IRIS: A method for predicting in vivo RNA secondary structures using PARIS data

Jianyu Zhou , Pan Li , Wanwen Zeng , Wenxiu Ma , Zhipeng Lu , Rui Jiang , Qiangfeng Cliff Zhang , Tao Jiang

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 369 -381.

PDF (1432KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 369 -381. DOI: 10.1007/s40484-020-0223-4
METHOD
METHOD

IRIS: A method for predicting in vivo RNA secondary structures using PARIS data

Author information +
History +
PDF (1432KB)

Abstract

Background: RNA secondary structures play a pivotal role in posttranscriptional regulation and the functions of non-coding RNAs, yet in vivo RNA secondary structures remain enigmatic. PARIS (Psoralen Analysis of RNA Interactions and Structures) is a recently developed high-throughput sequencing-based approach that enables direct capture of RNA duplex structures in vivo. However, the existence of incompatible, fuzzy pairing information obstructs the integration of PARIS data with the existing tools for reconstructing RNA secondary structure models at the single-base resolution.

Methods: We introduce IRIS, a method for predicting RNA secondary structure ensembles based on PARIS data. IRIS generates a large set of candidate RNA secondary structure models under the guidance of redistributed PARIS reads and then uses a Bayesian model to identify the optimal ensemble, according to both thermodynamic principles and PARIS data.

Results: The predicted RNA structure ensembles by IRIS have been verified based on evolutionary conservation information and consistency with other experimental RNA structural data. IRIS is implemented in Python and freely available at http://iris.zhanglab.net.

Conclusion: IRIS capitalizes upon PARIS data to improve the prediction of in vivo RNA secondary structure ensembles. We expect that IRIS will enhance the application of the PARIS technology and shed more insight on in vivo RNA secondary structures.

Graphical abstract

Keywords

RNA secondary structure / PARIS data / in vivo / structure ensembles / incompatible reads

Cite this article

Download citation ▾
Jianyu Zhou, Pan Li, Wanwen Zeng, Wenxiu Ma, Zhipeng Lu, Rui Jiang, Qiangfeng Cliff Zhang, Tao Jiang. IRIS: A method for predicting in vivo RNA secondary structures using PARIS data. Quant. Biol., 2020, 8(4): 369-381 DOI:10.1007/s40484-020-0223-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eddy, S. R. (2001) Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet., 2, 919–929

[2]

Cech, T. R. and Steitz, J. A. (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 157, 77–94

[3]

Tinoco, I. Jr and Bustamante, C. (1999) How RNA folds. J. Mol. Biol., 293, 271–281

[4]

Fallmann, J., Will, S., Engelhardt, J., Grüning, B., Backofen, R. and Stadler, P. F. (2017) Recent advances in RNA folding. J. Biotechnol., 261, 97–104

[5]

Rivas, E. (2013) The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective. RNA Biol., 10, 1185–1196

[6]

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31, 3406–3415

[7]

Hofacker, I. L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res., 31, 3429–3431

[8]

Reuter, J. S. and Mathews, D. H. (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129

[9]

Bevilacqua, P. C., Ritchey, L. E., Su, Z. and Assmann, S. M. (2016) Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet., 50, 235–266

[10]

McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29, 1105–1119

[11]

Chen, S.-J. (2008) RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu. Rev. Biophys., 37, 197–214

[12]

Flamm, C., Hofacker, I. L., Stadler, P. F. and Wolfinger, M. T. (2002) Barrier trees of degenerate landscapes. Z. Phys. Chem., 216, 155

[13]

Kucharík, M., Hofacker, I. L., Stadler, P. F. and Qin, J. (2014) Basin Hopping Graph: a computational framework to characterize RNA folding landscapes. Bioinformatics, 30, 2009–2017

[14]

Michálik, J., Touzet, H. and Ponty, Y. (2017) Efficient approximations of RNA kinetics landscape using non-redundant sampling. Bioinformatics, 33, i283–i292

[15]

Hofacker, I. L., Schuster, P. and Stadler, P. F. (1998) Combinatorics of RNA secondary structures. Discrete Appl. Math., 88, 207–237

[16]

Rivas, E. and Eddy, S. R. (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics, 2, 8

[17]

Kalvari, I., Nawrocki, E. P., Argasinska, J., Quinones-Olvera, N., Finn, R. D., Bateman, A. and Petrov, A. I. (2018) Non-coding RNA analysis using the rfam database. Curr. Protoc. Bioinf., 62, e51

[18]

Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E. P., Rivas, E., Eddy, S. R., Bateman, A., Finn, R. D. and Petrov, A. I. (2018) Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res., 46, D335–D342

[19]

Knudsen, B. and Hein, J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res., 31, 3423–3428

[20]

Do, C. B., Woods, D. A. and Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22, e90–e98

[21]

Zakov, S., Goldberg, Y., Elhadad, M. and Ziv-Ukelson, M. (2011) Rich parameterization improves RNA structure prediction. J. Comput. Biol., 18, 1525–1542

[22]

Andronescu, M., Condon, A., Hoos, H. H., Mathews, D. H. and Murphy, K. P. (2007) Efficient parameter estimation for RNA secondary structure prediction. Bioinformatics, 23, i19–i28

[23]

Andronescu, M., Condon, A., Hoos, H. H., Mathews, D. H. and Murphy, K. P. (2010) Computational approaches for RNA energy parameter estimation. RNA, 16, 2304–2318

[24]

Singh, J., Hanson, J., Paliwal, K. and Zhou, Y. (2019) RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun., 10, 5407

[25]

Kwok, C. K. (2016) Dawn of the in vivo RNA structurome and interactome. Biochem. Soc. Trans., 44, 1395–1410

[26]

Leamy, K. A., Assmann, S. M., Mathews, D. H. and Bevilacqua, P. C. (2016) Bridging the gap between in vitro and in vivo RNA folding. Q. Rev. Biophys., 49, e10

[27]

Strobel, E. J., Yu, A. M. and Lucks, J. B. (2018) High-throughput determination of RNA structures. Nat. Rev. Genet., 19, 615–634

[28]

Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. and Weissman, J. S. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature, 505, 701–705

[29]

Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C. and Assmann, S. M. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700

[30]

Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J.-W., Kuchelmeister, H. Y., Batista, P. J., Torre, E. A., Kool, E. T., (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 519, 486–490

[31]

Deigan, K. E., Li, T. W., Mathews, D. H. and Weeks, K. M. (2009) Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA, 106, 97–102

[32]

Deng, F., Ledda, M., Vaziri, S. and Aviran, S. (2016) Data-directed RNA secondary structure prediction using probabilistic modeling. RNA, 22, 1109–1119

[33]

Wu, Y., Shi, B., Ding, X., Liu, T., Hu, X., Yip, K. Y., Yang, Z. R., Mathews, D. H. and Lu, Z. J. (2015) Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data. Nucleic Acids Res., 43, 7247–7259

[34]

Washietl, S., Hofacker, I. L., Stadler, P. F. and Kellis, M. (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res., 40, 4261–4272

[35]

Spasic, A., Assmann, S. M., Bevilacqua, P. C. and Mathews, D. H. (2018) Modeling RNA secondary structure folding ensembles using SHAPE mapping data. Nucleic Acids Res., 46, 314–323

[36]

Aw, J. G. A., Shen, Y., Wilm, A., Sun, M., Lim, X. N., Boon, K.-L., Tapsin, S., Chan, Y.-S., Tan, C.-P., Sim, A. Y., (2016) In vivo mapping of eukaryotic rna interactomes reveals principles of higher-order organization and regulation. Mol. Cell, 62, 603–617

[37]

Sharma, E., Sterne-Weiler, T., O’Hanlon, D. and Blencowe, B. J. (2016) Global mapping of human RNA-RNA interactions. Mol. Cell, 62, 618–626

[38]

Lu, Z., Zhang, Q. C., Lee, B., Flynn, R. A., Smith, M. A., Robinson, J. T., Davidovich, C., Gooding, A. R., Goodrich, K. J., Mattick, J. S., (2016) Rna duplex map in living cells reveals higher-order transcriptome structure. Cell, 165, 1267–1279

[39]

Gong, J., Ju, Y., Shao, D. and Zhang, Q. C. (2018) Advances and challenges towards the study of RNA-RNA interactions in a transcriptome-wide scale. Quant. Biol., 6, 239–252

[40]

Lu, Z., Gong, J. and Zhang, Q. C. (2018) PARIS: Psoralen analysis of RNA interactions and structures with high throughput and resolution. In: RNA Detection, pp. 59–84. Springer

[41]

Fischer-Hwang, I., Lu, Z., Zou, J. and Weissman, T. (2019) Cross-linked RNA secondary structure analysis using network techniques. bioRxiv, 668491

[42]

Li, P., Wei, Y., Mei, M., Tang, L., Sun, L., Huang, W., Zhou, J., Zou, C., Zhang, S., and Qin, C.-f. (2018) Integrative analysis of zika virus genome RNA structure reveals critical determinants of viral infectivity. Cell host & microbe. 24, 875–886. e875

[43]

Danaee, P., Rouches, M., Wiley, M., Deng, D., Huang, L. and Hendrix, D. (2018) bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res., 46, 5381–5394

[44]

Li, P., Shi, R. and Zhang, Q. C. (2019) icSHAPE-pipe: A comprehensive toolkit for icSHAPE data analysis and evaluation. Methods, 178, 96–103

[45]

Flynn, R. A., Zhang, Q. C., Spitale, R. C., Lee, B., Mumbach, M. R. and Chang, H. Y. (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat. Protoc., 11, 273–290

[46]

Zhu, J. Y. A., Steif, A., Proctor, J. R. and Meyer, I. M. (2013) Transient RNA structure features are evolutionarily conserved and can be computationally predicted. Nucleic Acids Res., 41, 6273–6285

[47]

Martin, L. C., Gloor, G. B., Dunn, S. D. and Wahl, L. M. (2005) Using information theory to search for co-evolving residues in proteins. Bioinformatics, 21, 4116–4124

[48]

Rivas, E., Clements, J. and Eddy, S. R. (2017) A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods, 14, 45–48

[49]

Hamada, M. (2012) Direct updating of an RNA base-pairing probability matrix with marginal probability constraints. J. Comput. Biol., 19, 1265–1276

[50]

Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and Schuster, P. (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly. 125, 167–188

[51]

Cox, M. A. and Cox, T. F. (2008) Multidimensional scaling. In: Handbook of Data Visualization, pp. 315–347. Springer

[52]

Aurenhammer, F. (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv., 23, 345–405

[53]

Lyngsø R. B. (2004) Complexity of pseudoknot prediction in simple models. In: International Colloquium on Automata, Languages, and Programming, pp. 919–931. Springer

[54]

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21

[55]

Lyngsø R. B. and Pedersen, C. N. (2000) RNA pseudoknot prediction in energy-based models. J. Comput. Biol., 7, 409–427

[56]

Murtagh, F. (1983) A survey of recent advances in hierarchical clustering algorithms. Comput. J., 26, 354–359

[57]

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., (2020) Scipy 1.0: Fundamental algorithms for scientific computing in python. Nat. Methods, 17, 261–272

[58]

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. and Dubourg, V. (2011) Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12, 2825–2830

[59]

Darty, K., Denise, A. and Ponty, Y. (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics, 25, 1974–1975

[60]

Hunter, J. D. (2007) Matplotlib: A 2D graphics environment. Comput. Sci. Eng., 9, 90–95

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1432KB)

Supplementary files

QB-20223-OF-JT_suppl_1

2145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/