Critical transitions and tipping points in EMT
Peng Wang, Luonan Chen
Critical transitions and tipping points in EMT
Background: Phase transition and phase separation as well as their tipping points are penetrating phenomena in biology and are intrinsic properties of biological systems ranging from basic molecule complexes to cells and all way up to entire ecosystems.
Results: For example, phase separation has been established as a key mechanism for biological molecules such as protein or RNA to form membraneless organelles to perform complex biological functions. Phase transitions are commonly observed during cellular differentiation, and generally, there are the tipping points or critical states just before the phase transitions. And the stability of ecosystem and extinction of species are systematic manifestation of phase transitions. All phase transition and phase separation phenomena display switch-like behavior and critical transitions.
Conclusion: Here we summarize the concepts regarding the epithelial-to-mesenchymal transition (EMT) as a type of phase changes and the implication of critical transitions in EMT, and discuss open questions and challenges in this fast-moving field.
EMT / phase transition / tipping points
[1] |
Stanley, H. E. (1987) Introduction to Phase Transitions and Critical Phenomena, pp. 308. New York: Oxford University Press
|
[2] |
Chen, L., Liu, R., Liu, Z. P., Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
CrossRef
Pubmed
Google scholar
|
[3] |
Liu, R., Chen, P., Aihara, K. and Chen, L. (2015) Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci. Rep., 5, 17501
CrossRef
Pubmed
Google scholar
|
[4] |
Honig, J. and Spalek, J. (2017) A Primer to the Theory of Critical Phenomena, 1st edition, Waltham, M.A. (ed.). Elsevier
|
[5] |
Haldane, A. G. and May, R. M. (2011) Systemic risk in banking ecosystems. Nature, 469, 351–355
CrossRef
Pubmed
Google scholar
|
[6] |
Dai, L., Vorselen, D., Korolev, K. S. and Gore, J. (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 336, 1175–1177
CrossRef
Pubmed
Google scholar
|
[7] |
Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H.,
CrossRef
Pubmed
Google scholar
|
[8] |
Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lürling, M. and Scheffer, M. (2012) Recovery rates reflect distance to a tipping point in a living system. Nature, 481, 357–359
CrossRef
Pubmed
Google scholar
|
[9] |
Boija, A., Klein, I. A., Sabari, B. R., Dall’Agnese, A., Coffey, E. L., Zamudio, A. V., Li, C. H., Shrinivas, K., Manteiga, J. C., Hannett, N. M.,
CrossRef
Pubmed
Google scholar
|
[10] |
Yang, J. and Weinberg, R. A. (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell, 14, 818–829
CrossRef
Pubmed
Google scholar
|
[11] |
Thiery, J. P., Acloque, H., Huang, R. Y. and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890
CrossRef
Pubmed
Google scholar
|
[12] |
Revenu, C. and Gilmour, D. (2009) EMT 2.0: shaping epithelia through collective migration. Curr. Opin. Genet. Dev., 19, 338–342
CrossRef
Pubmed
Google scholar
|
[13] |
Nieto, M. A., Huang, R. Y., Jackson, R. A. and Thiery, J. P. (2016) EMT: 2016. Cell, 166, 21–45
CrossRef
Pubmed
Google scholar
|
[14] |
Kalluri, R. and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J. Clin. Invest., 119, 1420–1428
CrossRef
Pubmed
Google scholar
|
[15] |
Hay, E. D. (1995) An overview of epithelio-mesenchymal transformation. Acta Anat., (Basel), 154, 8–20
|
[16] |
Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. and Wells, A. (2012) Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron., 5, 19–28
CrossRef
Pubmed
Google scholar
|
[17] |
Goetz, H., Melendez-Alvarez, J. R., Chen, L. and Tian, X. J. (2020) A plausible accelerating function of intermediate states in cancer metastasis. PLOS Comput. Biol., 16, e1007682
CrossRef
Pubmed
Google scholar
|
[18] |
Scheel, C. and Weinberg, R. A. (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol., 22, 396–403
CrossRef
Pubmed
Google scholar
|
[19] |
Yu, M., Bardia, A., Wittner, B. S., Stott, S. L., Smas, M. E., Ting, D. T., Isakoff, S. J., Ciciliano, J. C., Wells, M. N., Shah, A. M.,
CrossRef
Pubmed
Google scholar
|
[20] |
Ryu, H. S., Park, D. J., Kim, H. H., Kim, W. H. and Lee, H. S. (2012) Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum. Pathol., 43, 520–528
CrossRef
Pubmed
Google scholar
|
[21] |
Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y. H., Byers, L. A., Zhang, X., Yi, X., Dwyer, D., Lin, W.,
CrossRef
Pubmed
Google scholar
|
[22] |
Liu, Y., Xue, M., Du, S., Feng, W., Zhang, K., Zhang, L., Liu, H., Jia, G., Wu, L., Hu, X.,
CrossRef
Pubmed
Google scholar
|
[23] |
Chang, H., Liu, Y., Xue, M., Liu, H., Du, S., Zhang, L. and Wang, P. (2016) Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res., 44, 2514–2527
CrossRef
Pubmed
Google scholar
|
[24] |
Taube, J. H., Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., Hartwell, K., Onder, T. T., Gupta, P. B., Evans, K. W.,
CrossRef
Pubmed
Google scholar
|
[25] |
Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., Ting, D. T., Smolen, G. A., Zubrowski, M., Desai, R.,
CrossRef
Pubmed
Google scholar
|
[26] |
Tian, X. J., Zhang, H. and Xing, J. (2013) Coupled reversible and irreversible bistable switches underlying TGF-β-induced epithelial to mesenchymal transition. Biophys. J., 105, 1079–1089
CrossRef
Pubmed
Google scholar
|
[27] |
Zhang, J., Tian, X. J., Zhang, H., Teng, Y., Li, R., Bai, F., Elankumaran, S. and Xing, J. (2014) TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci. Signal., 7, ra91
CrossRef
Pubmed
Google scholar
|
[28] |
Liu, Y., Xue, M., Du, S., Feng, W., Zhang, K., Zhang, L., Liu, H., Jia, G., Wu, L., Hu, X.,
CrossRef
Google scholar
|
[29] |
Yang, M., Li, S. N., Anjum, K. M., Gui, L. -X., Zhu, S. -S., Liu, J., Chen, J. -K., Liu, Q. -F., Ye, G. -D., Wang, W. -J.,
CrossRef
Google scholar
|
[30] |
Liu, R., Yu, X., Liu, X., Xu, D., Aihara, K. and Chen, L. (2014) Identifying critical transitions of complex diseases based on a single sample. Bioinformatics, 30, 1579–1586
CrossRef
Pubmed
Google scholar
|
[31] |
Chen, P., Liu, R., Li, Y. and Chen, L. (2016) Detecting critical state before phase transition of complex biological systems by hidden Markov model. Bioinformatics, 32, 2143–2150
CrossRef
Pubmed
Google scholar
|
[32] |
Liu, X., Chang, X., Liu, R., Yu, X., Chen, L. and Aihara, K. (2017) Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLOS Comput. Biol., 13, e1005633
CrossRef
Pubmed
Google scholar
|
[33] |
De Craene, B. and Berx, G. (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer, 13, 97–110
CrossRef
Pubmed
Google scholar
|
[34] |
Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., Morris, M., Wyatt, L., Farshid, G., Lim, Y. Y.,
CrossRef
Pubmed
Google scholar
|
[35] |
Hajra, K. M., Chen, D. Y. and Fearon, E. R. (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res., 62, 1613–1618
|
[36] |
Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., van Roy, F. (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol., Cell, 7, 1267–1278
|
[37] |
Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y. and Goodall, G. J. (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol., 10, 593–601
CrossRef
Pubmed
Google scholar
|
[38] |
Xiao, P., Liu, W. and Zhou, H. (2016) miR-200b inhibits migration and invasion in non-small cell lung cancer cells via targeting FSCN1. Mol. Med. Rep., 14, 1835–1840
CrossRef
Pubmed
Google scholar
|
[39] |
Williams, L. V., Veliceasa, D., Vinokour, E. and Volpert, O. V. (2013) miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One, 8, e83991
CrossRef
Pubmed
Google scholar
|
[40] |
Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S. and Brabletz, T. (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep., 9, 582–589
CrossRef
Pubmed
Google scholar
|
[41] |
Yang, B., Li, M., Tang, W., Liu, W., Zhang, S., Chen, L. and Xia, J. (2018) Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat. Commun., 9, 678
CrossRef
Pubmed
Google scholar
|
[42] |
Li, M., Li, C., Liu, W.-X., Liu, C., Cui, J., Li, Q., Ni, H., Yang, Y., Wu, C., Chen, C.,
CrossRef
Pubmed
Google scholar
|
[43] |
Liu, X., Chang, X., Leng, S., Tang, H., Aihara, K. and Chen, L. (2019) Detection for disease tipping points by landscape dynamic network biomarkers. Natl. Sci. Rev., 6, 775–785
CrossRef
Google scholar
|
[44] |
Liu, R., Wang, J., Ukai, M., Sewon, K., Chen, P., Suzuki, Y., Wang, H., Aihara, K., Okada-Hatakeyama, M. and Chen, L. (2019) Hunt for the tipping point during endocrine resistance process in breast cancer by dynamic network biomarkers. J. Mol. Cell. Biol., 11, 649–664
CrossRef
Pubmed
Google scholar
|
[45] |
Richard, A., Boullu, L., Herbach, U., Bonnafoux, A., Morin, V., Vallin, E., Guillemin, A., Papili Gao, N., Gunawan, R., Cosette, J.,
CrossRef
Pubmed
Google scholar
|
[46] |
Lesterhuis, W. J., Bosco, A., Millward, M. J., Small, M., Nowak, A. K. and Lake, R. A. (2017) Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat. Rev. Drug Discov., 16, 264–272
CrossRef
Pubmed
Google scholar
|
[47] |
Li, M., Zeng, T., Liu, R. and Chen, L. (2013) Detecting tissue-specific early-warning signals for complex diseases based on dynamical network biomarkers: study of type-2 diabetes by cross-tissue analysis. Brief. Bioinform., 15, 229–243
CrossRef
Pubmed
Google scholar
|
[48] |
Zhao, J., Zhou, Y., Zhang, X. and Chen, L. (2016) Part mutual information for quantifying direct associations in networks. Proc. Natl. Acad. Sci. USA, 113, 5130–5135
CrossRef
Pubmed
Google scholar
|
[49] |
Zhang, X., Zhao, J., Hao, J.-K., Zhao, X.-M. and Chen, L. (2015) Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Res., 43, e31
CrossRef
Pubmed
Google scholar
|
[50] |
Ma, H., Leng, S., Aihara, K., Lin, W. and Chen, L. (2018) Randomly distributed embedding making short-term high-dimensional data predictable. Proc. Natl. Acad. Sci. USA, 115, E9994–E10002
CrossRef
Pubmed
Google scholar
|
[51] |
Sa, R., Zhang, W., Ge, J., Wei, X., Zhou, Y., Landzberg, D. R., Wang, Z., Han, X., Chen, L. and Yin, H. (2016) Discovering a critical transition state from nonalcoholic hepatosteatosis to nonalcoholic steatohepatitis by lipidomics and dynamical network biomarkers. J. Mol. Cell Biol., 8, 195–206
CrossRef
Pubmed
Google scholar
|
[52] |
Jiang, Z., Lu, L., Liu, Y., Zhang, S., Li, S., Wang, G., Wang, P. and Chen, L. (2020) SMAD7 and SERPINE1 as novel dynamic network biomarkers detect and regulate the tipping point of TGF-beta induced EMT. Sci. Bull., 65, 842–853
CrossRef
Google scholar
|
/
〈 | 〉 |