Toward an understanding of the relation between gene regulation and 3D genome organization

Hao Tian, Ying Yang, Sirui Liu, Hui Quan, Yi Qin Gao

PDF(1545 KB)
PDF(1545 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (4) : 295-311. DOI: 10.1007/s40484-020-0221-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Toward an understanding of the relation between gene regulation and 3D genome organization

Author information +
History +

Abstract

Background: High-order chromatin structure has been shown to play a vital role in gene regulation. Previously we identified two types of sequence domains, CGI (CpG island) forest and CGI prairie, which tend to spatially segregate, but to different extent in different tissues. Here we aim to further quantify the association of domain segregation with gene regulation and therefore differentiation.

Methods: By means of the published RNA-seq and Hi-C data, we identified tissue-specific genes and quantitatively investigated how their regulation is relevant to chromatin structure. Besides, two types of gene networks were constructed and the association between gene pair co-regulation and genome organization is discussed.

Results: We show that compared to forests, tissue-specific genes tend to be enriched in prairies. Highly specific genes also tend to cluster according to their functions in a relatively small number of prairies. Furthermore, tissue-specific forest-prairie contact formation was associated with the regulation of tissue-specific genes, in particular those in the prairie domains, pointing to the important role of gene positioning, in the linear DNA sequence as well as in 3D chromatin structure, in gene regulatory network formation.

Conclusion: We investigated how gene regulation is related to genome organization from the perspective of forest-prairie spatial interactions. Since unlike compartments A and B, forest and prairie are identified solely based on sequence properties. Therefore, the simple and uniform framework (forest-prairie domain segregation) provided here can be utilized to further understand the chromatin structure changes as well as the underlying biological significances in different stages, such as tumorgenesis.

Graphical abstract

Keywords

CGI forest / CGI prairie / domain segregation / chromatin structure / gene regulation

Cite this article

Download citation ▾
Hao Tian, Ying Yang, Sirui Liu, Hui Quan, Yi Qin Gao. Toward an understanding of the relation between gene regulation and 3D genome organization. Quant. Biol., 2020, 8(4): 295‒311 https://doi.org/10.1007/s40484-020-0221-6

References

[1]
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293
CrossRef Pubmed Google scholar
[2]
Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H., (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58–64
CrossRef Pubmed Google scholar
[3]
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
CrossRef Pubmed Google scholar
[4]
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680
CrossRef Pubmed Google scholar
[5]
Dowen, J. M., Fan, Z. P., Hnisz, D., Ren, G., Abraham, B. J., Zhang, L. N., Weintraub, A. S., Schuijers, J., Lee, T. I., Zhao, K., (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell, 159, 374–387
CrossRef Pubmed Google scholar
[6]
Hnisz, D., Day, D. S. and Young, R. A. (2016) Insulated neighborhoods: structural and functional units of mammalian gene control. Cell, 167, 1188–1200
CrossRef Pubmed Google scholar
[7]
Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A.-L., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A. A., (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science, 351, 1454–1458
CrossRef Pubmed Google scholar
[8]
Ji, X., Dadon, D. B., Powell, B. E., Fan, Z. P., Borges-Rivera, D., Shachar, S., Weintraub, A. S., Hnisz, D., Pegoraro, G., Lee, T. I., (2016) 3D chromosome regulatory landscape of human pluripotent cells. Cell Stem Cell, 18, 262–275
CrossRef Pubmed Google scholar
[9]
Lupiáñez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J. M., Laxova, R., (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 161, 1012–1025
CrossRef Pubmed Google scholar
[10]
Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y., Fonseca, N. A., Huber, W., Haering, C. H., Mirny, L., (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature, 551, 51–56
CrossRef Pubmed Google scholar
[11]
Smol, T., Sigé, J., Thuillier, C., Frénois, F., Brunelle, P., Rama, M., Roche-Lestienne, C., Manouvrier-Hanu, S., Petit, F. and Ghoumid, J. (2020) Lessons from the analysis of TAD boundary deletions in normal population. bioRxiv, 021188
[12]
Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J., (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98
CrossRef Pubmed Google scholar
[13]
Wang, S., Su, J.-H., Beliveau, B. J., Bintu, B., Moffitt, J. R., Wu, C. T. and Zhuang, X. (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353, 598–602
CrossRef Pubmed Google scholar
[14]
Stadhouders, R., Vidal, E., Serra, F., Di Stefano, B., Le Dily, F., Quilez, J., Gomez, A., Collombet, S., Berenguer, C., Cuartero, Y., (2018) Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet., 50, 238–249
CrossRef Pubmed Google scholar
[15]
Bertero, A., Fields, P. A., Ramani, V., Bonora, G., Yardimci, G. G., Reinecke, H., Pabon, L., Noble, W. S., Shendure, J. and Murry, C. E. (2019) Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun., 10, 1538
CrossRef Pubmed Google scholar
[16]
Liu, S., Zhang, L., Quan, H., Tian, H., Meng, L., Yang, L., Feng, H. and Gao, Y. Q. (2018) From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Res., 46, 9367–9383
CrossRef Pubmed Google scholar
[17]
Zhan, Y., Mariani, L., Barozzi, I., Schulz, E. G., Blüthgen, N., Stadler, M., Tiana, G. and Giorgetti, L. (2017) Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res., 27, 479–490
CrossRef Pubmed Google scholar
[18]
Ibn-Salem, J., Muro, E. M. and Andrade-Navarro, M. A. (2017) Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Res., 45, 81–91
CrossRef Pubmed Google scholar
[19]
Soler-Oliva, M. E., Guerrero-Martínez, J. A., Bachetti, V. and Reyes, J. C. (2017) Analysis of the relationship between coexpression domains and chromatin 3D organization. PLOS Comput. Biol., 13, e1005708
CrossRef Pubmed Google scholar
[20]
Belcastro, V., Siciliano, V., Gregoretti, F., Mithbaokar, P., Dharmalingam, G., Berlingieri, S., Iorio, F., Oliva, G., Polishchuck, R., Brunetti-Pierri, N., (2011) Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res., 39, 8677–8688
CrossRef Pubmed Google scholar
[21]
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. and Sharp, P. A. (2017) A phase separation model for transcriptional control. Cell, 169, 13–23
CrossRef Pubmed Google scholar
[22]
Boija, A., Klein, I. A., Sabari, B. R., Dall’Agnese, A., Coffey, E. L., Zamudio, A. V., Li, C. H., Shrinivas, K., Manteiga, J. C., Hannett, N. M., (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 175, 1842–1855.e16
CrossRef Pubmed Google scholar
[23]
Hnisz, D. and Young, R. A. (2017) New insights into genome structure: genes of a feather stick together. Mol. Cell, 67, 730–731
CrossRef Pubmed Google scholar
[24]
de Wit, E., Bouwman, B. A. M., Zhu, Y., Klous, P., Splinter, E., Verstegen, M. J. A. M., Krijger, P. H. L., Festuccia, N., Nora, E. P., Welling, M., (2013) The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature, 501, 227–231
CrossRef Pubmed Google scholar
[25]
Monahan, K., Horta, A. and Lomvardas, S. (2019) LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature, 565, 448–453
CrossRef Pubmed Google scholar
[26]
Hahn, M. A., Wu, X., Li, A. X., Hahn, T. and Pfeifer, G. P. (2011) Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One, 6, e18844
CrossRef Pubmed Google scholar
[27]
Wang, Z. and Willard, H. F. (2012) Evidence for sequence biases associated with patterns of histone methylation. BMC Genomics, 13, 367–379
CrossRef Pubmed Google scholar
[28]
Kustatscher, G., Grabowski, P. and Rappsilber, J. (2017) Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol., 13, 937–950
CrossRef Pubmed Google scholar
[29]
Schmitt, A. D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C. L., Li, Y., Lin, S., Lin, Y., Barr, C. L., (2016) A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep., 17, 2042–2059
CrossRef Pubmed Google scholar
[30]
Sonawane, A. R., Platig, J., Fagny, M., Chen, C.-Y., Paulson, J. N., Lopes-Ramos, C. M., DeMeo, D. L., Quackenbush, J., Glass, K. and Kuijjer, M. L. (2017) Understanding tissue-specific gene regulation. Cell Rep., 21, 1077–1088
CrossRef Pubmed Google scholar
[31]
Hurst, L. D., Pál, C. and Lercher, M. J. (2004) The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet., 5, 299–310
CrossRef Pubmed Google scholar
[32]
Xu, H., Liu, J.-J., Liu, Z., Li, Y., Jin, Y.-S. and Zhang, J. (2019) Synchronization of stochastic expressions drives the clustering of functionally related genes. Sci. Adv., 5, eaax6525
CrossRef Pubmed Google scholar
[33]
Shwan, N. A. A., Louzada, S., Yang, F. and Armour, J. A. L. (2017) Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series. Hum. Mutat., 38, 532–539
CrossRef Pubmed Google scholar
[34]
Ponomarev, I., Wang, S., Zhang, L., Harris, R. A. and Mayfield, R. D. (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci., 32, 1884–1897
CrossRef Pubmed Google scholar
[35]
Rosa, B. A., Jasmer, D. P. and Mitreva, M. (2014) Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl. Trop. Dis., 8, e2678
CrossRef Pubmed Google scholar
[36]
Satoh, J., Yamamoto, Y., Asahina, N., Kitano, S. and Kino, Y. (2014) RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer’s disease brains. Dis. Markers, 2014, 123165
CrossRef Pubmed Google scholar
[37]
Yevshin, I., Sharipov, R., Kolmykov, S., Kondrakhin, Y. and Kolpakov, F. (2019) GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res., 47, D100–D105
CrossRef Pubmed Google scholar
[38]
Sanborn, A. L., Rao, S. S. P., Huang, S.-C., Durand, N. C., Huntley, M. H., Jewett, A. I., Bochkov, I. D., Chinnappan, D., Cutkosky, A., Li, J., (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA, 112, E6456–E6465
CrossRef Pubmed Google scholar
[39]
Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N. and Mirny, L. A. (2016) Formation of chromosomal domains by loop extrusion. Cell Rep., 15, 2038–2049
CrossRef Pubmed Google scholar
[40]
Yusufzai, T. M., Tagami, H., Nakatani, Y. and Felsenfeld, G. (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell, 13, 291–298
CrossRef Pubmed Google scholar
[41]
Weintraub, A. S., Li, C. H., Zamudio, A. V., Sigova, A. A., Hannett, N. M., Day, D. S., Abraham, B. J., Cohen, M. A., Nabet, B., Buckley, D. L., (2017) YY1 is a structural regulator of enhancer-promoter loops. Cell, 171, 1573–1588.e28
CrossRef Pubmed Google scholar
[42]
Shrinivas, K., Sabari, B. R., Coffey, E. L., Klein, I. A., Boija, A., Zamudio, A. V., Schuijers, J., Hannett, N. M., Sharp, P. A., Young, R. A., (2019) Enhancer features that drive formation of transcriptional condensates. Mol. Cell, 75, 549–561.e7
CrossRef Pubmed Google scholar
[43]
Duran-Aniotz, C. and Hetz, C. (2016) Glucose metabolism: A sweet relief of Alzheimer’s disease. Curr. Biol., 26, R806–R809
CrossRef Pubmed Google scholar
[44]
Di Paolo, G. and Kim, T.-W. (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci., 12, 284–296
CrossRef Pubmed Google scholar
[45]
Tynkkynen, J., Chouraki, V., van der Lee, S. J., Hernesniemi, J., Yang, Q., Li, S., Beiser, A., Larson, M. G., Sääksjärvi, K., Shipley, M. J., (2018) Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: A prospective study in eight cohorts. Alzheimers Dement., 14, 723–733
CrossRef Pubmed Google scholar
[46]
MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., Louie, G., Kueider-Paisley, A., Moseley, M. A., Thompson, J. W., (2019) Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—An emerging role for gut microbiome. Alzheimers Dement., 15, 76–92
CrossRef Pubmed Google scholar
[47]
Lu, L., Liu, X., Huang, W.-K., Giusti-Rodríguez, P., Cui, J., Zhang, S., Xu, W., Wen, Z., Ma, S., Rosen, J. D., (2020) Robust Hi-C maps of enhancer-promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol. Cell, 79, 521–534.e15
CrossRef Pubmed Google scholar
[48]
Qi, Y. and Zhang, B. (2019) Predicting three-dimensional genome organization with chromatin states. PLOS Comput. Biol., 15, e1007024
CrossRef Pubmed Google scholar
[49]
Zhang, X., Jeong, M., Huang, X., Wang, X. Q., Wang, X., Zhou, W., Shamim, M. S., Gore, H., Himadewi, P., Liu, Y., (2020) Large DNA methylation nadirs anchor chromatin loops maintaining hematopoietic stem cell identity. Mol. Cell, 78, 506–521.e6
CrossRef Pubmed Google scholar
[50]
David, Wang, X.Q., Gore, H., Himadewi, P., Feng, F., Yang, L., Zhou, W., Liu, Y., Wang, X., Chen, C-w., Su, J., (2020) Three-dimensional regulation of HOXA cluster genes by a cis-element in hematopoietic stem cell and leukemia. bioRxiv, 017533
[51]
Cai, Y., Zhang, Y., Loh, Y. P., Tng, J. Q., Lim, M. C., Cao, Z., Raju, A., Li, S., Manikandan, L., Tergaonkar, V., (2020) H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions.bioRxiv, 684712
[52]
Servant, N., Varoquaux, N., Lajoie, B. R., Viara, E., Chen, C.-J., Vert, J.-P., Heard, E., Dekker, J. and Barillot, E. (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16, 259–269
CrossRef Pubmed Google scholar
[53]
Xie, W. J., Meng, L., Liu, S., Zhang, L., Cai, X. and Gao, Y. Q. (2017) Structural modeling of chromatin integrates genome features and reveals chromosome folding principle. Sci. Rep., 7, 2818–2828
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/10.1007/s40484-020-0221-6.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 21927901, 21821004 and 21873007) and the National Key R&D Program of China (No. 2017YFA0204702).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Hao Tian, Ying Yang, Sirui Liu, Hui Quan and Yi Qin Gao declare that they have no competing interests.ƒThe article does not contain any human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1545 KB)

Accesses

Citations

Detail

Sections
Recommended

/