Transcriptome wide association studies: general framework and methods
Yuhan Xie, Nayang Shan, Hongyu Zhao, Lin Hou
Transcriptome wide association studies: general framework and methods
Background: Genome-wide association studies (GWAS) have succeeded in identifying tens of thousands of genetic variants associated with complex human traits during the past decade, however, they are still hampered by limited statistical power and difficulties in biological interpretation. With the recent progress in expression quantitative trait loci (eQTL) studies, transcriptome-wide association studies (TWAS) provide a framework to test for gene-trait associations by integrating information from GWAS and eQTL studies.
Results: In this review, we will introduce the general framework of TWAS, the relevant resources, and the computational tools. Extensions of the original TWAS methods will also be discussed. Furthermore, we will briefly introduce methods that are closely related to TWAS, including MR-based methods and colocalization approaches. Connection and difference between these approaches will be discussed.
Conclusion: Finally, we will summarize strengths, limitations, and potential directions for TWAS.
Transcriptome-wide association studies (TWAS) provide an important framework to test for gene-trait associations by integrating information from GWAS and eQTL studies. In this review, we systematically review the general framework and methods of transcriptome-wide association studies, and discuss their strengths, limitations, and potential future directions.
TWAS / gene imputation / gene-trait association test / eQTL studies / GWAS
[1] |
Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J.,
CrossRef
Pubmed
Google scholar
|
[2] |
Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., Torstenson, E. S., Shah, K. P., Garcia, T., Edwards, T. L.,
CrossRef
Pubmed
Google scholar
|
[3] |
Cloney, R. (2016) Integrating gene variation and expression to understand complex traits. Nat. Rev. Genet., 17, 194
CrossRef
Pubmed
Google scholar
|
[4] |
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A.,
CrossRef
Pubmed
Google scholar
|
[5] |
Mancuso, N., Shi, H., Goddard, P., Kichaev, G., Gusev, A. and Pasaniuc, B. (2017) Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. Am. J. Hum. Genet., 100, 473–487
CrossRef
Pubmed
Google scholar
|
[6] |
Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N.,
CrossRef
Pubmed
Google scholar
|
[7] |
Lappalainen, T., Sammeth, M., Friedländer, M. R., Peter, P. A., ’t Hoen, Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G.,
CrossRef
Pubmed
Google scholar
|
[8] |
Battle, A., Mostafavi, S., Zhu, X., Potash, J. B., Weissman, M. M., McCormick, C., Haudenschild, C. D., Beckman, K. B., Shi, J., Mei, R.,
CrossRef
Pubmed
Google scholar
|
[9] |
Boomsma, D. I., de Geus, E. J., Vink, J. M., Stubbe, J. H., Distel, M. A., Hottenga, J. J., Posthuma, D., van Beijsterveldt, T. C., Hudziak, J. J., Bartels, M.,
CrossRef
Pubmed
Google scholar
|
[10] |
Laakso, M., Kuusisto, J., Stančáková, A., Kuulasmaa, T., Pajukanta, P., Lusis, A. J., Collins, F. S., Mohlke, K. L. and Boehnke, M. (2017) The metabolic syndrome in men study: a resource for studies of metabolic and cardiovascular diseases. J. Lipid Res., 58, 481–493
CrossRef
Pubmed
Google scholar
|
[11] |
Hoffman, G. E., Bendl, J., Voloudakis, G., Montgomery, K. S., Sloofman, L., Wang, Y. C., Shah, H. R., Hauberg, M. E., Johnson, J. S., Girdhar, K.,
CrossRef
Pubmed
Google scholar
|
[12] |
Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S.,
CrossRef
Pubmed
Google scholar
|
[13] |
Barbeira, A. N., Pividori, M., Zheng, J., Wheeler, H. E., Nicolae, D. L. and Im, H. K. (2019) Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet., 15, e1007889
CrossRef
Pubmed
Google scholar
|
[14] |
Park, Y., Sarkar, A., Bhutani, K. and Kellis, M. (2017) Multi-tissue polygenic models for transcriptome-wide association studies. bioRxiv, 107623
|
[15] |
Yang, Y., Shi, X., Jiao, Y., Huang, J., Chen, M., Zhou, X., Sun, L., Lin, X., Yang, C. and Liu, J. (2020) CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics, 36, 2009–2016
CrossRef
Pubmed
Google scholar
|
[16] |
Nagpal, S., Meng, X., Epstein, M. P., Tsoi, L. C., Patrick, M., Gibson, G., De Jager, P. L., Bennett, D. A., Wingo, A. P., Wingo, T. S.,
CrossRef
Pubmed
Google scholar
|
[17] |
MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J.,
CrossRef
Pubmed
Google scholar
|
[18] |
Siva, N. (2008) 1000 Genomes project. Nat. Biotechnol., 26, 256
CrossRef
Pubmed
Google scholar
|
[19] |
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K.,
CrossRef
Pubmed
Google scholar
|
[20] |
Yang, C., Wan, X., Lin, X., Chen, M., Zhou, X. and Liu, J. (2019) CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics, 35, 1644–1652
CrossRef
Pubmed
Google scholar
|
[21] |
Tang, Y.-C. and Gottlieb, A. (2018) TF-TWAS: Transcription-factor polymorphism associated with tissue-specific gene expression. bioRxiv, 405936
|
[22] |
Zhang, W., Voloudakis, G., Rajagopal, V. M., Readhead, B., Dudley, J. T., Schadt, E. E., Björkegren, J. L. M., Kim, Y., Fullard, J. F., Hoffman, G. E.,
CrossRef
Pubmed
Google scholar
|
[23] |
Mancuso, N., Freund, M. K., Johnson, R., Shi, H., Kichaev, G., Gusev, A. and Pasaniuc, B. (2019) Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet., 51, 675–682
CrossRef
Pubmed
Google scholar
|
[24] |
Giambartolomei, C., Zhenli Liu, J., Zhang, W., Hauberg, M., Shi, H., Boocock, J., Pickrell, J., Jaffe, A. E., Pasaniuc, B., Roussos, P.,
CrossRef
Pubmed
Google scholar
|
[25] |
Plagnol, V., Smyth, D. J., Todd, J. A. and Clayton, D. G. (2009) Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics, 10, 327–334
CrossRef
Pubmed
Google scholar
|
[26] |
Giambartolomei, C., Vukcevic, D., Schadt, E. E., Franke, L., Hingorani, A. D., Wallace, C. and Plagnol, V. (2014) Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet., 10, e1004383
CrossRef
Pubmed
Google scholar
|
[27] |
Wen, X., Pique-Regi, R. and Luca, F. (2017) Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization. PLoS Genet., 13, e1006646
CrossRef
Pubmed
Google scholar
|
[28] |
Hormozdiari, F., van de Bunt, M., Segrè, A. V., Li, X., Joo, J. W. J., Bilow, M., Sul, J. H., Sankararaman, S., Pasaniuc, B. and Eskin, E. (2016) Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet., 99, 1245–1260
CrossRef
Pubmed
Google scholar
|
[29] |
He, X., Fuller, C. K., Song, Y., Meng, Q., Zhang, B., Yang, X. and Li, H. (2013) Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am. J. Hum. Genet., 92, 667–680
CrossRef
Pubmed
Google scholar
|
[30] |
Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. B, 67, 301–320
CrossRef
Google scholar
|
[31] |
Zhou, X., Carbonetto, P. and Stephens, M. (2013) Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet., 9, e1003264
CrossRef
Pubmed
Google scholar
|
[32] |
Guan, Y. and Stephens, M. (2011) Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat., 5, 1780–1815
CrossRef
Google scholar
|
[33] |
Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., Holland, J. B.,
CrossRef
Pubmed
Google scholar
|
[34] |
Hoffman, M. D., Blei, D. M., Wang, C. and Paisley, J. (2013) Stochastic variational inference. J. Mach. Learn. Res., 14, 1303–1347
|
[35] |
Zeng, P. and Zhou, X. (2017) Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models. Nat. Commun., 8, 456
CrossRef
Pubmed
Google scholar
|
[36] |
Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017) Variational inference: A review for statisticians. J. Am. Stat. Assoc., 112, 859–877
CrossRef
Google scholar
|
[37] |
Bennett, D. A., Schneider, J. A., Buchman, A. S., Barnes, L. L., Boyle, P. A. and Wilson, R. S. (2012) Overview and findings from the rush memory and aging project. Curr. Alzheimer Res., 9, 646–663
CrossRef
Pubmed
Google scholar
|
[38] |
Ng, B., White, C. C., Klein, H. U., Sieberts, S. K., McCabe, C., Patrick, E., Xu, J., Yu, L., Gaiteri, C., Bennett, D. A.,
CrossRef
Pubmed
Google scholar
|
[39] |
Bennett, D. A., Buchman, A. S., Boyle, P. A., Barnes, L. L., Wilson, R. S. and Schneider, J. A. (2018) Religious orders study and rush memory and aging project. J. Alzheimers Dis., 64, S161–S189
CrossRef
Pubmed
Google scholar
|
[40] |
Sun, R. and Lin, X. (2017) Set-based tests for genetic association using the generalized berk-jones statistic. ArXiv, 171002469
|
[41] |
Li, B., Veturi, Y., Bradford, Y., Verma, S. S., Verma, A., Lucas, A. M., Haas, D. W. and Ritchie, M. D. (2019) Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Pac. Symp. Biocomput., 24, 296–307
Pubmed
|
[42] |
Bhutani, K., Sarkar, A., Park, Y., Kellis, M. and Schork, N. J. (2017) Modeling prediction error improves power of transcriptome-wide association studies. bioRxiv, 108316
|
[43] |
Liu, C., Rubin, D. B. and Wu, Y. N. (1998) Parameter expansion to accelerate em: The px-em algorithm. Biometrika, 85, 755–770
CrossRef
Google scholar
|
[44] |
Xu, Z., Wu, C., Wei, P. and Pan, W. (2017) A powerful framework for integrating eQTL and GWAS summary data. Genetics, 207, 893–902
CrossRef
Pubmed
Google scholar
|
[45] |
Pan, W. (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet. Epidemiol., 33, 497–507
CrossRef
Pubmed
Google scholar
|
[46] |
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J.,
CrossRef
Pubmed
Google scholar
|
[47] |
Wu, L., Shi, W., Long, J., Guo, X., Michailidou, K., Beesley, J., Bolla, M. K., Shu, X. O., Lu, Y., Cai, Q.,
CrossRef
Pubmed
Google scholar
|
[48] |
Gusev, A., Mancuso, N., Won, H., Kousi, M., Finucane, H. K., Reshef, Y., Song, L., Safi, A., McCarroll, S., Neale, B. M.,
CrossRef
Pubmed
Google scholar
|
[49] |
Ardlie, K. G., Deluca, D. S., Segre, A. V., Sullivan, T. J., Young, T. R., Gelfand, E. T., Trowbridge, C. A., Maller, J. B., Tukiainen, T., Lek, M.,
CrossRef
Pubmed
Google scholar
|
[50] |
DNA methylation. Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=DNA_methylation&oldid=984350315 Accessed: April 23, 2020
|
[51] |
Han, S., Lin, Y., Wang, M., Goes, F. S., Tan, K., Zandi, P., Hyde, T., Weinberger, D. R., Potash, J. B., Kleinman, J. E.,
|
[52] |
Rawlik, K., Rowlatt, A. and Tenesa, A. (2016) Imputation of DNA methylation levels in the brain implicates a risk factor for Parkinson’s disease. Genetics, 204, 771–781
CrossRef
Pubmed
Google scholar
|
[53] |
Nazarian, A., Yashin, A. I. and Kulminski, A. M. (2018) Methylation-wide association analysis reveals aim2, dguok, gnai3, and st14 genes as potential contributors to the Alzheimer’s disease pathogenesis. bioRxiv, 322503
|
[54] |
Xu, Z., Wu, C. and Pan, W., and the Alzheimer’s Disease Neuroimaging Initiative. (2017) Imaging-wide association study: Integrating imaging endophenotypes in GWAS. Neuroimage, 159, 159–169
CrossRef
Pubmed
Google scholar
|
[55] |
Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M. R., Powell, J. E., Montgomery, G. W., Goddard, M. E., Wray, N. R., Visscher, P. M.,
CrossRef
Pubmed
Google scholar
|
[56] |
Porcu, E., Rüeger, S., Lepik, K., Santoni, F. A., Reymond, A. and Kutalik, Z., the eQTLGen Consortium, and the BIOS Consortium. (2019) Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun., 10, 3300
CrossRef
Pubmed
Google scholar
|
[57] |
Lee, D., Williamson, V. S., Bigdeli, T. B., Riley, B. P., Fanous, A. H., Vladimirov, V. I. and Bacanu, S. A. (2015) JEPEG: a summary statistics based tool for gene-level joint testing of functional variants. Bioinformatics, 31, 1176–1182
CrossRef
Pubmed
Google scholar
|
[58] |
Nica, A. C., Montgomery, S. B., Dimas, A. S., Stranger, B. E., Beazley, C., Barroso, I. and Dermitzakis, E. T. (2010) Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet., 6, e1000895
CrossRef
Pubmed
Google scholar
|
[59] |
Hoffman, J. D., Graff, R. E., Emami, N. C., Tai, C. G., Passarelli, M. N., Hu, D., Huntsman, S., Hadley, D., Leong, L., Majumdar, A.,
CrossRef
Pubmed
Google scholar
|
[60] |
Lu, Y., Beeghly-Fadiel, A., Wu, L., Guo, X., Li, B., Schildkraut, J. M., Im, H. K., Chen, Y. A., Permuth, J. B., Reid, B. M.,
CrossRef
Pubmed
Google scholar
|
[61] |
Mancuso, N., Gayther, S., Gusev, A., Zheng, W., Penney, K. L., Kote-Jarai, Z., Eeles, R., Freedman, M., Haiman, C. and Pasaniuc, B., and the PRACTICAL consortium. (2018) Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat. Commun., 9, 4079
CrossRef
Pubmed
Google scholar
|
[62] |
Ioannidis, N. M., Wang, W., Furlotte, N. A., Hinds, D. A., Bustamante, C. D., Jorgenson, E., Asgari, M. M. and Whittemore, A. S., and the 23andMe Research Team. (2018) Gene expression imputation identifies candidate genes and susceptibility loci associated with cutaneous squamous cell carcinoma. Nat. Commun., 9, 4264
CrossRef
Pubmed
Google scholar
|
[63] |
Huckins, L. M., Dobbyn, A., Ruderfer, D. M., Hoffman, G., Wang, W., Pardiñas, A. F., Rajagopal, V. M., Als, T. D., T Nguyen, H., Girdhar, K.,
CrossRef
Pubmed
Google scholar
|
[64] |
Lamontagne, M., Bérubé, J. C., Obeidat, M., Cho, M. H., Hobbs, B. D., Sakornsakolpat, P., de Jong, K., Boezen, H. M., Nickle, D., Hao, K.,
CrossRef
Pubmed
Google scholar
|
[65] |
Thériault, S., Gaudreault, N., Lamontagne, M., Rosa, M., Boulanger, M. C., Messika-Zeitoun, D., Clavel, M. A., Capoulade, R., Dagenais, F., Pibarot, P.,
CrossRef
Pubmed
Google scholar
|
[66] |
Zhao, B., Shan, Y., Yang, Y., Li, T., Luo, T., Zhu, Z., Li, Y. and Zhu, H. (2019) Transcriptome-wide association analysis of 211 neuroimaging traits identifies new genes for brain structures and yields insights into the gene-level pleiotropy with other complex traits. bioRxiv, 842872
|
[67] |
Keys, K. L., Mak, A. C. Y., White, M. J., Eckalbar, W. L., Dahl, A. W., Mefford, J., Mikhaylova, A. V., Contreras, M. G., Elhawary, J. R., Eng, C.,
|
[68] |
Wheeler, H. E., Ploch, S., Barbeira, A. N., Bonazzola, R., Andaleon, A., Fotuhi Siahpirani, A., Saha, A., Battle, A., Roy, S. and Im, H. K. (2019) Imputed gene associations identify replicable trans-acting genes enriched in transcription pathways and complex traits. Genet. Epidemiol., 43, gepi.22205
CrossRef
Pubmed
Google scholar
|
[69] |
Shan, N., Wang, Z. and Hou, L. (2019) Identification of trans-eQTLs using mediation analysis with multiple mediators. BMC Bioinformatics, 20, 126
CrossRef
Pubmed
Google scholar
|
[70] |
Pierce, B. L., Tong, L., Chen, L. S., Rahaman, R., Argos, M., Jasmine, F., Roy, S., Paul-Brutus, R., Westra, H. J., Franke, L.,
CrossRef
Pubmed
Google scholar
|
[71] |
The GTEx Consortium, the Laboratory, Data Analysis & Coordinating Center (LDACC)—Analysis Working Group, the Statistical Methods groups—Analysis Working Group, the Enhancing GTEx (eGTEx) groups, the NIH Common Fund, the NIH/NCI, the NIH/NHGRI, the NIH/NIMH, the NIH/NIDA, the Biospecimen Collection Source Site—NDRI
CrossRef
Pubmed
Google scholar
|
[72] |
Võsa, U., Claringbould, A., Westra, H.-J., Bonder, M. J., Deelen, P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Kasela, S.,
|
[73] |
Liao, C., Laporte, A. D., Spiegelman, D., Akçimen, F., Joober, R., Dion, P. A. and Rouleau, G. A. (2019) Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nat. Commun., 10, 4450
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |