Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein

Cecylia S. Lupala, Xuanxuan Li, Jian Lei, Hong Chen, Jianxun Qi, Haiguang Liu, Xiao-Dong Su

PDF(2506 KB)
PDF(2506 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (1) : 61-72. DOI: 10.15302/J-QB-020-0231
RESEARCH ARTICLE
RESEARCH ARTICLE

Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein

Author information +
History +

Abstract

Background: A novel coronavirus (the SARS-CoV-2) has been identified in January 2020 as the causal pathogen for COVID-19 , a pandemic started near the end of 2019. The Angiotensin converting enzyme 2 protein (ACE2) utilized by the SARS-CoV as a receptor was found to facilitate the infection of SARS-CoV-2, initiated by the binding of the spike protein to human ACE2.

Methods: Using homology modeling and molecular dynamics (MD) simulation methods, we report here the detailed structure and dynamics of the ACE2 in complex with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein.

Results: The predicted model is highly consistent with the experimentally determined structures, validating the homology modeling results. Besides the binding interface reported in the crystal structures, novel binding poses are revealed from all-atom MD simulations. The simulation data are used to identify critical residues at the complex interface and provide more details about the interactions between the SARS-CoV-2 RBD and human ACE2.

Conclusion: Simulations reveal that RBD binds to both open and closed state of ACE2. Two human ACE2 mutants and rat ACE2 are modeled to study the mutation effects on RBD binding to ACE2. The simulations show that the N-terminal helix and the K353 are very important for the tight binding of the complex, the mutants are found to alter the binding modes of the CoV2-RBD to ACE2.

Graphical abstract

Keywords

SARS-CoV-2 / COVID-19 / ACE2 / mutation / molecular dynamics simulations

Cite this article

Download citation ▾
Cecylia S. Lupala, Xuanxuan Li, Jian Lei, Hong Chen, Jianxun Qi, Haiguang Liu, Xiao-Dong Su. Computational simulations reveal the binding dynamics between human ACE2 and the receptor binding domain of SARS-CoV-2 spike protein. Quant. Biol., 2021, 9(1): 61‒72 https://doi.org/10.15302/J-QB-020-0231

References

[1]
Zhu, N., Zhang, D., Wang, W.,Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W.,Lu, R., (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med., NEJMoa2001017. https://doi.org/10.1056/nejmoa2001017.
[2]
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., (2020) A new coronavirus associated with human respiratory disease in China. Nature, 579, 265–269.
CrossRef Pubmed Google scholar
[3]
Othman, H., Bouslama, Z., Brandenburg, J.T., da Rocha, J., Hamdi, Y., Ghedira, K., Srairi-Abid, N. and Hazelhurst, S. (2020) Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Biochem. Biophys. Res. Commun., 527, 702–708.
CrossRef Google scholar
[4]
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395, 565–574.
CrossRef Pubmed Google scholar
[5]
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450–454.
CrossRef Pubmed Google scholar
[6]
Wong, S. K., Li, W., Moore, M. J., Choe, H. and Farzan, M. (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem., 279, 3197–3201.
CrossRef Pubmed Google scholar
[7]
Li, F., Li, W., Farzan, M. and Harrison, S. C. (2005) Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309, 1864–1868.
CrossRef Pubmed Google scholar
[8]
Kuba, K., Imai, Y., Ohto-Nakanishi, T. and Penninger, J. M. (2010) Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther., 128, 119–128.
CrossRef Pubmed Google scholar
[9]
Bao, L.,Deng, W.,Huang, B.,Gao, H.,Ren, L., Wei, Q., Yu, P., Xu, Y., Liu, J., Qi, F., Qu, Y., (2020)The pathogenicity of 2019 novel coronavirus in hACE2 transgenic mice, BioRxiv, 2020.02.07.939389. https://doi.org/10.1101/2020.02.07.939389.
[10]
Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220.
CrossRef Pubmed Google scholar
[11]
Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181, 894–904.e9.
CrossRef Pubmed Google scholar
[12]
D. E. Shaw Research, Molecular Dynamics Simulations Related to SARS-CoV-2, 2020. http://www.deshawresearch.com/resources_sarscov2.html.
[13]
Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S. K., Huang, I. C., Xu, K., Vasilieva, N., (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J., 24, 1634–1643.
CrossRef Pubmed Google scholar
[14]
Lavillette, D., Barbouche, R., Yao, Y., Boson, B., Cosset, F. L., Jones, I. M. and Fenouillet, E. (2006) Significant redox insensitivity of the functions of the SARS-CoV spike glycoprotein: comparison with HIV envelope. J. Biol. Chem., 281, 9200–9204.
CrossRef Pubmed Google scholar
[15]
Li, W., Greenough, T. C., Moore, M. J., Vasilieva, N., Somasundaran, M., Sullivan, J. L., Farzan, M. and Choe, H. (2004) Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J. Virol., 78, 11429–11433.
CrossRef Pubmed Google scholar
[16]
Li, F. (2008) Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol., 82, 6984–6991.
CrossRef Pubmed Google scholar
[17]
Li, F. (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J. Virol., 89, 1954–1964.
CrossRef Pubmed Google scholar
[18]
Lee, H. S., Qi, Y. and Im, W. (2015) Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci. Rep., 5, 8926
CrossRef Pubmed Google scholar
[19]
Wang, Y., Liu, M. and Gao, J. (2020) Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA, 117, 13967–13974.
CrossRef Pubmed Google scholar
[20]
SCMP (2020) Coronavirus: Hong Kong confirms a second dog is infected. https://www.scmp.com/news/hong-kong/health-environment/article/3075993/coronavirus-hong-kong-confirms-second-dog (Accessed: March 15, 2020).
[21]
CASP (2020) CASP and Covid-19. http://predictioncenter.org/caspcommons/index.cgi (Accessed: March 25, 2020).
[22]
Institute for Protein Design (2020) Coronavirus (SARS-CoV-2/COVID-19/nCoV-2019). https://www.ipd.uw.edu/coronavirus/ (Accessed on March 20, 2020).
[23]
Zhang, C., Zheng, W., Huang, X., Bell, E. W., Zhou, X. and Zhang, Y. (2020) Structure models of all mature peptides in COVID-19 genome by C-I-TASSER, Zhang Lab Univ. Michigan.. https://doi.org/10.1101/2020.02.04.933135V1.
[24]
AlphaFold Team. (2020) Computational predictions of protein structures associated with COVID-19. https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19 (Accessed: March 10, 2020).
[25]
Zhang, G., ,Pomplun S., Loftis, A.R., Tan, X., Loas, A. and Pentelute, B.L. (2020) Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 Spike RBD. BioRxiv. 2020.03.19.999318. https://doi.org/10.1101/2020.03.19.999318.
[26]
Lupala, C.S., Kumar, V., Li, X., Su, X. and Liu, H. (2020) Computational analysis on the ACE2-derived peptides for neutralizing the ACE2 binding to the spike protein of SARS-CoV-2. BioRxiv. 2020.05.03.075473. https://doi.org/10.1101/2020.05.03.075473.
[27]
Han, Y. and Král, P. (2020) Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano., 14, 5143–5147.
CrossRef Pubmed Google scholar
[28]
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 46, W296–W303.
CrossRef Pubmed Google scholar
[29]
Wu, L., Chen, Q., Liu, K.,  Wang, J., Han, P., Zhang, Y., Hu, Y., Meng, Y., Pan, X., Qiao, C., (2020)  Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2.  Cell Discov.,  6,  68 https://doi.org/10.1038/s41421-020-00210-9
[30]
Anandakrishnan, R., Aguilar, B. and Onufriev, A. V. (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res., 40, W537–W541
CrossRef Pubmed Google scholar
[31]
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605–1612.
CrossRef Pubmed Google scholar
[32]
Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 12, 405–413.
CrossRef Pubmed Google scholar
[33]
Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M. and Mackerell, A. D. Jr. (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone j, y and side-chain c1 and c2 dihedral angles. J. Chem. Theory Comput., 8, 3257–3273.
CrossRef Pubmed Google scholar
[34]
Nosé, S. (1984) A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511–519.
CrossRef Google scholar
[35]
Hoover, W. G. (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A Gen. Phys., 31, 1695–1697.
CrossRef Pubmed Google scholar
[36]
Parrinello, M. and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52, 7182–7190.
CrossRef Google scholar
[37]
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B. and Lindah, E. (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.
CrossRef Google scholar
[38]
Darden, T., York, D. and Pedersen, L. (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys., 98, 10089–10092.
CrossRef Google scholar
[39]
Hess, B., Bekker, H., Berendsen, H. J. C. and Fraaije, J. G. E. M. (1997) LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 18, 1463–1472
CrossRef Google scholar
[40]
Kumari, R., Kumar, R. and Lynn, A., and the Open Source Drug Discovery Consortium. (2014) g_mmpbsa−a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 54, 1951–1962.
CrossRef Pubmed Google scholar
[41]
Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graph., 14, 33–38., 27–28.
CrossRef Pubmed Google scholar

ABBREVIATIONS

ACE2 angiotensin converting enzyme 2 protein
RBD receptor binding domain
MD molecular dynamics

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.15302/J-QB-020-0231.

ACKNOWLEDGEMENTS

The work is supported by Beijing Computational Science Research Center (CSRC) via a director discretionary grant. The authors acknowledge the Beijing Super Cloud Computing Center (BSCC) for providing HPC resources that have contributed to the research. The research is supported by the National Natural Science Foundation (no. U1930402).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Cecylia S. Lupala, Xuanxuan Li, Jian Lei, Hong Chen, Jianxun Qi, Haiguang Liu and Xiao-dong Su declare that they have no competing interests.
All procedures performed in studies were in accordance with the ethical standards of the institution or practice at which the studies were conducted, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2506 KB)

Accesses

Citations

Detail

Sections
Recommended

/