Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods

Xianyi Lian, Xiaodi Yang, Jiqi Shao, Fujun Hou, Shiping Yang, Dongli Pan, Ziding Zhang

PDF(1022 KB)
PDF(1022 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 312-324. DOI: 10.1007/s40484-020-0222-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods

Author information +
History +

Abstract

Background: Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious pathogen that widely affects human health. To decipher the complicated human-HSV-1 interactions, a comprehensive protein-protein interaction (PPI) network between human and HSV-1 is highly demanded.

Methods: To complement the experimental identification of human-HSV-1 PPIs, an integrative strategy to predict proteome-wide PPIs between human and HSV-1 was developed. For each human-HSV-1 protein pair, four popular PPI inference methods, including interolog mapping, the domain-domain interaction-based method, the domain-motif interaction-based method, and the machine learning-based method, were optimally implemented to generate four interaction probability scores, which were further integrated into a final probability score.

Results: As a result, a comprehensive high-confidence PPI network between human and HSV-1 was established, covering 10,432 interactions between 4,546 human proteins and 72 HSV-1 proteins. Functional and network analyses of the HSV-1 targeting proteins in the context of human interactome can recapitulate the known knowledge regarding the HSV-1 replication cycle, supporting the overall reliability of the predicted PPI network. Considering that HSV-1 infections are implicated in encephalitis and neurodegenerative diseases, we focused on exploring the biological significance of the brain-specific human-HSV-1 PPIs. In particular, the predicted interactions between HSV-1 proteins and Alzheimer’s-disease-related proteins were intensively investigated.

Conclusion: The current work can provide testable hypotheses to assist in the mechanistic understanding of the human-HSV-1 relationship and the anti-HSV-1 pharmaceutical target discovery. To make the predicted PPI network and the datasets freely accessible to the scientific community, a user-friendly database browser was released at http://www.zzdlab.com/HintHSV/index.php.

Graphical abstract

Keywords

human-virus interaction / protein-protein interaction / prediction / herpes simplex virus type 1 / Alzheimer’s disease

Cite this article

Download citation ▾
Xianyi Lian, Xiaodi Yang, Jiqi Shao, Fujun Hou, Shiping Yang, Dongli Pan, Ziding Zhang. Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods. Quant. Biol., 2020, 8(4): 312‒324 https://doi.org/10.1007/s40484-020-0222-5

References

[1]
Conrady, C. D., Drevets, D. A. and Carr, D. J. J. (2010) Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J. Neuroimmunol., 220, 1–9
CrossRef Pubmed Google scholar
[2]
Piacentini, R., De Chiara, G., Li Puma, D. D., Ripoli, C., Marcocci, M. E., Garaci, E., Palamara, A. T. and Grassi, C. (2014) HSV-1 and Alzheimer’s disease: more than a hypothesis. Front. Pharmacol., 5, 97
CrossRef Pubmed Google scholar
[3]
Watanabe, D. (2010) Medical application of herpes simplex virus. J. Dermatol. Sci., 57, 75–82
CrossRef Pubmed Google scholar
[4]
De Chiara, G., Piacentini, R., Fabiani, M., Mastrodonato, A., Marcocci, M. E., Limongi, D., Napoletani , G., Protto, V., Coluccio, P., Celestino, I., (2019) Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog., 15, e1007617
CrossRef Pubmed Google scholar
[5]
Looker, K. J., Magaret, A. S., May, M. T., Turner, K. M. E., Vickerman, P., Gottlieb, S. L. and Newman, L. M. (2015) Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One, 10, e0140765
CrossRef Pubmed Google scholar
[6]
Ashford, P., Hernandez, A., Greco, T. M., Buch, A., Sodeik, B., Cristea, I. M., Grünewald, K., Shepherd, A. and Topf, M. (2016) HVint: a strategy for identifying novel protein-protein interactions in herpes simplex virus type 1. Mol. Cell. Proteomics, 15, 2939–2953
CrossRef Pubmed Google scholar
[7]
Itzhaki, R. F. (2018) Corroboration of a major role for herpes simplex virus type 1 in Alzheimer’s disease. Front. Aging Neurosci., 10, 324
CrossRef Pubmed Google scholar
[8]
Steiner, I. (2011) Herpes simplex virus encephalitis: new infection or reactivation? Curr. Opin. Neurol., 24, 268–274
CrossRef Pubmed Google scholar
[9]
Itzhaki, R. F., Lin, W. R., Shang, D., Wilcock, G. K., Faragher, B. and Jamieson, G. A. (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet, 349, 241–244
CrossRef Pubmed Google scholar
[10]
Agelidis, A. M. and Shukla, D. (2015) Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol., 10, 1145–1154
CrossRef Pubmed Google scholar
[11]
Orvedahl, A., Alexander, D., Tallóczy, Z., Sun, Q., Wei, Y., Zhang, W., Burns, D., Leib, D. A. and Levine, B. (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe, 1, 23–35
CrossRef Pubmed Google scholar
[12]
Smith, M. C., Boutell, C. and Davido, D. J. (2011) HSV-1 ICP0: paving the way for viral replication. Future Virol., 6, 421–429
CrossRef Pubmed Google scholar
[13]
Bryant, K. F., Yan, Z., Dreyfus, D. H. and Knipe, D. M. (2012) Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication. J. Virol., 86, 6825–6834
CrossRef Pubmed Google scholar
[14]
Dremel, S. E. and DeLuca, N. A. (2019) Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off. eLife, 8, e51109
CrossRef Pubmed Google scholar
[15]
Yang, S., Fu, C., Lian, X., Dong, X. and Zhang, Z. (2019) Understanding human-virus protein-protein interactions using a human protein complex-based analysis framework. mSystems, 4, e00303–e00318
CrossRef Pubmed Google scholar
[16]
Nourani, E., Khunjush, F. and Durmuş, S. (2016) Computational prediction of virus-human protein-protein interactions using embedding kernelized heterogeneous data. Mol. Biosyst., 12, 1976–1986
CrossRef Pubmed Google scholar
[17]
Eid, F.-E., ElHefnawi, M. and Heath, L. S. (2016) DeNovo: virus-host sequence-based protein-protein interaction prediction. Bioinformatics, 32, 1144–1150
CrossRef Pubmed Google scholar
[18]
Qi, Y., Tastan, O., Carbonell, J. G., Klein-Seetharaman, J. and Weston, J. (2010) Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins. Bioinformatics, 26, i645–i652
CrossRef Pubmed Google scholar
[19]
Zhou, Y., Zhou, Y. S., He, F., Song, J. and Zhang, Z. (2012) Can simple codon pair usage predict protein-protein interaction? Mol. Biosyst., 8, 1396–1404
CrossRef Pubmed Google scholar
[20]
Guo, Y., Yu, L., Wen, Z. and Li, M. (2008) Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res., 36, 3025–3030
CrossRef Pubmed Google scholar
[21]
Kotlyar, M., Pastrello, C., Pivetta, F., Lo Sardo, A., Cumbaa, C., Li, H., Naranian , T., Niu, Y., Ding, Z., Vafaee, F., (2015) In silico prediction of physical protein interactions and characterization of interactome orphans. Nat. Methods, 12, 79–84
CrossRef Pubmed Google scholar
[22]
Li, Z.-G., He, F., Zhang, Z. and Peng, Y.-L. (2012) Prediction of protein-protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids, 42, 2363–2371
CrossRef Pubmed Google scholar
[23]
Schleker S., Garcia-Garcia, J., Klein-Seetharaman, J. and Oliva, B. (2012) Prediction and comparison of Salmonella-human and Salmonella-Arabidopsis interactomes. Chem. Biodivers., 9, 991–1018
CrossRef Pubmed Google scholar
[24]
Evans, P., Dampier, W., Ungar, L. and Tozeren, A. (2009) Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs. BMC Med. Genomics, 2, 27
CrossRef Pubmed Google scholar
[25]
Lee, S. A., Chan, C. H., Tsai, C. H., Lai, J. M., Wang, F. S., Kao, C. Y. and Huang, C. Y. (2008) Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics, 9, S11
CrossRef Pubmed Google scholar
[26]
Itzhaki, Z. (2011) Domain-domain interactions underlying herpesvirus-human protein-protein interaction networks. PLoS One, 6, e21724
CrossRef Pubmed Google scholar
[27]
Franzosa, E. A. and Xia, Y. (2011) Structural principles within the human-virus protein-protein interaction network. Proc. Natl. Acad. Sci. USA, 108, 10538–10543
CrossRef Pubmed Google scholar
[28]
Hagai, T., Azia, A., Babu, M. M. and Andino, R. (2014) Use of host-like peptide motifs in viral proteins is a prevalent strategy in host-virus interactions. Cell Reports, 7, 1729–1739
CrossRef Pubmed Google scholar
[29]
Yang, S., Li, H., He, H., Zhou, Y. and Zhang, Z. (2019) Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods. Brief. Bioinform., 20, 274–287
CrossRef Pubmed Google scholar
[30]
von Mering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M. A. and Bork, P. (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res., 33, D433–D437
CrossRef Pubmed Google scholar
[31]
Bandyopadhyay, S., Ray, S., Mukhopadhyay, A. and Maulik, U. (2015) A review of in silico approaches for analysis and prediction of HIV-1-human protein-protein interactions. Brief. Bioinform., 16, 830–851
CrossRef Pubmed Google scholar
[32]
Szpara, M. L., Gatherer, D., Ochoa, A., Greenbaum, B., Dolan, A., Bowden, R. J., Enquist, L. W., Legendre, M. and Davison, A. J. (2014) Evolution and diversity in human herpes simplex virus genomes. J. Virol., 88, 1209–1227
CrossRef Pubmed Google scholar
[33]
Meyniel-Schicklin, L., de Chassey, B., André, P. and Lotteau, V. (2012) Viruses and interactomes in translation. Mol. Cell. Proteomics, 11, M111.014738
[34]
Dyer, M. D., Murali, T. M. and Sobral, B. W. (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog., 4, e32
CrossRef Pubmed Google scholar
[35]
Zhang, N., Yan, J., Lu, G., Guo, Z., Fan, Z., Wang , J., Shi, Y., Qi, J. and Gao, G. F. (2011) Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat. Commun., 2, 577
CrossRef Pubmed Google scholar
[36]
Azab, W., Gramatica, A., Herrmann, A. and Osterrieder, N. (2015) Binding of alphaherpesvirus glycoprotein H to surface α4β1-integrins activates calcium-signaling pathways and induces phosphatidylserine exposure on the plasma membrane. MBio, 6, e01552–15
CrossRef Pubmed Google scholar
[37]
Zheng, K., Chen, M., Xiang, Y., Ma, K., Jin , F., Wang, X., Wang, X., Wang, S. and Wang, Y. (2014) Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem. Biophys. Res. Commun., 446, 990–996.
CrossRef Pubmed Google scholar
[38]
O’Brien, R. J. and Wong, P. C. (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 34, 185–204
CrossRef Pubmed Google scholar
[39]
Mayer-Proschel, M., Hogestyn, J. M. and Mock, D. J. (2018) Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen. Res., 13, 211–221
CrossRef Pubmed Google scholar
[40]
Readhead, B., Haure-Mirande, J.-V., Funk, C. C., Richards, M. A., Shannon, P., Haroutunian, V., Sano, M., Liang, W. S., Beckmann, N. D., Price, N. D., (2018) Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron, 99, 64–82.e7
CrossRef Pubmed Google scholar
[41]
Bourgade, K., Garneau, H., Giroux, G., Le Page, A. Y., Bocti, C., Dupuis, G., Frost , E. H. and Fülöp, T. Jr. (2015) b-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 16, 85–98
CrossRef Pubmed Google scholar
[42]
The UniProt Consortium. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res., 47, D506–D515
CrossRef Pubmed Google scholar
[43]
Lian, X., Yang, S., Li, H., Fu, C. and Zhang, Z. (2019) Machine-learning-based predictor of human-bacteria protein-protein interactions by incorporating comprehensive host-network properties. J. Proteome Res., 18, 2195–2205
CrossRef Pubmed Google scholar
[44]
Csárdi, G. and Nepusz, T. (2006) The igraph software package for complex network research. InterJournal Complex Syst., 1695, 1–9
[45]
Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 34, D535–D539
CrossRef Pubmed Google scholar
[46]
Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M. and Eisenberg, D. (2000) DIP: the database of interacting proteins. Nucleic Acids Res., 28, 289–291
CrossRef Pubmed Google scholar
[47]
Ammari, M. G., Gresham, C. R., McCarthy, F. M. and Nanduri, B. (2016) HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford), baw103
CrossRef Pubmed Google scholar
[48]
Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res., 32, D452–D455
CrossRef Pubmed Google scholar
[49]
Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., Conrad , N., Dietrich, E. M., Disz, T., Gabbard , J. L., (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res., 45, D535–D542
CrossRef Pubmed Google scholar
[50]
Breuer, K., Foroushani, A. K., Laird, M. R., Chen, C., Sribnaia, A., Lo, R., Winsor, G. L., Hancock, R. E. W., Brinkman, F. S. L. and Lynn, D. J. (2013) InnateDB: systems biology of innate immunity and beyond−recent updates and continuing curation. Nucleic Acids Res., 41, D1228–D1233
CrossRef Pubmed Google scholar
[51]
Guirimand, T., Delmotte, S. and Navratil, V. (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res., 43, D583–D587
CrossRef Pubmed Google scholar
[52]
Schaefer, M. H., Fontaine, J. F., Vinayagam, A., Porras, P., Wanker, E. E. and Andrade-Navarro, M. A. (2012) HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS One, 7, e31826
CrossRef Pubmed Google scholar
[53]
Stein, A., Céol, A. and Aloy, P. (2011) 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Res., 39, D718–D723
CrossRef Pubmed Google scholar
[54]
Liu, X., Huang, Y., Liang, J., Zhang, S., Li, Y., Wang, J., Shen, Y., Xu, Z. and Zhao, Y. (2014) Computational prediction of protein interactions related to the invasion of erythrocytes by malarial parasites. BMC Bioinformatics, 15, 393
CrossRef Pubmed Google scholar
[55]
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., (2019) The Pfam protein families database in 2019. Nucleic Acids Res., 47, D427–D432
CrossRef Pubmed Google scholar
[56]
Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics, 14, 755–763
CrossRef Pubmed Google scholar
[57]
Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448–3449
CrossRef Pubmed Google scholar
[58]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.1007/s40484-020-0222-5.

ACKNOWLEDGEMENTS

This work was supported by the National Key Research and Development Program of China (2017YFC1200205 to Z.Z. and 2017YFC1200204 to D.P.).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Xianyi Lian, Xiaodi Yang, Jiqi Shao, Fujun Hou, Shiping Yang, Dongli Pan and Ziding Zhang declare that they have no competing interests. ƒThe article does not contain any human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1022 KB)

Accesses

Citations

Detail

Sections
Recommended

/