Mendelian randomization and pleiotropy analysis
Xiaofeng Zhu
Mendelian randomization and pleiotropy analysis
Background: Mendelian randomization (MR) analysis has become popular in inferring and estimating the causality of an exposure on an outcome due to the success of genome wide association studies. Many statistical approaches have been developed and each of these methods require specific assumptions.
Results: In this article, we review the pros and cons of these methods. We use an example of high-density lipoprotein cholesterol on coronary artery disease to illuminate the challenges in Mendelian randomization investigation.
Conclusion: The current available MR approaches allow us to study causality among risk factors and outcomes. However, novel approaches are desirable for overcoming multiple source confounding of risk factors and an outcome in MR analysis.
Mendelian randomization analysis is a popular approach to studying the causality of exposures on an outcome, and it shares similarities with randomized controlled trials. Since MR is based on observational data, it requires assumptions that are difficult to validate. We review the current developed MR approaches and the challenges in performing MR analysis and interpreting the results.
Mendelian randomization / causality / summary statistics / confounding / instrumental variable
[1] |
Schatzkin, A., Lanza, E., Corle, D., Lance, P., Iber, F., Caan, B., Shike, M., Weissfeld, J., Burt, R., Cooper, M. R.,
CrossRef
Pubmed
Google scholar
|
[2] |
The Heart Outcomes Prevention Evaluation Study Investigators. (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med., 342, 154–160
CrossRef
Google scholar
|
[3] |
Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med., 330, 1029–1035
CrossRef
Pubmed
Google scholar
|
[4] |
Sesso, H. D., Buring, J. E., Christen, W. G., Kurth, T., Belanger, C., MacFadyen, J., Bubes, V., Manson, J. E., Glynn, R. J. and Gaziano, J. M. (2008) Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA, 300, 2123–2133
CrossRef
Pubmed
Google scholar
|
[5] |
Davey Smith, G. and Ebrahim, S. (2001) Epidemiology–is it time to call it a day? Int. J. Epidemiol., 30, 1–11
CrossRef
Pubmed
Google scholar
|
[6] |
Fewell, Z., Davey Smith, G. and Sterne, J. A. (2007) The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am. J. Epidemiol., 166, 646–655
CrossRef
Pubmed
Google scholar
|
[7] |
Evans, D. M. and Davey Smith, G. (2015) Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genomics Hum. Genet., 16, 327–350
CrossRef
Pubmed
Google scholar
|
[8] |
Davey Smith, G. and Hemani, G. (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet., 23, R89–R98
CrossRef
Pubmed
Google scholar
|
[9] |
Katan, M. B. (1986) Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet, 327, 507–508
CrossRef
Pubmed
Google scholar
|
[10] |
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A. and Yang, J. (2017) 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet., 101, 5–22
CrossRef
Pubmed
Google scholar
|
[11] |
Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol., 32, 1–22
CrossRef
Pubmed
Google scholar
|
[12] |
VanderWeele, T. J., Tchetgen Tchetgen, E. J., Cornelis, M. and Kraft, P. (2014) Methodological challenges in Mendelian randomization. Epidemiology, 25, 427–435
CrossRef
Pubmed
Google scholar
|
[13] |
Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., Polderman, T. J. C., van der Sluis, S., Andreassen, O. A., Neale, B. M. and Posthuma, D. (2018) A global view of pleiotropy and genetic architecture in complex traits. Nat. Genet., 51, 1339–1134
|
[14] |
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. and Smoller, J. W. (2013) Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet., 14, 483–495
CrossRef
Pubmed
Google scholar
|
[15] |
Zhu, X., Feng, T., Tayo, B. O., Liang, J., Young, J. H., Franceschini, N., Smith, J. A., Yanek, L. R., Sun, Y. V., Edwards, T. L.,
CrossRef
Pubmed
Google scholar
