RECOGNICER: A coarse-graining approach for identifying broad domains from ChIP-seq data

Chongzhi Zang, Yiren Wang, Weiqun Peng

PDF(955 KB)
PDF(955 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 359-368. DOI: 10.1007/s40484-020-0225-2
METHOD
METHOD

RECOGNICER: A coarse-graining approach for identifying broad domains from ChIP-seq data

Author information +
History +

Abstract

Background: Histone modifications are major factors that define chromatin states and have functions in regulating gene expression in eukaryotic cells. Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) technique has been widely used for profiling the genome-wide distribution of chromatin-associating protein factors. Some histone modifications, such as H3K27me3 and H3K9me3, usually mark broad domains in the genome ranging from kilobases (kb) to megabases (Mb) long, resulting in diffuse patterns in the ChIP-seq data that are challenging for signal separation. While most existing ChIP-seq peak-calling algorithms are based on local statistical models without account of multi-scale features, a principled method to identify scale-free board domains has been lacking.

Methods: Here we present RECOGNICER (Recursive coarse-graining identification for ChIP-seq enriched regions), a computational method for identifying ChIP-seq enriched domains on a large range of scales. The algorithm is based on a coarse-graining approach, which uses recursive block transformations to determine spatial clustering of local enriched elements across multiple length scales.

Results: We apply RECOGNICER to call H3K27me3 domains from ChIP-seq data, and validate the results based on H3K27me3’s association with repressive gene expression. We show that RECOGNICER outperforms existing ChIP-seq broad domain calling tools in identifying more whole domains than separated pieces.

Conclusion: RECOGNICER can be a useful bioinformatics tool for next-generation sequencing data analysis in epigenomics research.

Graphical abstract

Keywords

coarse-graining / ChIP-seq / peak calling / histone modification

Cite this article

Download citation ▾
Chongzhi Zang, Yiren Wang, Weiqun Peng. RECOGNICER: A coarse-graining approach for identifying broad domains from ChIP-seq data. Quant. Biol., 2020, 8(4): 359‒368 https://doi.org/10.1007/s40484-020-0225-2

References

[1]
Bernstein, B. E., Meissner, A. and Lander, E. S. (2007) The mammalian epigenome. Cell, 128, 669–681
CrossRef Pubmed Google scholar
[2]
Goldberg, A. D., Allis, C. D. and Bernstein, E. (2007) Epigenetics: a landscape takes shape. Cell, 128, 635–638
CrossRef Pubmed Google scholar
[3]
Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128, 693–705
CrossRef Pubmed Google scholar
[4]
Bannister, A. J. and Kouzarides, T. (2011) Regulation of chromatin by histone modifications. Cell Res., 21, 381–395
CrossRef Pubmed Google scholar
[5]
Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823–837
CrossRef Pubmed Google scholar
[6]
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903
CrossRef Pubmed Google scholar
[7]
Mei, S., Qin, Q., Wu, Q., Sun, H., Zheng, R., Zang, C., Zhu, M., Wu, J., Shi, X., Taing, L., (2017) Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res., 45, D658–D662
CrossRef Pubmed Google scholar
[8]
Shin, H., Liu, T., Duan, X., Zhang, Y. and Liu, X. S. (2013) Computational methodology for ChIP-seq analysis. Quant. Biol., 1, 54–70
CrossRef Pubmed Google scholar
[9]
Steinhauser, S., Kurzawa, N., Eils, R. and Herrmann, C. (2016) A comprehensive comparison of tools for differential ChIP-seq analysis. Brief. Bioinform., 17, 953–966
CrossRef Pubmed Google scholar
[10]
Spitz, F. and Furlong, E. E. M. (2012) Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet., 13, 613–626
CrossRef Pubmed Google scholar
[11]
Pauler, F. M., Sloane, M. A., Huang, R., Regha, K., Koerner, M. V., Tamir, I., Sommer, A., Aszodi, A., Jenuwein, T. and Barlow, D. P. (2009) H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res., 19, 221–233
CrossRef Pubmed Google scholar
[12]
Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. and Feinberg, A. P. (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet., 41, 246–250
CrossRef Pubmed Google scholar
[13]
Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410, 120–124
CrossRef Pubmed Google scholar
[14]
Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410, 116–120
CrossRef Pubmed Google scholar
[15]
Benayoun, B. A., Pollina, E. A., Ucar, D., Mahmoudi, S., Karra, K., Wong, E. D., Devarajan, K., Daugherty, A. C., Kundaje, A. B., Mancini, E., (2014) H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell, 158, 673–688
CrossRef Pubmed Google scholar
[16]
Chen, K., Chen, Z., Wu, D., Zhang, L., Lin, X., Su, J., Rodriguez, B., Xi, Y., Xia, Z., Chen, X., (2015) Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet., 47, 1149–1157
CrossRef Pubmed Google scholar
[17]
Lovén, J., Hoke, H. A., Lin, C. Y., Lau, A., Orlando, D. A., Vakoc, C. R., Bradner, J. E., Lee, T. I. and Young, R. A. (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 153, 320–334
CrossRef Pubmed Google scholar
[18]
Whyte, W. A., Orlando, D. A., Hnisz, D., Abraham, B. J., Lin, C. Y., Kagey, M. H., Rahl, P. B., Lee, T. I. and Young, R. A. (2013) Master transcription factors and mediator establish super- enhancers at key cell identity genes. Cell, 153, 307–319
CrossRef Pubmed Google scholar
[19]
Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H. A. and Young, R. A. (2013) Super-enhancers in the control of cell identity and disease. Cell, 155, 934–947
CrossRef Pubmed Google scholar
[20]
Becker, J. S., Nicetto, D. and Zaret, K. S. (2016) H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet., 32, 29–41
CrossRef Pubmed Google scholar
[21]
Wang, Z., Zang, C., Cui, K., Schones, D. E., Barski, A., Peng, W. and Zhao, K. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 138, 1019–1031
CrossRef Pubmed Google scholar
[22]
Zang, C., Schones, D. E., Zeng, C., Cui, K., Zhao, K. and Peng, W. (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics, 25, 1952–1958
CrossRef Pubmed Google scholar
[23]
Song, Q. and Smith, A. D. (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics, 27, 870–871
CrossRef Pubmed Google scholar
[24]
Harmanci, A., Rozowsky, J. and Gerstein, M. (2014) MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework. Genome Biol., 15, 474
CrossRef Pubmed Google scholar
[25]
Kadanoff, L. P. (1966) Scaling laws for ising models near Tc. Physics Physique Fizika, 2, 263–272
CrossRef Google scholar
[26]
Goldenfeld, N. (2018) Lectures on Phase Transitions and the Renormalization Group, 1st ed. New Jersey: Addison-Wesley
[27]
Landt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., Bernstein, B. E., Bickel, P., Brown, J. B., Cayting, P., (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res., 22, 1813–1831
CrossRef Pubmed Google scholar
[28]
Schwartz, Y. B. and Pirrotta, V. (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet., 8, 9–22
CrossRef Pubmed Google scholar
[29]
Young, M. D., Willson, T. A., Wakefield, M. J., Trounson, E., Hilton, D. J., Blewitt, M. E., Oshlack, A. and Majewski, I. J. (2011) ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic Acids Res., 39, 7415–7427
CrossRef Pubmed Google scholar
[30]
ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef Pubmed Google scholar
[31]
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289–300
CrossRef Google scholar

AVAILABILITY

RECOGNICER is implemented in Python and the source code is openly available at https://github.com/zanglab/recognicer.

ACKNOWLEDGEMENTS

The authors would like to thank Drs. Keji Zhao and Dustin E. Schones for helpful discussions and members of the Zang laboratory for testing the software. This work was partially supported by the U.S. National Institutes of Health (NIH) R35GM133712 to C.Z., and R01 AI121080 and R01AI139874 to W.P.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Chongzhi Zang, Yiren Wang and Weiqun Peng declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(955 KB)

Accesses

Citations

Detail

Sections
Recommended

/