Critical transitions and tipping points in EMT

Peng Wang, Luonan Chen

PDF(215 KB)
PDF(215 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 195-202. DOI: 10.1007/s40484-020-0219-0
REVIEW
REVIEW

Critical transitions and tipping points in EMT

Author information +
History +

Abstract

Background: Phase transition and phase separation as well as their tipping points are penetrating phenomena in biology and are intrinsic properties of biological systems ranging from basic molecule complexes to cells and all way up to entire ecosystems.

Results: For example, phase separation has been established as a key mechanism for biological molecules such as protein or RNA to form membraneless organelles to perform complex biological functions. Phase transitions are commonly observed during cellular differentiation, and generally, there are the tipping points or critical states just before the phase transitions. And the stability of ecosystem and extinction of species are systematic manifestation of phase transitions. All phase transition and phase separation phenomena display switch-like behavior and critical transitions.

Conclusion: Here we summarize the concepts regarding the epithelial-to-mesenchymal transition (EMT) as a type of phase changes and the implication of critical transitions in EMT, and discuss open questions and challenges in this fast-moving field.

Graphical abstract

Keywords

EMT / phase transition / tipping points

Cite this article

Download citation ▾
Peng Wang, Luonan Chen. Critical transitions and tipping points in EMT. Quant. Biol., 2020, 8(3): 195‒202 https://doi.org/10.1007/s40484-020-0219-0

References

[1]
Stanley, H. E. (1987) Introduction to Phase Transitions and Critical Phenomena, pp. 308. New York: Oxford University Press
[2]
Chen, L., Liu, R., Liu, Z. P., Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
CrossRef Pubmed Google scholar
[3]
Liu, R., Chen, P., Aihara, K. and Chen, L. (2015) Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci. Rep., 5, 17501
CrossRef Pubmed Google scholar
[4]
Honig, J. and Spalek, J. (2017) A Primer to the Theory of Critical Phenomena, 1st edition, Waltham, M.A. (ed.). Elsevier
[5]
Haldane, A. G. and May, R. M. (2011) Systemic risk in banking ecosystems. Nature, 469, 351–355
CrossRef Pubmed Google scholar
[6]
Dai, L., Vorselen, D., Korolev, K. S. and Gore, J. (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 336, 1175–1177
CrossRef Pubmed Google scholar
[7]
Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., (2012) Anticipating critical transitions. Science, 338, 344–348
CrossRef Pubmed Google scholar
[8]
Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lürling, M. and Scheffer, M. (2012) Recovery rates reflect distance to a tipping point in a living system. Nature, 481, 357–359
CrossRef Pubmed Google scholar
[9]
Boija, A., Klein, I. A., Sabari, B. R., Dall’Agnese, A., Coffey, E. L., Zamudio, A. V., Li, C. H., Shrinivas, K., Manteiga, J. C., Hannett, N. M., (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 175, 1842–1855.e16
CrossRef Pubmed Google scholar
[10]
Yang, J. and Weinberg, R. A. (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell, 14, 818–829
CrossRef Pubmed Google scholar
[11]
Thiery, J. P., Acloque, H., Huang, R. Y. and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890
CrossRef Pubmed Google scholar
[12]
Revenu, C. and Gilmour, D. (2009) EMT 2.0: shaping epithelia through collective migration. Curr. Opin. Genet. Dev., 19, 338–342
CrossRef Pubmed Google scholar
[13]
Nieto, M. A., Huang, R. Y., Jackson, R. A. and Thiery, J. P. (2016) EMT: 2016. Cell, 166, 21–45
CrossRef Pubmed Google scholar
[14]
Kalluri, R. and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J. Clin. Invest., 119, 1420–1428
CrossRef Pubmed Google scholar
[15]
Hay, E. D. (1995) An overview of epithelio-mesenchymal transformation. Acta Anat., (Basel), 154, 8–20
[16]
Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. and Wells, A. (2012) Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron., 5, 19–28
CrossRef Pubmed Google scholar
[17]
Goetz, H., Melendez-Alvarez, J. R., Chen, L. and Tian, X. J. (2020) A plausible accelerating function of intermediate states in cancer metastasis. PLOS Comput. Biol., 16, e1007682
CrossRef Pubmed Google scholar
[18]
Scheel, C. and Weinberg, R. A. (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol., 22, 396–403
CrossRef Pubmed Google scholar
[19]
Yu, M., Bardia, A., Wittner, B. S., Stott, S. L., Smas, M. E., Ting, D. T., Isakoff, S. J., Ciciliano, J. C., Wells, M. N., Shah, A. M., (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339, 580–584
CrossRef Pubmed Google scholar
[20]
Ryu, H. S., Park, D. J., Kim, H. H., Kim, W. H. and Lee, H. S. (2012) Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum. Pathol., 43, 520–528
CrossRef Pubmed Google scholar
[21]
Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y. H., Byers, L. A., Zhang, X., Yi, X., Dwyer, D., Lin, W., (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun., 5, 5241
CrossRef Pubmed Google scholar
[22]
Liu, Y., Xue, M., Du, S., Feng, W., Zhang, K., Zhang, L., Liu, H., Jia, G., Wu, L., Hu, X., (2019) Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat. Commun., 10, 1637
CrossRef Pubmed Google scholar
[23]
Chang, H., Liu, Y., Xue, M., Liu, H., Du, S., Zhang, L. and Wang, P. (2016) Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res., 44, 2514–2527
CrossRef Pubmed Google scholar
[24]
Taube, J. H., Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., Hartwell, K., Onder, T. T., Gupta, P. B., Evans, K. W., (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl. Acad. Sci. USA, 107, 15449–15454
CrossRef Pubmed Google scholar
[25]
Javaid, S., Zhang, J., Anderssen, E., Black, J. C., Wittner, B. S., Tajima, K., Ting, D. T., Smolen, G. A., Zubrowski, M., Desai, R., (2013) Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Rep., 5, 1679–1689
CrossRef Pubmed Google scholar
[26]
Tian, X. J., Zhang, H. and Xing, J. (2013) Coupled reversible and irreversible bistable switches underlying TGF-β-induced epithelial to mesenchymal transition. Biophys. J., 105, 1079–1089
CrossRef Pubmed Google scholar
[27]
Zhang, J., Tian, X. J., Zhang, H., Teng, Y., Li, R., Bai, F., Elankumaran, S. and Xing, J. (2014) TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci. Signal., 7, ra91
CrossRef Pubmed Google scholar
[28]
Liu, Y., Xue, M., Du, S., Feng, W., Zhang, K., Zhang, L., Liu, H., Jia, G., Wu, L., Hu, X., (2019) Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat. Commun., 10, 1637
CrossRef Google scholar
[29]
Yang, M., Li, S. N., Anjum, K. M., Gui, L. -X., Zhu, S. -S., Liu, J., Chen, J. -K., Liu, Q. -F., Ye, G. -D., Wang, W. -J., (2013 ) A double-negative feedback loop between Wnt-beta-catenin signaling and HNF4alpha regulates epithelial-mesenchymal transition in hepatocellular carcinoma. J. Cell Sci., 126, 5692–5703
CrossRef Google scholar
[30]
Liu, R., Yu, X., Liu, X., Xu, D., Aihara, K. and Chen, L. (2014) Identifying critical transitions of complex diseases based on a single sample. Bioinformatics, 30, 1579–1586
CrossRef Pubmed Google scholar
[31]
Chen, P., Liu, R., Li, Y. and Chen, L. (2016) Detecting critical state before phase transition of complex biological systems by hidden Markov model. Bioinformatics, 32, 2143–2150
CrossRef Pubmed Google scholar
[32]
Liu, X., Chang, X., Liu, R., Yu, X., Chen, L. and Aihara, K. (2017) Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLOS Comput. Biol., 13, e1005633
CrossRef Pubmed Google scholar
[33]
De Craene, B. and Berx, G. (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer, 13, 97–110
CrossRef Pubmed Google scholar
[34]
Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., Morris, M., Wyatt, L., Farshid, G., Lim, Y. Y., (2011) An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol. Biol. Cell, 22, 1686–1698
CrossRef Pubmed Google scholar
[35]
Hajra, K. M., Chen, D. Y. and Fearon, E. R. (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res., 62, 1613–1618
[36]
Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., van Roy, F. (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol., Cell, 7, 1267–1278
[37]
Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., Vadas, M. A., Khew-Goodall, Y. and Goodall, G. J. (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol., 10, 593–601
CrossRef Pubmed Google scholar
[38]
Xiao, P., Liu, W. and Zhou, H. (2016) miR-200b inhibits migration and invasion in non-small cell lung cancer cells via targeting FSCN1. Mol. Med. Rep., 14, 1835–1840
CrossRef Pubmed Google scholar
[39]
Williams, L. V., Veliceasa, D., Vinokour, E. and Volpert, O. V. (2013) miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS One, 8, e83991
CrossRef Pubmed Google scholar
[40]
Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S. and Brabletz, T. (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep., 9, 582–589
CrossRef Pubmed Google scholar
[41]
Yang, B., Li, M., Tang, W., Liu, W., Zhang, S., Chen, L. and Xia, J. (2018) Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat. Commun., 9, 678
CrossRef Pubmed Google scholar
[42]
Li, M., Li, C., Liu, W.-X., Liu, C., Cui, J., Li, Q., Ni, H., Yang, Y., Wu, C., Chen, C., (2017) Dysfunction of PLA2G6 and CYP2C44-associated network signals imminent carcinogenesis from chronic inflammation to hepatocellular carcinoma. J. Mol. Cell Biol., 9, 489–503
CrossRef Pubmed Google scholar
[43]
Liu, X., Chang, X., Leng, S., Tang, H., Aihara, K. and Chen, L. (2019) Detection for disease tipping points by landscape dynamic network biomarkers. Natl. Sci. Rev., 6, 775–785
CrossRef Google scholar
[44]
Liu, R., Wang, J., Ukai, M., Sewon, K., Chen, P., Suzuki, Y., Wang, H., Aihara, K., Okada-Hatakeyama, M. and Chen, L. (2019) Hunt for the tipping point during endocrine resistance process in breast cancer by dynamic network biomarkers. J. Mol. Cell. Biol., 11, 649–664
CrossRef Pubmed Google scholar
[45]
Richard, A., Boullu, L., Herbach, U., Bonnafoux, A., Morin, V., Vallin, E., Guillemin, A., Papili Gao, N., Gunawan, R., Cosette, J., (2016) Single-cell-based analysis highlights a surge in cell-to-cell molecular variability preceding irreversible commitment in a differentiation process. PLoS Biol., 14, e1002585
CrossRef Pubmed Google scholar
[46]
Lesterhuis, W. J., Bosco, A., Millward, M. J., Small, M., Nowak, A. K. and Lake, R. A. (2017) Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat. Rev. Drug Discov., 16, 264–272
CrossRef Pubmed Google scholar
[47]
Li, M., Zeng, T., Liu, R. and Chen, L. (2013) Detecting tissue-specific early-warning signals for complex diseases based on dynamical network biomarkers: study of type-2 diabetes by cross-tissue analysis. Brief. Bioinform., 15, 229–243
CrossRef Pubmed Google scholar
[48]
Zhao, J., Zhou, Y., Zhang, X. and Chen, L. (2016) Part mutual information for quantifying direct associations in networks. Proc. Natl. Acad. Sci. USA, 113, 5130–5135
CrossRef Pubmed Google scholar
[49]
Zhang, X., Zhao, J., Hao, J.-K., Zhao, X.-M. and Chen, L. (2015) Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Res., 43, e31
CrossRef Pubmed Google scholar
[50]
Ma, H., Leng, S., Aihara, K., Lin, W. and Chen, L. (2018) Randomly distributed embedding making short-term high-dimensional data predictable. Proc. Natl. Acad. Sci. USA, 115, E9994–E10002
CrossRef Pubmed Google scholar
[51]
Sa, R., Zhang, W., Ge, J., Wei, X., Zhou, Y., Landzberg, D. R., Wang, Z., Han, X., Chen, L. and Yin, H. (2016) Discovering a critical transition state from nonalcoholic hepatosteatosis to nonalcoholic steatohepatitis by lipidomics and dynamical network biomarkers. J. Mol. Cell Biol., 8, 195–206
CrossRef Pubmed Google scholar
[52]
Jiang, Z., Lu, L., Liu, Y., Zhang, S., Li, S., Wang, G., Wang, P. and Chen, L. (2020) SMAD7 and SERPINE1 as novel dynamic network biomarkers detect and regulate the tipping point of TGF-beta induced EMT. Sci. Bull., 65, 842–853
CrossRef Google scholar

ACKNOWLEDGEMENTS

The authors apologize to those colleagues whose relevant studies were not cited owing to space limitations. This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB38040400), the National Natural Science Foundation of China (Nos. 31930022, 31671380 and 31771476), and Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX01).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Peng Wang and Luonan Chen declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(215 KB)

Accesses

Citations

Detail

Sections
Recommended

/