|
[16] |
Sleiman, P. M. and Grant, S. F. (2010) Mendelian randomization in the era of genomewide association studies. Clin. Chem., 56, 723–728
CrossRef
Pubmed
Google scholar
|
[17] |
Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996) Identification of causal effects using instrumental variables. J. Am. Stat. Assoc., 91, 444–455
CrossRef
Google scholar
|
[18] |
Verbanck, M., Chen, C. Y., Neale, B. and Do, R. (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet., 50, 693–698
CrossRef
Pubmed
Google scholar
|
[19] |
Burgess, S., Butterworth, A. and Thompson, S. G. (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol., 37, 658–665
CrossRef
Pubmed
Google scholar
|
[20] |
Bowden, J., Del Greco M, F., Minelli, C., Davey Smith, G., Sheehan, N. and Thompson, J. (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med., 36, 1783–1802
CrossRef
Pubmed
Google scholar
|
[21] |
Borenstein, M., Hedges, L., Higgins, J. and Rothstein, H. (2009) Generality of the basic inverse-variance method. In: Introduction to Meta-analysis. Wiley
|
[22] |
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol., 44, 512–525
CrossRef
Pubmed
Google scholar
|
[23] |
Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629–634
CrossRef
Pubmed
Google scholar
|
[24] |
Zhu, X., Li, X., Xu, R., Wang, T. (2020) An iterative approach to detect pleiotropy and perform Mendelian randomization analysis using GWAS summary statistics. Under review
|
[25] |
Bowden, J., Davey Smith, G., Haycock, P. C. and Burgess, S. (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol., 40, 304–314
CrossRef
Pubmed
Google scholar
|
[26] |
Hartwig, F. P., Davey Smith, G. and Bowden, J. (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol., 46, 1985–1998
CrossRef
Pubmed
Google scholar
|
[27] |
Bickel, D. R. (2003) Robust and efficient estimation of the mode of continuous data: the mode as a viable measure of central tendency. J. Stat. Comput. Simul., 73, 899–912
CrossRef
Google scholar
|
[28] |
Bickel, D. R. and Fruhwirth, R. (2006) On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications. Comput. Stat. Data Anal., 50, 3500–3530
CrossRef
Google scholar
|
[29] |
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics, 2nd edition, Hoboken, N.J. (ed.).Wiley
|
[30] |
Rees, J. M. B., Wood, A. M., Dudbridge, F. and Burgess, S. (2019) Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates. PLoS One, 14, e0222362
CrossRef
Pubmed
Google scholar
|
[31] |
Koller, M. and Stahel, W. A. (2011) Sharpening Wald-type inference in robust regression for small samples. Comput. Stat. Data Anal., 55, 2504–2515
CrossRef
Google scholar
|
[32] |
Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58, 267–288
CrossRef
Google scholar
|
[33] |
Kang, H., Zhang, A. R., Cai, T. T. and Small, D. S. (2016) Instrumental variables estimation with some invalid instruments and its application to Mendelian randomization. J. Am. Stat. Assoc., 111, 132–144
CrossRef
Google scholar
|
[34] |
Windmeijer, F., Farbmacher, H., Davies, N. and Davey Smith, G. (2019) On the use of the Lasso for instrumental variables estimation with some invalid instruments. J. Am. Stat. Assoc., 114, 1339–1350
CrossRef
Pubmed
Google scholar
|
[35] |
Qi, G. and Chatterjee, N. (2019) Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. Nat. Commun., 10, 1941
CrossRef
Pubmed
Google scholar
|
[36] |
Park, H., Li, X., Song, Y. E., He, K. Y. and Zhu, X. (2016) Multivariate analysis of anthropometric traits using summary statistics of genome-wide association studies from GIANT consortium. PLoS One, 11, e0163912
CrossRef
Pubmed
Google scholar
|
[37] |
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., the Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson, N., Daly, M. J., Price, A. L. and Neale, B. M. (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 47, 291–295
CrossRef
Pubmed
Google scholar
|
[38] |
Burgess, S., Davey Smith, G., Davies, N. M., Dudbridge, F., Gill, D., Glymour, M. M., Hartwig, F. P., Holmes, M. V., Minelli, C., Relton, C. L.,
CrossRef
Google scholar
|
[39] |
Hernán, M. A. and Robins, J. M. (2006) Instruments for causal inference: an epidemiologist’s dream? Epidemiology, 17, 360–372
CrossRef
Pubmed
Google scholar
|
[40] |
Labrecque, J. A. and Swanson, S. A. (2019) Interpretation and potential biases of Mendelian randomization estimates with time-varying exposures. Am. J. Epidemiol., 188, 231–238
CrossRef
Pubmed
Google scholar
|
[41] |
Swanson, S. A., Labrecque, J. and Hernán, M. A. (2018) Causal null hypotheses of sustained treatment strategies: What can be tested with an instrumental variable? Eur. J. Epidemiol., 33, 723–728
CrossRef
Pubmed
Google scholar
|
[42] |
Franceschini, N., Fox, E., Zhang, Z., Edwards, T. L., Nalls, M. A., Sung, Y. J., Tayo, B. O., Sun, Y. V., Gottesman, O., Adeyemo, A.,
CrossRef
Pubmed
Google scholar
|
[43] |
Liang, J., Le, T. H., Edwards, D. R. V., Tayo, B. O., Gaulton, K. J., Smith, J. A., Lu, Y., Jensen, R. A., Chen, G., Yanek, L. R.,
CrossRef
Pubmed
Google scholar
|
[44] |
Smith, G. D., Davies, N. M., Dimou, N., Egger, M., Gallo, V., Golub, R., Higgins, J. P. T., Langenberg, C., Loder, E. W., Richards, J. B.,
|
[45] |
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. and Thompson, S. G. (2017) Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology, 28, 30–42
CrossRef
Pubmed
Google scholar
|
[46] |
Pickrell, J. (2015) Fulfilling the promise of Mendelian randomization. bioRxiv, 018150
|
[47] |
Davey Smith, G. (2015) Mendelian randomization: a premature burial? bioRxiv, 021386
|
[48] |
Jordan, D. M., Verbanck, M. and Do, R. (2019) HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol., 20, 222
CrossRef
Pubmed
Google scholar
|
[49] |
The Emerging Risk Factors Collaboration (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 302, 1993–2000
CrossRef
Pubmed
Google scholar
|
[50] |
Lewington, S., Whitlock, G., Clarke, R., Sherliker, P., Emberson, J., Halsey, J., Qizilbash, N., Peto, R., Collins, R., Collins, R.,
CrossRef
Pubmed
Google scholar
|
[51] |
Voight, B. F., Peloso, G. M., Orho-Melander, M., Frikke-Schmidt, R., Barbalic, M., Jensen, M. K., Hindy, G., Hólm, H., Ding, E. L., Johnson, T.,
CrossRef
Pubmed
Google scholar
|
[52] |
Geller, A. S., Polisecki, E. Y., Diffenderfer, M. R., Asztalos, B. F., Karathanasis, S. K., Hegele, R. A. and Schaefer, E. J. (2018) Genetic and secondary causes of severe HDL deficiency and cardiovascular disease. J. Lipid Res., 59, 2421–2435
CrossRef
Pubmed
Google scholar
|
[53] |
Holmes, M. V., Asselbergs, F. W., Palmer, T. M., Drenos, F., Lanktree, M. B., Nelson, C. P., Dale, C. E., Padmanabhan, S., Finan, C., Swerdlow, D. I.,
CrossRef
Pubmed
Google scholar
|
[54] |
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J.,
CrossRef
Pubmed
Google scholar
|
[55] |
Cortes, A., Albers, P. K., Dendrou, C. A., Fugger, L. and McVean, G. (2020) Identifying cross-disease components of genetic risk across hospital data in the UK Biobank. Nat. Genet., 52, 126–134
CrossRef
Pubmed
Google scholar
|
[56] |
Burgess, S. and Thompson, S. G. (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol., 181, 251–260
CrossRef
Pubmed
Google scholar
|
[57] |
Davies, R. B. (1980) The distribution of a linear combination of χ2 random variables. J. R. Stat. Soc. C Appl. Stat., 29, 323–333
|
[58] |
Richardson, T. G., Harrison, S., Hemani, G. and Davey Smith, G. (2019) An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. eLife, 8, e43657
CrossRef
Pubmed
Google scholar
|
[59] |
Bentley, A. R., Sung, Y. J., Brown, M. R., Winkler, T. W., Kraja, A. T., Ntalla, I., Schwander, K., Chasman, D. I., Lim, E., Deng, X.,
CrossRef
Pubmed
Google scholar
|
[60] |
Sung, Y. J., Winkler, T. W., de Las Fuentes, L., Bentley, A. R., Brown, M. R., Kraja, A. T., Schwander, K., Ntalla, I., Guo, X., Franceschini, N.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |