Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods

Xianyi Lian , Xiaodi Yang , Jiqi Shao , Fujun Hou , Shiping Yang , Dongli Pan , Ziding Zhang

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 312 -324.

PDF (1022KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 312 -324. DOI: 10.1007/s40484-020-0222-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods

Author information +
History +
PDF (1022KB)

Abstract

Background: Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious pathogen that widely affects human health. To decipher the complicated human-HSV-1 interactions, a comprehensive protein-protein interaction (PPI) network between human and HSV-1 is highly demanded.

Methods: To complement the experimental identification of human-HSV-1 PPIs, an integrative strategy to predict proteome-wide PPIs between human and HSV-1 was developed. For each human-HSV-1 protein pair, four popular PPI inference methods, including interolog mapping, the domain-domain interaction-based method, the domain-motif interaction-based method, and the machine learning-based method, were optimally implemented to generate four interaction probability scores, which were further integrated into a final probability score.

Results: As a result, a comprehensive high-confidence PPI network between human and HSV-1 was established, covering 10,432 interactions between 4,546 human proteins and 72 HSV-1 proteins. Functional and network analyses of the HSV-1 targeting proteins in the context of human interactome can recapitulate the known knowledge regarding the HSV-1 replication cycle, supporting the overall reliability of the predicted PPI network. Considering that HSV-1 infections are implicated in encephalitis and neurodegenerative diseases, we focused on exploring the biological significance of the brain-specific human-HSV-1 PPIs. In particular, the predicted interactions between HSV-1 proteins and Alzheimer’s-disease-related proteins were intensively investigated.

Conclusion: The current work can provide testable hypotheses to assist in the mechanistic understanding of the human-HSV-1 relationship and the anti-HSV-1 pharmaceutical target discovery. To make the predicted PPI network and the datasets freely accessible to the scientific community, a user-friendly database browser was released at http://www.zzdlab.com/HintHSV/index.php.

Graphical abstract

Keywords

human-virus interaction / protein-protein interaction / prediction / herpes simplex virus type 1 / Alzheimer’s disease

Cite this article

Download citation ▾
Xianyi Lian, Xiaodi Yang, Jiqi Shao, Fujun Hou, Shiping Yang, Dongli Pan, Ziding Zhang. Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods. Quant. Biol., 2020, 8(4): 312-324 DOI:10.1007/s40484-020-0222-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Conrady, C. D., Drevets, D. A. and Carr, D. J. J. (2010) Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J. Neuroimmunol., 220, 1–9

[2]

Piacentini, R., De Chiara, G., Li Puma, D. D., Ripoli, C., Marcocci, M. E., Garaci, E., Palamara, A. T. and Grassi, C. (2014) HSV-1 and Alzheimer’s disease: more than a hypothesis. Front. Pharmacol., 5, 97

[3]

Watanabe, D. (2010) Medical application of herpes simplex virus. J. Dermatol. Sci., 57, 75–82

[4]

De Chiara, G., Piacentini, R., Fabiani, M., Mastrodonato, A., Marcocci, M. E., Limongi, D., Napoletani , G., Protto, V., Coluccio, P., Celestino, I., (2019) Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog., 15, e1007617

[5]

Looker, K. J., Magaret, A. S., May, M. T., Turner, K. M. E., Vickerman, P., Gottlieb, S. L. and Newman, L. M. (2015) Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One, 10, e0140765

[6]

Ashford, P., Hernandez, A., Greco, T. M., Buch, A., Sodeik, B., Cristea, I. M., Grünewald, K., Shepherd, A. and Topf, M. (2016) HVint: a strategy for identifying novel protein-protein interactions in herpes simplex virus type 1. Mol. Cell. Proteomics, 15, 2939–2953

[7]

Itzhaki, R. F. (2018) Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front. Aging Neurosci., 10, 324

[8]

Steiner, I. (2011) Herpes simplex virus encephalitis: new infection or reactivation? Curr. Opin. Neurol., 24, 268–274

[9]

Itzhaki, R. F., Lin, W. R., Shang, D., Wilcock, G. K., Faragher, B. and Jamieson, G. A. (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet, 349, 241–244

[10]

Agelidis, A. M. and Shukla, D. (2015) Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol., 10, 1145–1154

[11]

Orvedahl, A., Alexander, D., Tallóczy, Z., Sun, Q., Wei, Y., Zhang, W., Burns, D., Leib, D. A. and Levine, B. (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe, 1, 23–35

[12]

Smith, M. C., Boutell, C. and Davido, D. J. (2011) HSV-1 ICP0: paving the way for viral replication. Future Virol., 6, 421–429

[13]

Bryant, K. F., Yan, Z., Dreyfus, D. H. and Knipe, D. M. (2012) Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication. J. Virol., 86, 6825–6834

[14]

Dremel, S. E. and DeLuca, N. A. (2019) Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off. eLife, 8, e51109

[15]

Yang, S., Fu, C., Lian, X., Dong, X. and Zhang, Z. (2019) Understanding human-virus protein-protein interactions using a human protein complex-based analysis framework. mSystems, 4, e00303–e00318

[16]

Nourani, E., Khunjush, F. and Durmuş, S. (2016) Computational prediction of virus-human protein-protein interactions using embedding kernelized heterogeneous data. Mol. Biosyst., 12, 1976–1986

[17]

Eid, F.-E., ElHefnawi, M. and Heath, L. S. (2016) DeNovo: virus-host sequence-based protein-protein interaction prediction. Bioinformatics, 32, 1144–1150

[18]

Qi, Y., Tastan, O., Carbonell, J. G., Klein-Seetharaman, J. and Weston, J. (2010) Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins. Bioinformatics, 26, i645–i652

[19]

Zhou, Y., Zhou, Y. S., He, F., Song, J. and Zhang, Z. (2012) Can simple codon pair usage predict protein-protein interaction? Mol. Biosyst., 8, 1396–1404

[20]

Guo, Y., Yu, L., Wen, Z. and Li, M. (2008) Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res., 36, 3025–3030

[21]

Kotlyar, M., Pastrello, C., Pivetta, F., Lo Sardo, A., Cumbaa, C., Li, H., Naranian , T., Niu, Y., Ding, Z., Vafaee, F., (2015) In silico prediction of physical protein interactions and characterization of interactome orphans. Nat. Methods, 12, 79–84

[22]

Li, Z.-G., He, F., Zhang, Z. and Peng, Y.-L. (2012) Prediction of protein-protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids, 42, 2363–2371

[23]

Schleker S., Garcia-Garcia, J., Klein-Seetharaman, J. and Oliva, B. (2012) Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes. Chem. Biodivers., 9, 991–1018

[24]

Evans, P., Dampier, W., Ungar, L. and Tozeren, A. (2009) Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs. BMC Med. Genomics, 2, 27

[25]

Lee, S. A., Chan, C. H., Tsai, C. H., Lai, J. M., Wang, F. S., Kao, C. Y. and Huang, C. Y. (2008) Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics, 9, S11

[26]

Itzhaki, Z. (2011) Domain-domain interactions underlying herpesvirus-human protein-protein interaction networks. PLoS One, 6, e21724

[27]

Franzosa, E. A. and Xia, Y. (2011) Structural principles within the human-virus protein-protein interaction network. Proc. Natl. Acad. Sci. USA, 108, 10538–10543

[28]

Hagai, T., Azia, A., Babu, M. M. and Andino, R. (2014) Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions. Cell Reports, 7, 1729–1739

[29]

Yang, S., Li, H., He, H., Zhou, Y. and Zhang, Z. (2019) Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods. Brief. Bioinform., 20, 274–287

[30]

von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M. A. and Bork, P. (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res., 33, D433–D437

[31]

Bandyopadhyay, S., Ray, S., Mukhopadhyay, A. and Maulik, U. (2015) A review of in silico approaches for analysis and prediction of HIV-1-human protein-protein interactions. Brief. Bioinform., 16, 830–851

[32]

Szpara, M. L., Gatherer, D., Ochoa, A., Greenbaum, B., Dolan, A., Bowden, R. J., Enquist, L. W., Legendre, M. and Davison, A. J. (2014) Evolution and diversity in human herpes simplex virus genomes. J. Virol., 88, 1209–1227

[33]

Meyniel-Schicklin, L., de Chassey, B., André, P. and Lotteau, V. (2012) Viruses and interactomes in translation. Mol. Cell. Proteomics, 11, M111.014738

[34]

Dyer, M. D., Murali, T. M. and Sobral, B. W. (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog., 4, e32

[35]

Zhang, N., Yan, J., Lu, G., Guo, Z., Fan, Z., Wang , J., Shi, Y., Qi, J. and Gao, G. F. (2011) Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat. Commun., 2, 577

[36]

Azab, W., Gramatica, A., Herrmann, A. and Osterrieder, N. (2015) Binding of alphaherpesvirus glycoprotein H to surface α4β1-integrins activates calcium-signaling pathways and induces phosphatidylserine exposure on the plasma membrane. MBio, 6, e01552–15

[37]

Zheng, K., Chen, M., Xiang, Y., Ma, K., Jin , F., Wang, X., Wang, X., Wang, S. and Wang, Y. (2014) Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem. Biophys. Res. Commun., 446, 990–996.

[38]

O’Brien, R. J. and Wong, P. C. (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 34, 185–204

[39]

Mayer-Proschel, M., Hogestyn, J. M. and Mock, D. J. (2018) Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen. Res., 13, 211–221

[40]

Readhead, B., Haure-Mirande, J.-V., Funk, C. C., Richards, M. A., Shannon, P., Haroutunian, V., Sano, M., Liang, W. S., Beckmann, N. D., Price, N. D., (2018) Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron, 99, 64–82.e7

[41]

Bourgade, K., Garneau, H., Giroux, G., Le Page, A. Y., Bocti, C., Dupuis, G., Frost , E. H. and Fülöp, T. Jr. (2015) b-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 16, 85–98

[42]

The UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 47, D506–D515

[43]

Lian, X., Yang, S., Li, H., Fu, C. and Zhang, Z. (2019) Machine-learning-based predictor of human-bacteria protein-protein interactions by incorporating comprehensive host-network properties. J. Proteome Res., 18, 2195–2205

[44]

Csárdi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal Complex Syst., 1695, 1–9

[45]

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 34, D535–D539

[46]

Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M. and Eisenberg, D. (2000) DIP: the database of interacting proteins. Nucleic Acids Res., 28, 289–291

[47]

Ammari, M. G., Gresham, C. R., McCarthy, F. M. and Nanduri, B. (2016) HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford), baw103

[48]

Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res., 32, D452–D455

[49]

Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., Conrad , N., Dietrich, E. M., Disz, T., Gabbard , J. L., (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res., 45, D535–D542

[50]

Breuer, K., Foroushani, A. K., Laird, M. R., Chen, C., Sribnaia, A., Lo, R., Winsor, G. L., Hancock, R. E. W., Brinkman, F. S. L. and Lynn, D. J. (2013) InnateDB: systems biology of innate immunity and beyond−recent updates and continuing curation. Nucleic Acids Res., 41, D1228–D1233

[51]

Guirimand, T., Delmotte, S. and Navratil, V. (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res., 43, D583–D587

[52]

Schaefer, M. H., Fontaine, J. F., Vinayagam, A., Porras, P., Wanker, E. E. and Andrade-Navarro, M. A. (2012) HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS One, 7, e31826

[53]

Stein, A., Céol, A. and Aloy, P. (2011) 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res., 39, D718–D723

[54]

Liu, X., Huang, Y., Liang, J., Zhang, S., Li, Y., Wang, J., Shen, Y., Xu, Z. and Zhao, Y. (2014) Computational prediction of protein interactions related to the invasion of erythrocytes by malarial parasites. BMC Bioinformatics, 15, 393

[55]

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., (2019) The Pfam protein families database in 2019. Nucleic Acids Res., 47, D427–D432

[56]

Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics, 14, 755–763

[57]

Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448–3449

[58]

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1022KB)

Supplementary files

QB-20222-OF-ZZD_suppl_1

QB-20222-OF-ZZD_suppl_2

QB-20222-OF-ZZD_suppl_3

QB-20222-OF-ZZD_suppl_4

3045

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/