Toward an understanding of the relation between gene regulation and 3D genome organization
Hao Tian, Ying Yang, Sirui Liu, Hui Quan, Yi Qin Gao
Toward an understanding of the relation between gene regulation and 3D genome organization
Background: High-order chromatin structure has been shown to play a vital role in gene regulation. Previously we identified two types of sequence domains, CGI (CpG island) forest and CGI prairie, which tend to spatially segregate, but to different extent in different tissues. Here we aim to further quantify the association of domain segregation with gene regulation and therefore differentiation.
Methods: By means of the published RNA-seq and Hi-C data, we identified tissue-specific genes and quantitatively investigated how their regulation is relevant to chromatin structure. Besides, two types of gene networks were constructed and the association between gene pair co-regulation and genome organization is discussed.
Results: We show that compared to forests, tissue-specific genes tend to be enriched in prairies. Highly specific genes also tend to cluster according to their functions in a relatively small number of prairies. Furthermore, tissue-specific forest-prairie contact formation was associated with the regulation of tissue-specific genes, in particular those in the prairie domains, pointing to the important role of gene positioning, in the linear DNA sequence as well as in 3D chromatin structure, in gene regulatory network formation.
Conclusion: We investigated how gene regulation is related to genome organization from the perspective of forest-prairie spatial interactions. Since unlike compartments A and B, forest and prairie are identified solely based on sequence properties. Therefore, the simple and uniform framework (forest-prairie domain segregation) provided here can be utilized to further understand the chromatin structure changes as well as the underlying biological significances in different stages, such as tumorgenesis.
CGI forest / CGI prairie / domain segregation / chromatin structure / gene regulation
[1] |
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O.,
CrossRef
Pubmed
Google scholar
|
[2] |
Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H.,
CrossRef
Pubmed
Google scholar
|
[3] |
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
CrossRef
Pubmed
Google scholar
|
[4] |
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S.,
CrossRef
Pubmed
Google scholar
|
[5] |
Dowen, J. M., Fan, Z. P., Hnisz, D., Ren, G., Abraham, B. J., Zhang, L. N., Weintraub, A. S., Schuijers, J., Lee, T. I., Zhao, K.,
CrossRef
Pubmed
Google scholar
|
[6] |
Hnisz, D., Day, D. S. and Young, R. A. (2016) Insulated neighborhoods: structural and functional units of mammalian gene control. Cell, 167, 1188–1200
CrossRef
Pubmed
Google scholar
|
[7] |
Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A.-L., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A. A.,
CrossRef
Pubmed
Google scholar
|
[8] |
Ji, X., Dadon, D. B., Powell, B. E., Fan, Z. P., Borges-Rivera, D., Shachar, S., Weintraub, A. S., Hnisz, D., Pegoraro, G., Lee, T. I.,
CrossRef
Pubmed
Google scholar
|
[9] |
Lupiáñez, D. G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J. M., Laxova, R.,
CrossRef
Pubmed
Google scholar
|
[10] |
Schwarzer, W., Abdennur, N., Goloborodko, A., Pekowska, A., Fudenberg, G., Loe-Mie, Y., Fonseca, N. A., Huber, W., Haering, C. H., Mirny, L.,
CrossRef
Pubmed
Google scholar
|
[11] |
Smol, T., Sigé, J., Thuillier, C., Frénois, F., Brunelle, P., Rama, M., Roche-Lestienne, C., Manouvrier-Hanu, S., Petit, F. and Ghoumid, J. (2020) Lessons from the analysis of TAD boundary deletions in normal population. bioRxiv, 021188
|
[12] |
Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J.,
CrossRef
Pubmed
Google scholar
|
[13] |
Wang, S., Su, J.-H., Beliveau, B. J., Bintu, B., Moffitt, J. R., Wu, C. T. and Zhuang, X. (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science, 353, 598–602
CrossRef
Pubmed
Google scholar
|
[14] |
Stadhouders, R., Vidal, E., Serra, F., Di Stefano, B., Le Dily, F., Quilez, J., Gomez, A., Collombet, S., Berenguer, C., Cuartero, Y.,
CrossRef
Pubmed
Google scholar
|
[15] |
Bertero, A., Fields, P. A., Ramani, V., Bonora, G., Yardimci, G. G., Reinecke, H., Pabon, L., Noble, W. S., Shendure, J. and Murry, C. E. (2019) Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat. Commun., 10, 1538
CrossRef
Pubmed
Google scholar
|
[16] |
Liu, S., Zhang, L., Quan, H., Tian, H., Meng, L., Yang, L., Feng, H. and Gao, Y. Q. (2018) From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. Nucleic Acids Res., 46, 9367–9383
CrossRef
Pubmed
Google scholar
|
[17] |
Zhan, Y., Mariani, L., Barozzi, I., Schulz, E. G., Blüthgen, N., Stadler, M., Tiana, G. and Giorgetti, L. (2017) Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res., 27, 479–490
CrossRef
Pubmed
Google scholar
|
[18] |
Ibn-Salem, J., Muro, E. M. and Andrade-Navarro, M. A. (2017) Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Res., 45, 81–91
CrossRef
Pubmed
Google scholar
|
[19] |
Soler-Oliva, M. E., Guerrero-Martínez, J. A., Bachetti, V. and Reyes, J. C. (2017) Analysis of the relationship between coexpression domains and chromatin 3D organization. PLOS Comput. Biol., 13, e1005708
CrossRef
Pubmed
Google scholar
|
[20] |
Belcastro, V., Siciliano, V., Gregoretti, F., Mithbaokar, P., Dharmalingam, G., Berlingieri, S., Iorio, F., Oliva, G., Polishchuck, R., Brunetti-Pierri, N.,
CrossRef
Pubmed
Google scholar
|
[21] |
Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. and Sharp, P. A. (2017) A phase separation model for transcriptional control. Cell, 169, 13–23
CrossRef
Pubmed
Google scholar
|
[22] |
Boija, A., Klein, I. A., Sabari, B. R., Dall’Agnese, A., Coffey, E. L., Zamudio, A. V., Li, C. H., Shrinivas, K., Manteiga, J. C., Hannett, N. M.,
CrossRef
Pubmed
Google scholar
|
[23] |
Hnisz, D. and Young, R. A. (2017) New insights into genome structure: genes of a feather stick together. Mol. Cell, 67, 730–731
CrossRef
Pubmed
Google scholar
|
[24] |
de Wit, E., Bouwman, B. A. M., Zhu, Y., Klous, P., Splinter, E., Verstegen, M. J. A. M., Krijger, P. H. L., Festuccia, N., Nora, E. P., Welling, M.,
CrossRef
Pubmed
Google scholar
|
[25] |
Monahan, K., Horta, A. and Lomvardas, S. (2019) LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature, 565, 448–453
CrossRef
Pubmed
Google scholar
|
[26] |
Hahn, M. A., Wu, X., Li, A. X., Hahn, T. and Pfeifer, G. P. (2011) Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks. PLoS One, 6, e18844
CrossRef
Pubmed
Google scholar
|
[27] |
Wang, Z. and Willard, H. F. (2012) Evidence for sequence biases associated with patterns of histone methylation. BMC Genomics, 13, 367–379
CrossRef
Pubmed
Google scholar
|
[28] |
Kustatscher, G., Grabowski, P. and Rappsilber, J. (2017) Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol., 13, 937–950
CrossRef
Pubmed
Google scholar
|
[29] |
Schmitt, A. D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C. L., Li, Y., Lin, S., Lin, Y., Barr, C. L.,
CrossRef
Pubmed
Google scholar
|
[30] |
Sonawane, A. R., Platig, J., Fagny, M., Chen, C.-Y., Paulson, J. N., Lopes-Ramos, C. M., DeMeo, D. L., Quackenbush, J., Glass, K. and Kuijjer, M. L. (2017) Understanding tissue-specific gene regulation. Cell Rep., 21, 1077–1088
CrossRef
Pubmed
Google scholar
|
[31] |
Hurst, L. D., Pál, C. and Lercher, M. J. (2004) The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet., 5, 299–310
CrossRef
Pubmed
Google scholar
|
[32] |
Xu, H., Liu, J.-J., Liu, Z., Li, Y., Jin, Y.-S. and Zhang, J. (2019) Synchronization of stochastic expressions drives the clustering of functionally related genes. Sci. Adv., 5, eaax6525
CrossRef
Pubmed
Google scholar
|
[33] |
Shwan, N. A. A., Louzada, S., Yang, F. and Armour, J. A. L. (2017) Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series. Hum. Mutat., 38, 532–539
CrossRef
Pubmed
Google scholar
|
[34] |
Ponomarev, I., Wang, S., Zhang, L., Harris, R. A. and Mayfield, R. D. (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J. Neurosci., 32, 1884–1897
CrossRef
Pubmed
Google scholar
|
[35] |
Rosa, B. A., Jasmer, D. P. and Mitreva, M. (2014) Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl. Trop. Dis., 8, e2678
CrossRef
Pubmed
Google scholar
|
[36] |
Satoh, J., Yamamoto, Y., Asahina, N., Kitano, S. and Kino, Y. (2014) RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer’s disease brains. Dis. Markers, 2014, 123165
CrossRef
Pubmed
Google scholar
|
[37] |
Yevshin, I., Sharipov, R., Kolmykov, S., Kondrakhin, Y. and Kolpakov, F. (2019) GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res., 47, D100–D105
CrossRef
Pubmed
Google scholar
|
[38] |
Sanborn, A. L., Rao, S. S. P., Huang, S.-C., Durand, N. C., Huntley, M. H., Jewett, A. I., Bochkov, I. D., Chinnappan, D., Cutkosky, A., Li, J.,
CrossRef
Pubmed
Google scholar
|
[39] |
Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N. and Mirny, L. A. (2016) Formation of chromosomal domains by loop extrusion. Cell Rep., 15, 2038–2049
CrossRef
Pubmed
Google scholar
|
[40] |
Yusufzai, T. M., Tagami, H., Nakatani, Y. and Felsenfeld, G. (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol. Cell, 13, 291–298
CrossRef
Pubmed
Google scholar
|
[41] |
Weintraub, A. S., Li, C. H., Zamudio, A. V., Sigova, A. A., Hannett, N. M., Day, D. S., Abraham, B. J., Cohen, M. A., Nabet, B., Buckley, D. L.,
CrossRef
Pubmed
Google scholar
|
[42] |
Shrinivas, K., Sabari, B. R., Coffey, E. L., Klein, I. A., Boija, A., Zamudio, A. V., Schuijers, J., Hannett, N. M., Sharp, P. A., Young, R. A.,
CrossRef
Pubmed
Google scholar
|
[43] |
Duran-Aniotz, C. and Hetz, C. (2016) Glucose metabolism: A sweet relief of Alzheimer’s disease. Curr. Biol., 26, R806–R809
CrossRef
Pubmed
Google scholar
|
[44] |
Di Paolo, G. and Kim, T.-W. (2011) Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat. Rev. Neurosci., 12, 284–296
CrossRef
Pubmed
Google scholar
|
[45] |
Tynkkynen, J., Chouraki, V., van der Lee, S. J., Hernesniemi, J., Yang, Q., Li, S., Beiser, A., Larson, M. G., Sääksjärvi, K., Shipley, M. J.,
CrossRef
Pubmed
Google scholar
|
[46] |
MahmoudianDehkordi, S., Arnold, M., Nho, K., Ahmad, S., Jia, W., Xie, G., Louie, G., Kueider-Paisley, A., Moseley, M. A., Thompson, J. W.,
CrossRef
Pubmed
Google scholar
|
[47] |
Lu, L., Liu, X., Huang, W.-K., Giusti-Rodríguez, P., Cui, J., Zhang, S., Xu, W., Wen, Z., Ma, S., Rosen, J. D.,
CrossRef
Pubmed
Google scholar
|
[48] |
Qi, Y. and Zhang, B. (2019) Predicting three-dimensional genome organization with chromatin states. PLOS Comput. Biol., 15, e1007024
CrossRef
Pubmed
Google scholar
|
[49] |
Zhang, X., Jeong, M., Huang, X., Wang, X. Q., Wang, X., Zhou, W., Shamim, M. S., Gore, H., Himadewi, P., Liu, Y.,
CrossRef
Pubmed
Google scholar
|
[50] |
David, Wang, X.Q., Gore, H., Himadewi, P., Feng, F., Yang, L., Zhou, W., Liu, Y., Wang, X., Chen, C-w., Su, J.,
|
[51] |
Cai, Y., Zhang, Y., Loh, Y. P., Tng, J. Q., Lim, M. C., Cao, Z., Raju, A., Li, S., Manikandan, L., Tergaonkar, V.,
|
[52] |
Servant, N., Varoquaux, N., Lajoie, B. R., Viara, E., Chen, C.-J., Vert, J.-P., Heard, E., Dekker, J. and Barillot, E. (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol., 16, 259–269
CrossRef
Pubmed
Google scholar
|
[53] |
Xie, W. J., Meng, L., Liu, S., Zhang, L., Cai, X. and Gao, Y. Q. (2017) Structural modeling of chromatin integrates genome features and reveals chromosome folding principle. Sci. Rep., 7, 2818–2828
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |