Identifying patient-specific flow of signal transduction perturbed by multiple single-nucleotide alterations

Olha Kholod , Chi-Ren Shyu , Jonathan Mitchem , Jussuf Kaifi , Dmitriy Shin

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 336 -346.

PDF (456KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 336 -346. DOI: 10.1007/s40484-020-0227-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Identifying patient-specific flow of signal transduction perturbed by multiple single-nucleotide alterations

Author information +
History +
PDF (456KB)

Abstract

Background: Identifying patient-specific flow of signal transduction perturbed by multiple single-nucleotide alterations is critical for improving patient outcomes in cancer cases. However, accurate estimation of mutational effects at the pathway level for such patients remains an open problem. While probabilistic pathway topology methods are gaining interest among the scientific community, the overwhelming majority do not account for network perturbation effects from multiple single-nucleotide alterations.

Methods: Here we present an improvement of the mutational forks formalism to infer the patient-specific flow of signal transduction based on multiple single-nucleotide alterations, including non-synonymous and synonymous mutations. The lung adenocarcinoma and skin cutaneous melanoma datasets from TCGA Pan-Cancer Atlas have been employed to show the utility of the proposed method.

Results: We have comprehensively characterized six mutational forks. The number of mutated nodes ranged from one to four depending on the topological characteristics of a fork. Transitional confidences (TCs) have been computed for every possible combination of single-nucleotide alterations in the fork. The performed analysis demonstrated the capacity of the mutational forks formalism to follow a biologically explainable logic in the identification of high-likelihood signaling routes in lung adenocarcinoma and skin cutaneous melanoma patients. The findings have been largely supported by the evidence from the biomedical literature.

Conclusion: We conclude that the formalism has a great chance to enable an assessment of patient-specific flow by leveraging information from multiple single-nucleotide alterations to adjust the transitional likelihoods that are solely based on the canonical view of a disease.

Graphical abstract

Keywords

mutational forks / signaling pathways / cancer / single-nucleotide alterations

Cite this article

Download citation ▾
Olha Kholod, Chi-Ren Shyu, Jonathan Mitchem, Jussuf Kaifi, Dmitriy Shin. Identifying patient-specific flow of signal transduction perturbed by multiple single-nucleotide alterations. Quant. Biol., 2020, 8(4): 336-346 DOI:10.1007/s40484-020-0227-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sever, R. and Brugge, J. S. (2015) Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 5, a006098

[2]

Khatri, P., Sirota, M. and Butte, A. J. (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLOS Comput. Biol., 8, e1002375

[3]

Zhang, Q., Li, J., Xue, H., Kong, L. and Wang, Y. (2016) Network-based methods for identifying critical pathways of complex diseases: a survey. Mol. Biosyst., 12, 1082–1089

[4]

Zhao, X. and Liu, Z. P. (2019) Analysis of topological parameters of complex disease genes reveals the importance of ation in a biomolecular network. Genes (Basel), 10, 143

[5]

Erten, S., Bebek, G. and Koyutürk, M. (2011) Vavien: an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks. J. Comput. Biol., 18, 1561–1574

[6]

Ning, K., Ng, H. K., Srihari, S., Leong, H. W. and Nesvizhskii, A. I. (2010) Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinformatics, 11, 505

[7]

Lee, D. and Cho, K. H. (2018) Topological estimation of signal flow in complex signaling networks. Sci. Rep., 8, 5262

[8]

Lee, D. and Cho, K. H. (2019) Signal flow control of complex signaling networks. Sci. Rep., 9, 14289

[9]

Santolini, M. and Barabási, A. L. (2018) Predicting perturbation patterns from the topology of biological networks. Proc. Natl. Acad. Sci. USA, 115, E6375–E6383

[10]

Li, D. and Gao, J. (2019) Towards perturbation prediction of biological networks using deep learning. Sci. Rep., 9, 11941

[11]

Creixell, P., Schoof, E. M., Simpson, C. D., Longden, J., Miller, C. J., Lou, H. J., Perryman, L., Cox, T. R., Zivanovic, N., Palmeri, A., (2015) Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. Cell, 163, 202–217

[12]

Brennan, D. F., Dar, A. C., Hertz, N. T., Chao, W. C., Burlingame, A. L., Shokat, K. M. and Barford, D. (2011) A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature, 472, 366–369

[13]

Zhao, L. and Vogt, P. K. (2008) Class I PI3K in oncogenic cellular transformation. Oncogene, 27, 5486–5496

[14]

MacAulay, K. and Woodgett, J. R. (2008) Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opin. Ther. Targets, 12, 1265–1274

[15]

Zimmermann, S. and Moelling, K. (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science, 286, 1741–1744

[16]

Matsuura, H., Nishitoh, H., Takeda, K., Matsuzawa, A., Amagasa, T., Ito, M., Yoshioka, K. and Ichijo, H. (2002) Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J. Biol. Chem., 277, 40703–40709

[17]

Yao, K., Cho, Y. Y., Bergen, H. R. 3rd, Madden, B. J., Choi, B. Y., Ma, W. Y., Bode, A. M. and Dong, Z. (2007) Nuclear factor of activated T3 is a negative regulator of Ras-JNK1/2-AP-1 induced cell transformation. Cancer Res., 67, 8725–8735

[18]

Nihalani, D., Wong, H. N. and Holzman, L. B. (2003) Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation. J. Biol. Chem., 278, 28694–28702

[19]

Canon, J., Rex, K., Saiki, A. Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C. G., Koppada, N., (2019) The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575, 217–223

[20]

Forschner, A., Battke, F., Hadaschik, D., Schulze, M., Weißgraeber, S., Han, C. T., Kopp, M., Frick, M., Klumpp, B., Tietze, N., (2019) Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma‒results of a prospective biomarker study. J. Immunother. Cancer, 7, 180

[21]

Alexander, M., Galeas, J. and Cheng, H. (2018) Tumor mutation burden in lung cancer: a new predictive biomarker for immunotherapy or too soon to tell? J. Thorac. Dis., 10, S3994–S3998

[22]

Sharma, Y., Miladi, M., Dukare, S., Boulay, K., Caudron-Herger, M., Groß M., Backofen, R. and Diederichs, S. (2019) A pan-cancer analysis of synonymous mutations. Nat. Commun., 10, 2569

[23]

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., Geman, D., Baggerly, K. and Irizarry, R. A. (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet., 11, 733–739

[24]

Kholod, O., Lyu, Z., Mitchem, J., Tonellato, P., Joshi, T., and Shin, D. (2019) Mutational forks: inferring deregulated flow of signal transduction based on patient-specific mutations, pp. 2063–2068. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

[25]

Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 6, pl1

[26]

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 45, D353–D361

[27]

Thanintorn, N., Wang, J., Ersoy, I., Al-Taie, Z., Jiang, Y., Wang, D., Verma, M., Joshi, T., Hammer, R., Xu, D., (2016) RDF Sketch Maps—knowledge complexity reduction for precision medicine analytics. Pac. Symp. Biocomput., 21, 417–428

[28]

Shin, D., Arthur, G., Popescu, M., Korkin, D. and Shyu, C. R. (2014) Uncovering influence links in molecular knowledge networks to streamline personalized medicine. J. Biomed. Inform., 52, 394–405

[29]

The Gene Ontology Consortium. (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res., 47, D330–D338

[30]

UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 47, D506–D515

[31]

Goel, R., Harsha, H. C., Pandey, A. and Prasad, T. S. (2012) Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol. Biosyst., 8, 453–463

[32]

Pan-Cancer Genome Atlas Research Network. (2018). Available at:

[33]

Guan, J., Gupta, R. and Filipp, F. V. (2015) Cancer systems biology of TCGA SKCM: efficient detection of genomic drivers in melanoma. Sci. Rep., 5, 7857

[34]

Pan-Cancer Genome Atlas Research Network. (2018). Available at:

[35]

Cheng, N., Li, M., Zhao, L., Zhang, B., Yang, Y., Zheng, C. H. and Xia, J. (2020) Comparison and integration of computational methods for deleterious synonymous mutation prediction. Brief. Bioinform., 21, 970–981

[36]

Sever, R. and Glass, C. K. (2013) Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol., 5, a016709

[37]

Liu, T. C., Jin, X., Wang, Y. and Wang, K. (2017) Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am J Cancer Res, 7, 187–202

[38]

Brennan, P., Hainaut, P. and Boffetta, P. (2011) Genetics of lung-cancer susceptibility. Lancet Oncol., 12, 399–408

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (456KB)

Supplementary files

Supplementary Material 1

1488

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/