Recent advances and application in whole-genome multiple displacement amplification
Naiyun Long, Yi Qiao, Zheyun Xu, Jing Tu, Zuhong Lu
Recent advances and application in whole-genome multiple displacement amplification
Background: The extremely small amount of DNA in a cell makes it difficult to study the whole genome of single cells, so whole-genome amplification (WGA) is necessary to increase the DNA amount and enable downstream analyses. Multiple displacement amplification (MDA) is the most widely used WGA technique.
Results: Compared with amplification methods based on PCR and other methods, MDA renders high-quality DNA products and better genome coverage by using phi29 DNA polymerase. Moreover, recently developed advanced MDA technologies such as microreactor MDA, emulsion MDA, and micro-channel MDA have improved amplification uniformity. Additionally, the development of other novel methods such as TruePrime WGA allows for amplification without primers.
Conclusion: Here, we reviewed a selection of recently developed MDA methods, their advantages over other WGA methods, and improved MDA-based technologies, followed by a discussion of future perspectives. With the continuous development of MDA and the successive update of detection technologies, MDA will be applied in increasingly more fields and provide a solid foundation for scientific research.
The extremely small amount of DNA in a cell makes it difficult to study the whole genome of single cells, multiple displacement amplification (MDA), as the most widely used whole-genome amplification (WGA) technique, is necessary to increase the DNA amount and enable downstream analyses. In this review, we focus on the principles and characteristics of MDA and summarize the advantages and disadvantages of MDA compared with other WGA methods. We also discuss a selection of recently developed MDA methods, their advantages over other WGA methods, and improved MDA-based technologies, followed by a discussion of future perspectives.
whole genome amplification / multiple displacement amplification / improved MDA-based approaches
[1] |
Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N. and Altan-Bonnet, G. (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science, 321, 1081–1084
CrossRef
Pubmed
Google scholar
|
[2] |
Hoey, T. (2010) Drug resistance, epigenetics, and tumor cell heterogeneity. Sci. Transl. Med., 2, 28ps19
CrossRef
Pubmed
Google scholar
|
[3] |
Yan, L., Huang, L., Xu, L., Huang, J., Ma, F., Zhu, X., Tang, Y., Liu, M., Lian, Y., Liu, P.,
CrossRef
Pubmed
Google scholar
|
[4] |
Ni, X., Zhuo, M., Su, Z., Duan, J., Gao, Y., Wang, Z., Zong, C., Bai, H., Chapman, A. R., Zhao, J.,
CrossRef
Pubmed
Google scholar
|
[5] |
Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W., and Arnheim, N. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. USA, 89, 5847–5851
|
[6] |
Telenius, H., Carter, N. P., Bebb, C. E., Nordenskjöld, M., Ponder, B. A. J. and Tunnacliffe, A. (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 13, 718–725
CrossRef
Pubmed
Google scholar
|
[7] |
Lizardi, P. M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D. C. and Ward, D. C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet., 19, 225–232
CrossRef
Pubmed
Google scholar
|
[8] |
Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J.,
CrossRef
Pubmed
Google scholar
|
[9] |
Zong, C., Lu, S., Chapman, A. R. and Xie, X. S. (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science, 338, 1622–1626
CrossRef
Pubmed
Google scholar
|
[10] |
Chen, C., Xing, D., Tan, L., Li, H., Zhou, G., Huang, L. and Xie, X. S. (2017) Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science, 356, 189–194
CrossRef
Pubmed
Google scholar
|
[11] |
Huang, L., Ma, F., Chapman, A., Lu, S. and Xie, X. S. (2015) Single-cell whole-genome amplification and sequencing: methodology and applications. Annu. Rev. Genomics Hum. Genet., 16, 79–102
CrossRef
Pubmed
Google scholar
|
[12] |
Gawad, C., Koh, W. and Quake, S. R. (2016) Single-cell genome sequencing: current state of the science. Nat. Rev. Genet., 17, 175–188
CrossRef
Pubmed
Google scholar
|
[13] |
Detter, J. C., Jett, J. M., Lucas, S. M., Dalin, E., Arellano, A. R., Wang, M., Nelson, J. R., Chapman, J., Lou, Y., Rokhsar, D.,
CrossRef
Pubmed
Google scholar
|
[14] |
Fu, Y., Li, C., Lu, S., Zhou, W., Tang, F., Xie, X. S. and Huang, Y. (2015) Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc. Natl. Acad. Sci. USA, 112, 11923–11928
CrossRef
Pubmed
Google scholar
|
[15] |
Ballantyne, K. N., van Oorschot, R. A. H., John Mitchell, R. and Koukoulas, I. (2006) Molecular crowding increases the amplification success of multiple displacement amplification and short tandem repeat genotyping. Anal. Biochem., 355, 298–303
CrossRef
Pubmed
Google scholar
|
[16] |
de Cesare, G., Nascetti, A. and Caputo, D. (2015) Amorphous silicon p-i-n structure acting as light and temperature sensor. Sensors (Basel), 15, 12260–12272
CrossRef
Pubmed
Google scholar
|
[17] |
Bruijns, B. B., Costantini, F., Lovecchio, N., Tiggelaar, R. M., Di Timoteo, G., Nascetti, A., de Cesare, G., Gardeniers, J. G. E. and Caputo, D. (2019) On-chip real-time monitoring of multiple displacement amplification of DNA. Sens. Actuators B Chem., 293, 16–22
CrossRef
Google scholar
|
[18] |
Li, X. Y., Du, Y. C., Zhang, Y. P. and Kong, D. M. (2017) Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA. Sci. Rep., 7, 6263
CrossRef
Pubmed
Google scholar
|
[19] |
Toley, B. J., Covelli, I., Belousov, Y., Ramachandran, S., Kline, E., Scarr, N., Vermeulen, N., Mahoney, W., Lutz, B. R. and Yager, P. (2015) Isothermal strand displacement amplification (iSDA): a rapid and sensitive method of nucleic acid amplification for point-of-care diagnosis. Analyst (Lond.), 140, 7540–7549
CrossRef
Pubmed
Google scholar
|
[20] |
Blanco, L., Bernad, A., Lázaro, J. M., Martín, G., Garmendia, C. and Salas, M. (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem., 264, 8935–8940
Pubmed
|
[21] |
Handyside, A. H., Robinson, M. D., Simpson, R. J., Omar, M. B., Shaw, M. A., Grudzinskas, J. G. and Rutherford, A. (2004) Isothermal whole genome amplification from single and small numbers of cells: a new era for preimplantation genetic diagnosis of inherited disease. Mol. Hum. Reprod., 10, 767–772
CrossRef
Pubmed
Google scholar
|
[22] |
Banér, J., Nilsson, M., Mendel-Hartvig, M. and Landegren, U. (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res., 26, 5073–5078
CrossRef
Pubmed
Google scholar
|
[23] |
Krzywkowski, T., Kühnemund, M., Wu, D. and Nilsson, M. (2018) Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res., 46, 3625–3632
CrossRef
Pubmed
Google scholar
|
[24] |
Coskun, S. and Alsmadi, O. (2007) Whole genome amplification from a single cell: a new era for preimplantation genetic diagnosis. Prenat. Diagn., 27, 297–302
CrossRef
Pubmed
Google scholar
|
[25] |
Spits, C., Le Caignec, C., De Rycke, M., Van Haute, L., Van Steirteghem, A., Liebaers, I. and Sermon, K. (2006) Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum. Mutat., 27, 496–503
CrossRef
Pubmed
Google scholar
|
[26] |
del Prado, A., Rodríguez, I., Lázaro, J. M., Moreno-Morcillo, M., de Vega, M. and Salas, M. (2019) New insights into the coordination between the polymerization and 3′-5′ exonuclease activities in f29 DNA polymerase. Sci. Rep., 9, 923
CrossRef
Pubmed
Google scholar
|
[27] |
Xu, M. (2015) Patent CN 104560950A
|
[28] |
Huang, W., Cai, H., Wei, S., Bo, X. and Li, F. (2016) MDAGenera: an efficient and accurate simulator for multiple displacement amplification. In: Intelligent Computing Theories and Application, Huang, D.S., Bevilacqua, V., Premaratne, P. (eds.),pp. 258–267. Springer, Cham
|
[29] |
Tenaglia, E., Imaizumi, Y., Miyahara, Y. and Guiducci, C. (2018) Isothermal multiple displacement amplification of DNA templates in minimally buffered conditions using phi29 polymerase. Chem. Commun. (Camb.), 54, 2158–2161
CrossRef
Pubmed
Google scholar
|
[30] |
Wang, G., Brennan, C., Rook, M., Wolfe, J. L., Leo, C., Chin, L., Pan, H., Liu, W. H., Price, B. and Makrigiorgos, G. M. (2004) Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples. Nucleic Acids Res., 32, e76
CrossRef
Pubmed
Google scholar
|
[31] |
Bergen, A. W., Haque, K. A., Qi, Y., Beerman, M. B., Garcia-Closas, M., Rothman, N. and Chanock, S. J. (2005) Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlex whole genome amplified DNA generated from multiple DNA sources. Hum. Mutat., 26, 262–270
CrossRef
Pubmed
Google scholar
|
[32] |
Lovmar, L., Fredriksson, M., Liljedahl, U., Sigurdsson, S. and Syvänen, A. C. (2003) Quantitative evaluation by minisequencing and microarrays reveals accurate multiplexed SNP genotyping of whole genome amplified DNA. Nucleic Acids Res., 31, e129
CrossRef
Pubmed
Google scholar
|
[33] |
Hawkins, T. L., Detter, J. C. and Richardson, P. M. (2002) Whole genome amplification–applications and advances. Curr. Opin. Biotechnol., 13, 65–67
CrossRef
Pubmed
Google scholar
|
[34] |
Lasken, R. S., Egholm, M. and Alsmadi, O. A. (2004) Patent US 9487823B2
|
[35] |
Theunissen, G. M. G., Rolf, B., Gibb, A. and Jäger, R. (2017) DNA profiling of sperm cells by using micromanipulation and whole genome amplification. Forensic Sci. International. Genet. Suppl. Ser., 6, e497–e499
CrossRef
Google scholar
|
[36] |
Lasken, R. S. (2013) Single-cell sequencing in its prime. Nat. Biotechnol., 31, 211–212
CrossRef
Pubmed
Google scholar
|
[37] |
de Bourcy, C. F., De Vlaminck, I., Kanbar, J. N., Wang, J., Gawad, C. and Quake, S. R. (2014) A quantitative comparison of single-cell whole genome amplification methods. PLoS One, 9, e105585
CrossRef
Pubmed
Google scholar
|
[38] |
Liu, W., Zhang, H., Hu, D., Lu, S. and Sun, X. (2018) The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. J. Clin. Lab. Anal., 32, e22267
CrossRef
Pubmed
Google scholar
|
[39] |
del Rey, J., Vidal, F., Ramírez, L., Borràs, N., Corrales, I., Garcia, I., Martinez-Pasarell, O., Fernandez, S. F., Garcia-Cruz, R., Pujol, A.,
CrossRef
Pubmed
Google scholar
|
[40] |
He, F., Zhou, W., Cai, R., Yan, T. and Xu, X. (2018) Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping. J. Hum. Genet., 63, 407–416
CrossRef
Pubmed
Google scholar
|
[41] |
Li, C., Yu, Z., Fu, Y., Pang, Y. and Huang, Y. (2017) Single-cell-based platform for copy number variation profiling through digital counting of amplified genomic DNA fragments. ACS Appl. Mater. Interfaces, 9, 13958–13964
CrossRef
Pubmed
Google scholar
|
[42] |
Pan, X. and Liang, X. (2014) Principle of whole genome amplification technology and its progress. Biotechnology Bulletin, 12, 47–54, in Chinese
|
[43] |
Hou, Y., Fan, W., Yan, L., Li, R., Lian, Y., Huang, J., Li, J., Xu, L., Tang, F., Xie, X. S.,
CrossRef
Pubmed
Google scholar
|
[44] |
Chu, W. K., Edge, P., Lee, H. S., Bansal, V., Bafna, V., Huang, X. and Zhang, K. (2017) Ultraaccurate genome sequencing and haplotyping of single human cells. Proc. Natl. Acad. Sci. U.S.A., 114, 12512–12517
CrossRef
Pubmed
Google scholar
|
[45] |
Blainey, P. C. and Quake, S. R. (2011) Digital MDA for enumeration of total nucleic acid contamination. Nucleic Acids Res., 39, e19
CrossRef
Pubmed
Google scholar
|
[46] |
Wang, W., Ren, Y., Lu, Y., Xu, Y., Crosby, S. D., Di Bisceglie, A. M. and Fan, X. (2017) Template-dependent multiple displacement amplification for profiling human circulating RNA. Biotechniques, 63, 21–27
CrossRef
Pubmed
Google scholar
|
[47] |
Guria, A., Velayudha Vimala Kumar, K., Srikakulam, N., Krishnamma, A., Chanda, S., Sharma, S., Fan, X. and Pandi, G. (2019) Circular RNA profiling by Illumina sequencing via template-dependent multiple displacement amplification. BioMed Res. Int., 2019, 2756516
CrossRef
Pubmed
Google scholar
|
[48] |
Picher, Á. J., Budeus, B., Wafzig, O., Krüger, C., García-Gémez, S., Martínez-Jimónez, M. I., Díaz-Talavera, A., Weber, D., Blanco, L. and Schneider, A. (2016) TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat. Commun., 7, 13296
CrossRef
Pubmed
Google scholar
|
[49] |
Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. F., Darling, A., Malfatti, S., Swan, B. K., Gies, E. A.,
CrossRef
Pubmed
Google scholar
|
[50] |
Stepanauskas, R., Fergusson, E. A., Brown, J., Poulton, N. J., Tupper, B., Labonté, J. M., Becraft, E. D., Brown, J. M., Pachiadaki, M. G., Povilaitis, T.,
CrossRef
Pubmed
Google scholar
|
[51] |
Gawad. , C., Easton, J. and Gonzalez-pena, V. (2019) Patent WO 2019/148119 A1
|
[52] |
Marcy, Y., Ishoey, T., Lasken, R. S., Stockwell, T. B., Walenz, B. P., Halpern, A. L., Beeson, K. Y., Goldberg, S. M. D. and Quake, S. R. (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet., 3, 1702–1708
CrossRef
Pubmed
Google scholar
|
[53] |
Gole, J., Gore, A., Richards, A., Chiu, Y. J., Fung, H. L., Bushman, D., Chiang, H. I., Chun, J., Lo, Y. H. and Zhang, K. (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol., 31, 1126–1132
CrossRef
Pubmed
Google scholar
|
[54] |
Hosokawa, M., Nishikawa, Y., Kogawa, M. and Takeyama, H. (2017) Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci. Rep., 7, 5111–5199
CrossRef
Pubmed
Google scholar
|
[55] |
Sidore, A. M., Lan, F., Lim, S. W. and Abate, A. R. (2016) Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Res., 44, e66
CrossRef
Pubmed
Google scholar
|
[56] |
Rhee, M., Light, Y. K., Meagher, R. J. and Singh, A. K. (2016) Digital Droplet Multiple Displacement Amplification (ddMDA) for whole genome sequencing of limited DNA samples. PLoS One, 11, e0153699
CrossRef
Pubmed
Google scholar
|
[57] |
Chen, Z., Fu, Y., Zhang, F., Liu,, L., Zhang, N., Zhou, D., Yang, J., Pang, Y. and Huang, Y. (2016) Spinning micropipette liquid emulsion generator for single cell whole genome amplification. Lab Chip, 16, 4512–4516
CrossRef
Pubmed
Google scholar
|
[58] |
Fu, Y., Zhang, F., Zhang, X., Yin, J., Du, M., Jiang, M., Liu, L., Li, J., Huang, Y. and Wang, J. (2019) High-throughput single-cell whole-genome amplification through centrifugal emulsification and eMDA. Commun. Biol., 2, 147
CrossRef
Pubmed
Google scholar
|
[59] |
Kim, S. C., Premasekharan, G., Clark, I. C., Gemeda, H. B., Paris, P. L. and Abate, A. R. (2017) Measurement of copy number variation in single cancer cells using rapid-emulsification digital droplet MDA. Microsyst. Nanoeng., 3, 17018
CrossRef
Pubmed
Google scholar
|
[60] |
Chen, Z., Liao, P., Zhang, F., Jiang, M., Zhu, Y. and Huang, Y. (2017) Centrifugal micro-channel array droplet generation for highly parallel digital PCR. Lab Chip, 17, 235–240
CrossRef
Pubmed
Google scholar
|
[61] |
Li, J., Lu, N., Shi, X., Qiao, Y., Chen, L., Duan, M., Hou, Y., Ge, Q., Tao, Y., Tu, J.,
CrossRef
Pubmed
Google scholar
|
[62] |
Li, J., Lu, N., Tao, Y., Duan,, M., Qiao, Y., Xu, Y., Ge, Q., Bi, C., Fu, J., Tu, J.,
CrossRef
Pubmed
Google scholar
|
[63] |
Zhu, D., Yan, Y., Lei, P., Shen, B., Cheng, W., Ju, H. and Ding, S. (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe. Anal. Chim. Acta, 846, 44–50
CrossRef
Pubmed
Google scholar
|
[64] |
Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., Schulz, F., Jarett, J., Rivers, A. R., Eloe-Fadrosh, E. A.,
CrossRef
Pubmed
Google scholar
|
[65] |
Liu, Y., Yao, J. and Walther-Antonio, M. (2019) Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform. Biomicrofluidics, 13, 034109
CrossRef
Pubmed
Google scholar
|
[66] |
Chen, M., Zhang, J., Zhao, J., Chen, T., Liu, Z., Cheng, F., Fan, Q. and Yan, J. (2020) Comparison of CE- and MPS-based analyses of forensic markers in a single cell after whole genome amplification. Forensic Sci. Int. Genet., 45, 102211
CrossRef
Pubmed
Google scholar
|
[67] |
Bruijns, B., Veciana, A., Tiggelaar, R. and Gardeniers, H. (2019) Cyclic olefin copolymer microfluidic devices for forensic applications. Biosensors (Basel), 9, 85
CrossRef
Pubmed
Google scholar
|
[68] |
Lipinski, K. A., Barber, L. J., Davies, M. N., Ashenden, M., Sottoriva, A. and Gerlinger, M. (2016) Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer, 2, 49–63
CrossRef
Pubmed
Google scholar
|
[69] |
Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu,, K., Wu, H.,
CrossRef
Pubmed
Google scholar
|
[70] |
Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D.,
CrossRef
Pubmed
Google scholar
|
[71] |
Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., Chen, K., Scheet, P., Vattathil, S., Liang, H.,
CrossRef
Pubmed
Google scholar
|
[72] |
Liu, H. E., Triboulet, M., Zia, A., Vuppalapaty, M., Kidess-Sigal, E., Coller, J., Natu, V. S., Shokoohi, V., Che, J., Renier, C.,
CrossRef
Pubmed
Google scholar
|
[73] |
Edwards, A., Civitello, A., Hammond, H. A. and Caskey, C. T. (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet., 49, 746–756
Pubmed
|
[74] |
Deleye, L., Vander Plaetsen, A. S., Weymaere, J., Deforce, D. and Van Nieuwerburgh, F. (2018) Short tandem repeat analysis after whole genome amplification of single B-lymphoblastoid cells. Sci. Rep., 8, 1255
CrossRef
Pubmed
Google scholar
|
[75] |
Michikawa, Y., Sugahara, K., Suga, T., Ohtsuka, Y., Ishikawa, K., Ishikawa, A., Shiomi, N., Shiomi, T., Iwakawa, M. and Imai, T. (2008) In-gel multiple displacement amplification of long DNA fragments diluted to the single molecule level. Anal. Biochem., 383, 151–158
CrossRef
Pubmed
Google scholar
|
[76] |
Deleye, L., Gansemans, Y., De Coninck, D., Van Nieuwerburgh, F., and Deforce, D (2018) Massively parallel sequencing of micro-manipulated cells targeting a comprehensive panel of disease-causing genes: A comparative evaluation of upstream whole-genome amplification methods. PLoS One, 13, e0196334
CrossRef
Pubmed
Google scholar
|
[77] |
Edwards, R. G. and Gardner, R. L. (1967) Sexing of live rabbit blastocysts. Nature, 214, 576–577
CrossRef
Pubmed
Google scholar
|
[78] |
Hellani, A., Coskun, S., Benkhalifa, M., Tbakhi, A., Sakati, N., Al-Odaib, A. and Ozand, P. (2004) Multiple displacement amplification on single cell and possible PGD applications. Mol. Hum. Reprod., 10, 847–852
CrossRef
Pubmed
Google scholar
|
[79] |
Hellani, A., Coskun, S., Tbakhi, A. and Al-Hassan, S. (2005) Clinical application of multiple displacement amplification in preimplantation genetic diagnosis. Reprod. Biomed. Online, 10, 376–380
CrossRef
Pubmed
Google scholar
|
[80] |
Lu, Y., Peng, H., Jin, Z., Cheng,, J., Wang, S., Ma, M., Lu, Y., Han, D., Yao, Y., Li, Y.,
CrossRef
Pubmed
Google scholar
|
[81] |
Shen, X., Chen, D., Xu, Y., Fu, Y. and Zhou, C. (2019) Preimplantation genetic testing of achondroplasia by two haplotyping systems: short tandem repeats and single nucleotide polymorphism. Biochip J., 13, 165–173
CrossRef
Google scholar
|
[82] |
Chen, L., Diao, Z., Xu, Z., Zhou, J., Yan, G. and Sun, H. (2017) The clinical application of NGS-based SNP haplotyping for PGD of Hb H disease. Syst Biol Reprod Med, 63, 212–217
CrossRef
Pubmed
Google scholar
|
[83] |
Chen, S. C., Xu, X. L., Zhang, J. Y., Ding, G. L., Jin, L., Liu, B., Sun, D. M., Mei, C. L., Yang, X. N., Huang, H. F.,
CrossRef
Pubmed
Google scholar
|
[84] |
Konstantinidis, M., Prates, R., Goodall, N. N., Fischer, J., Tecson, V., Lemma, T., Chu, B., Jordan, A., Armenti, E., Wells, D.,
CrossRef
Pubmed
Google scholar
|
[85] |
Thornhill, A. R., Handyside, A. H., Ottolini, C., Natesan, S. A., Taylor, J., Sage, K., Harton, G., Cliffe, K., Affara, N., Konstantinidis, M.,
CrossRef
Pubmed
Google scholar
|
[86] |
Davison, M., Hall, E., Zare, R. and Bhaya, D. (2015) Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. Photosynth. Res., 126, 135–146
CrossRef
Pubmed
Google scholar
|
[87] |
Tu, J., Chen, L., Gao, S., Zhang, J., Bi, C., Tao, Y., Lu, N. and Lu, Z. (2019) Obtaining genome sequences of mutualistic bacteria in single Microcystis colonies. Int. J. Mol. Sci., 20, 5047
CrossRef
Pubmed
Google scholar
|
[88] |
Parras-Moltó, M., Rodríguez-Galet, A., Suárez-Rodríguez, P. and López-Bueno, A. (2018) Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses. Microbiome, 6, 119
CrossRef
Pubmed
Google scholar
|
[89] |
Brinkman, N. E., Villegas, E. N., Garland, J. L. and Keely, S. P. (2018) Reducing inherent biases introduced during DNA viral metagenome analyses of municipal wastewater. PLoS One, 13, e0195350
CrossRef
Pubmed
Google scholar
|
[90] |
Hammond, M., Homa, F., Andersson-Svahn, H., Ettema, T. J. G. and Joensson, H. N. (2016) Picodroplet partitioned whole genome amplification of low biomass samples preserves genomic diversity for metagenomic analysis. Microbiome, 4, 52
CrossRef
Pubmed
Google scholar
|
[91] |
Veltkamp, H. W., Akegawa Monteiro, F., Sanders, R., Wiegerink, R. and Lötters, J. (2020) Disposable DNA amplification chips with integrated low-cost heaters dagger. Micromachines (Basel), 11, 238
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |