X. and Zhang, Y. (2020) Structure models of all mature peptides in COVID-19 genome by C-I-TASSER, Zhang Lab Univ. Michigan.. https://doi.org/10.1101/2020.02.04.933135V1.
|
[24] |
AlphaFold Team. (2020) Computational predictions of protein structures associated with COVID-19. https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19 (Accessed: March 10, 2020).
|
[25] |
Zhang, G., ,Pomplun S., Loftis, A.R., Tan, X., Loas, A. and Pentelute, B.L. (2020) Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 Spike RBD. BioRxiv. 2020.03.19.999318. https://doi.org/10.1101/2020.03.19.999318.
|
[26] |
Lupala, C.S., Kumar, V., Li, X., Su, X. and Liu, H. (2020) Computational analysis on the ACE2-derived peptides for neutralizing the ACE2 binding to the spike protein of SARS-CoV-2. BioRxiv. 2020.05.03.075473. https://doi.org/10.1101/2020.05.03.075473.
|
[27] |
Han, Y. and Král, P. (2020) Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano., 14, 5143–5147.
CrossRef
Pubmed
Google scholar
|
[28] |
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L.,
CrossRef
Pubmed
Google scholar
|
[29] |
Wu, L., Chen, Q., Liu, K., Wang, J., Han, P., Zhang, Y., Hu, Y., Meng, Y., Pan, X., Qiao, C.,
|
[30] |
Anandakrishnan, R., Aguilar, B. and Onufriev, A. V. (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res., 40, W537–W541
CrossRef
Pubmed
Google scholar
|
[31] |
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605–1612.
CrossRef
Pubmed
Google scholar
|
[32] |
Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y.,
CrossRef
Pubmed
Google scholar
|
[33] |
Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M. and Mackerell, A. D. Jr. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone j, y and side-chain c1 and c2 dihedral angles. J. Chem. Theory Comput., 8, 3257–3273.
CrossRef
Pubmed
Google scholar
|
[34] |
Nosé, S. (1984) A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511–519.
CrossRef
Google scholar
|
[35] |
Hoover, W. G. (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A Gen. Phys., 31, 1695–1697.
CrossRef
Pubmed
Google scholar
|
[36] |
Parrinello, M. and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52, 7182–7190.
CrossRef
Google scholar
|
[37] |
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B. and Lindah, E. (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.
CrossRef
Google scholar
|
[38] |
Darden, T., York, D. and Pedersen, L. (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys., 98, 10089–10092.
CrossRef
Google scholar
|
[39] |
Hess, B., Bekker, H., Berendsen, H. J. C. and Fraaije, J. G. E. M. (1997) LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 18, 1463–1472
CrossRef
Google scholar
|
[40] |
Kumari, R., Kumar, R. and Lynn, A., and the Open Source Drug Discovery Consortium. (2014) g_mmpbsa−a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 54, 1951–1962.
CrossRef
Pubmed
Google scholar
|
[41] |
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graph., 14, 33–38., 27–28.
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |