RECOGNICER: A coarse-graining approach for identifying broad domains from ChIP-seq data

Chongzhi Zang , Yiren Wang , Weiqun Peng

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 359 -368.

PDF (955KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 359 -368. DOI: 10.1007/s40484-020-0225-2
METHOD
METHOD

RECOGNICER: A coarse-graining approach for identifying broad domains from ChIP-seq data

Author information +
History +
PDF (955KB)

Abstract

Background: Histone modifications are major factors that define chromatin states and have functions in regulating gene expression in eukaryotic cells. Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) technique has been widely used for profiling the genome-wide distribution of chromatin-associating protein factors. Some histone modifications, such as H3K27me3 and H3K9me3, usually mark broad domains in the genome ranging from kilobases (kb) to megabases (Mb) long, resulting in diffuse patterns in the ChIP-seq data that are challenging for signal separation. While most existing ChIP-seq peak-calling algorithms are based on local statistical models without account of multi-scale features, a principled method to identify scale-free board domains has been lacking.

Methods: Here we present RECOGNICER (Recursive coarse-graining identification for ChIP-seq enriched regions), a computational method for identifying ChIP-seq enriched domains on a large range of scales. The algorithm is based on a coarse-graining approach, which uses recursive block transformations to determine spatial clustering of local enriched elements across multiple length scales.

Results: We apply RECOGNICER to call H3K27me3 domains from ChIP-seq data, and validate the results based on H3K27me3’s association with repressive gene expression. We show that RECOGNICER outperforms existing ChIP-seq broad domain calling tools in identifying more whole domains than separated pieces.

Conclusion: RECOGNICER can be a useful bioinformatics tool for next-generation sequencing data analysis in epigenomics research.

Graphical abstract

Keywords

coarse-graining / ChIP-seq / peak calling / histone modification

Cite this article

Download citation ▾
Chongzhi Zang, Yiren Wang, Weiqun Peng. RECOGNICER: A coarse-graining approach for identifying broad domains from ChIP-seq data. Quant. Biol., 2020, 8(4): 359-368 DOI:10.1007/s40484-020-0225-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernstein, B. E., Meissner, A. and Lander, E. S. (2007) The mammalian epigenome. Cell, 128, 669–681

[2]

Goldberg, A. D., Allis, C. D. and Bernstein, E. (2007) Epigenetics: a landscape takes shape. Cell, 128, 635–638

[3]

Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128, 693–705

[4]

Bannister, A. J. and Kouzarides, T. (2011) Regulation of chromatin by histone modifications. Cell Res., 21, 381–395

[5]

Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837

[6]

Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903

[7]

Mei, S., Qin, Q., Wu, Q., Sun, H., Zheng, R., Zang, C., Zhu, M., Wu, J., Shi, X., Taing, L., (2017) Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res., 45, D658–D662

[8]

Shin, H., Liu, T., Duan, X., Zhang, Y. and Liu, X. S. (2013) Computational methodology for ChIP-seq analysis. Quant. Biol., 1, 54–70

[9]

Steinhauser, S., Kurzawa, N., Eils, R. and Herrmann, C. (2016) A comprehensive comparison of tools for differential ChIP-seq analysis. Brief. Bioinform., 17, 953–966

[10]

Spitz, F. and Furlong, E. E. M. (2012) Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet., 13, 613–626

[11]

Pauler, F. M., Sloane, M. A., Huang, R., Regha, K., Koerner, M. V., Tamir, I., Sommer, A., Aszodi, A., Jenuwein, T. and Barlow, D. P. (2009) H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res., 19, 221–233

[12]

Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. and Feinberg, A. P. (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet., 41, 246–250

[13]

Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410, 120–124

[14]

Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410, 116–120

[15]

Benayoun, B. A., Pollina, E. A., Ucar, D., Mahmoudi, S., Karra, K., Wong, E. D., Devarajan, K., Daugherty, A. C., Kundaje, A. B., Mancini, E., (2014) H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell, 158, 673–688

[16]

Chen, K., Chen, Z., Wu, D., Zhang, L., Lin, X., Su, J., Rodriguez, B., Xi, Y., Xia, Z., Chen, X., (2015) Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet., 47, 1149–1157

[17]

Lovén, J., Hoke, H. A., Lin, C. Y., Lau, A., Orlando, D. A., Vakoc, C. R., Bradner, J. E., Lee, T. I. and Young, R. A. (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153, 320–334

[18]

Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., Rahl, P. B., Lee, T. I. and Young, R. A. (2013) Master transcription factors and mediator establish super- enhancers at key cell identity genes. Cell, 153, 307–319

[19]

Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André V., Sigova, A. A., Hoke, H. A. and Young, R. A. (2013) Super-enhancers in the control of cell identity and disease. Cell, 155, 934–947

[20]

Becker, J. S., Nicetto, D. and Zaret, K. S. (2016) H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet., 32, 29–41

[21]

Wang, Z., Zang, C., Cui, K., Schones, D. E., Barski, A., Peng, W. and Zhao, K. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 138, 1019–1031

[22]

Zang, C., Schones, D. E., Zeng, C., Cui, K., Zhao, K. and Peng, W. (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics, 25, 1952–1958

[23]

Song, Q. and Smith, A. D. (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics, 27, 870–871

[24]

Harmanci, A., Rozowsky, J. and Gerstein, M. (2014) MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework. Genome Biol., 15, 474

[25]

Kadanoff, L. P. (1966) Scaling laws for ising models near Tc. Physics Physique Fizika, 2, 263–272

[26]

Goldenfeld, N. (2018) Lectures on Phase Transitions and the Renormalization Group, 1st ed. New Jersey: Addison-Wesley

[27]

Landt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., Bernstein, B. E., Bickel, P., Brown, J. B., Cayting, P., (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res., 22, 1813–1831

[28]

Schwartz, Y. B. and Pirrotta, V. (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet., 8, 9–22

[29]

Young, M. D., Willson, T. A., Wakefield, M. J., Trounson, E., Hilton, D. J., Blewitt, M. E., Oshlack, A. and Majewski, I. J. (2011) ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res., 39, 7415–7427

[30]

ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74

[31]

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (955KB)

3183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/