Mendelian randomization and pleiotropy analysis

Xiaofeng Zhu

PDF(456 KB)
PDF(456 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 122-132. DOI: 10.1007/s40484-020-0216-3
REVIEW
REVIEW

Mendelian randomization and pleiotropy analysis

Author information +
History +

Abstract

Background: Mendelian randomization (MR) analysis has become popular in inferring and estimating the causality of an exposure on an outcome due to the success of genome wide association studies. Many statistical approaches have been developed and each of these methods require specific assumptions.

Results: In this article, we review the pros and cons of these methods. We use an example of high-density lipoprotein cholesterol on coronary artery disease to illuminate the challenges in Mendelian randomization investigation.

Conclusion: The current available MR approaches allow us to study causality among risk factors and outcomes. However, novel approaches are desirable for overcoming multiple source confounding of risk factors and an outcome in MR analysis.

Author summary

Mendelian randomization analysis is a popular approach to studying the causality of exposures on an outcome, and it shares similarities with randomized controlled trials. Since MR is based on observational data, it requires assumptions that are difficult to validate. We review the current developed MR approaches and the challenges in performing MR analysis and interpreting the results.

Graphical abstract

Keywords

Mendelian randomization / causality / summary statistics / confounding / instrumental variable

Cite this article

Download citation ▾
Xiaofeng Zhu. Mendelian randomization and pleiotropy analysis. Quant. Biol., 2021, 9(2): 122‒132 https://doi.org/10.1007/s40484-020-0216-3

References

[1]
Schatzkin, A., Lanza, E., Corle, D., Lance, P., Iber, F., Caan, B., Shike, M., Weissfeld, J., Burt, R., Cooper, M. R., (2000) Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. N. Engl. J. Med., 342, 1149–1155
CrossRef Pubmed Google scholar
[2]
The Heart Outcomes Prevention Evaluation Study Investigators. (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. N. Engl. J. Med., 342, 154–160
CrossRef Google scholar
[3]
Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med., 330, 1029–1035
CrossRef Pubmed Google scholar
[4]
Sesso, H. D., Buring, J. E., Christen, W. G., Kurth, T., Belanger, C., MacFadyen, J., Bubes, V., Manson, J. E., Glynn, R. J. and Gaziano, J. M. (2008) Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA, 300, 2123–2133
CrossRef Pubmed Google scholar
[5]
Davey Smith, G. and Ebrahim, S. (2001) Epidemiology–is it time to call it a day? Int. J. Epidemiol., 30, 1–11
CrossRef Pubmed Google scholar
[6]
Fewell, Z., Davey Smith, G. and Sterne, J. A. (2007) The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am. J. Epidemiol., 166, 646–655
CrossRef Pubmed Google scholar
[7]
Evans, D. M. and Davey Smith, G. (2015) Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genomics Hum. Genet., 16, 327–350
CrossRef Pubmed Google scholar
[8]
Davey Smith, G. and Hemani, G. (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet., 23, R89–R98
CrossRef Pubmed Google scholar
[9]
Katan, M. B. (1986) Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet, 327, 507–508
CrossRef Pubmed Google scholar
[10]
Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A. and Yang, J. (2017) 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet., 101, 5–22
CrossRef Pubmed Google scholar
[11]
Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol., 32, 1–22
CrossRef Pubmed Google scholar
[12]
VanderWeele, T. J., Tchetgen Tchetgen, E. J., Cornelis, M. and Kraft, P. (2014) Methodological challenges in Mendelian randomization. Epidemiology, 25, 427–435
CrossRef Pubmed Google scholar
[13]
Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., Polderman, T. J. C., van der Sluis, S., Andreassen, O. A., Neale, B. M. and Posthuma, D. (2018) A global view of pleiotropy and genetic architecture in complex traits. Nat. Genet., 51, 1339–1134
[14]
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. and Smoller, J. W. (2013) Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet., 14, 483–495
CrossRef Pubmed Google scholar
[15]
Zhu, X., Feng, T., Tayo, B. O., Liang, J., Young, J. H., Franceschini, N., Smith, J. A., Yanek, L. R., Sun, Y. V., Edwards, T. L., (2015) Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am. J. Hum. Genet., 96, 21–36
CrossRef Pubmed Google scholar
[16]
Sleiman, P. M. and Grant, S. F. (2010) Mendelian randomization in the era of genomewide association studies. Clin. Chem., 56, 723–728
CrossRef Pubmed Google scholar
[17]
Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996) Identification of causal effects using instrumental variables. J. Am. Stat. Assoc., 91, 444–455
CrossRef Google scholar
[18]
Verbanck, M., Chen, C. Y., Neale, B. and Do, R. (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet., 50, 693–698
CrossRef Pubmed Google scholar
[19]
Burgess, S., Butterworth, A. and Thompson, S. G. (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol., 37, 658–665
CrossRef Pubmed Google scholar
[20]
Bowden, J., Del Greco M, F., Minelli, C., Davey Smith, G., Sheehan, N. and Thompson, J. (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med., 36, 1783–1802
CrossRef Pubmed Google scholar
[21]
Borenstein, M., Hedges, L., Higgins, J. and Rothstein, H. (2009) Generality of the basic inverse-variance method. In: Introduction to Meta-analysis. Wiley
[22]
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol., 44, 512–525
CrossRef Pubmed Google scholar
[23]
Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629–634
CrossRef Pubmed Google scholar
[24]
Zhu, X., Li, X., Xu, R., Wang, T. (2020) An iterative approach to detect pleiotropy and perform Mendelian randomization analysis using GWAS summary statistics. Under review
[25]
Bowden, J., Davey Smith, G., Haycock, P. C. and Burgess, S. (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol., 40, 304–314
CrossRef Pubmed Google scholar
[26]
Hartwig, F. P., Davey Smith, G. and Bowden, J. (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol., 46, 1985–1998
CrossRef Pubmed Google scholar
[27]
Bickel, D. R. (2003) Robust and efficient estimation of the mode of continuous data: the mode as a viable measure of central tendency. J. Stat. Comput. Simul., 73, 899–912
CrossRef Google scholar
[28]
Bickel, D. R. and Fruhwirth, R. (2006) On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications. Comput. Stat. Data Anal., 50, 3500–3530
CrossRef Google scholar
[29]
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics, 2nd edition, Hoboken, N.J. (ed.).Wiley
[30]
Rees, J. M. B., Wood, A. M., Dudbridge, F. and Burgess, S. (2019) Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates. PLoS One, 14, e0222362
CrossRef Pubmed Google scholar
[31]
Koller, M. and Stahel, W. A. (2011) Sharpening Wald-type inference in robust regression for small samples. Comput. Stat. Data Anal., 55, 2504–2515
CrossRef Google scholar
[32]
Tibshirani, R. (1996) Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B, 58, 267–288
CrossRef Google scholar
[33]
Kang, H., Zhang, A. R., Cai, T. T. and Small, D. S. (2016) Instrumental variables estimation with some invalid instruments and its application to Mendelian randomization. J. Am. Stat. Assoc., 111, 132–144
CrossRef Google scholar
[34]
Windmeijer, F., Farbmacher, H., Davies, N. and Davey Smith, G. (2019) On the use of the Lasso for instrumental variables estimation with some invalid instruments. J. Am. Stat. Assoc., 114, 1339–1350
CrossRef Pubmed Google scholar
[35]
Qi, G. and Chatterjee, N. (2019) Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. Nat. Commun., 10, 1941
CrossRef Pubmed Google scholar
[36]
Park, H., Li, X., Song, Y. E., He, K. Y. and Zhu, X. (2016) Multivariate analysis of anthropometric traits using summary statistics of genome-wide association studies from GIANT consortium. PLoS One, 11, e0163912
CrossRef Pubmed Google scholar
[37]
Bulik-Sullivan, B. K., Loh, P. R., Finucane, H. K., Ripke, S., Yang, J., the Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson, N., Daly, M. J., Price, A. L. and Neale, B. M. (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet., 47, 291–295
CrossRef Pubmed Google scholar
[38]
Burgess, S., Davey Smith, G., Davies, N. M., Dudbridge, F., Gill, D., Glymour, M. M., Hartwig, F. P., Holmes, M. V., Minelli, C., Relton, C. L., (2019) Guidelines for performing Mendelian randomization investigations. Wellcome Open Res., 4, 186
CrossRef Google scholar
[39]
Hernán, M. A. and Robins, J. M. (2006) Instruments for causal inference: an epidemiologist’s dream? Epidemiology, 17, 360–372
CrossRef Pubmed Google scholar
[40]
Labrecque, J. A. and Swanson, S. A. (2019) Interpretation and potential biases of Mendelian randomization estimates with time-varying exposures. Am. J. Epidemiol., 188, 231–238
CrossRef Pubmed Google scholar
[41]
Swanson, S. A., Labrecque, J. and Hernán, M. A. (2018) Causal null hypotheses of sustained treatment strategies: What can be tested with an instrumental variable? Eur. J. Epidemiol., 33, 723–728
CrossRef Pubmed Google scholar
[42]
Franceschini, N., Fox, E., Zhang, Z., Edwards, T. L., Nalls, M. A., Sung, Y. J., Tayo, B. O., Sun, Y. V., Gottesman, O., Adeyemo, A., (2013) Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am. J. Hum. Genet., 93, 545–554
CrossRef Pubmed Google scholar
[43]
Liang, J., Le, T. H., Edwards, D. R. V., Tayo, B. O., Gaulton, K. J., Smith, J. A., Lu, Y., Jensen, R. A., Chen, G., Yanek, L. R., (2017) Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations. PLoS Genet., 13, e1006728
CrossRef Pubmed Google scholar
[44]
Smith, G. D., Davies, N. M., Dimou, N., Egger, M., Gallo, V., Golub, R., Higgins, J. P. T., Langenberg, C., Loder, E. W., Richards, J. B., (2020) STROBE-MR: Guidelines for strengthening the reporting of Mendelian randomization studies. PeerJ Preprints 7, e27857v1
[45]
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. and Thompson, S. G. (2017) Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology, 28, 30–42
CrossRef Pubmed Google scholar
[46]
Pickrell, J. (2015) Fulfilling the promise of Mendelian randomization. bioRxiv, 018150
[47]
Davey Smith, G. (2015) Mendelian randomization: a premature burial? bioRxiv, 021386
[48]
Jordan, D. M., Verbanck, M. and Do, R. (2019) HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol., 20, 222
CrossRef Pubmed Google scholar
[49]
The Emerging Risk Factors Collaboration (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 302, 1993–2000
CrossRef Pubmed Google scholar
[50]
Lewington, S., Whitlock, G., Clarke, R., Sherliker, P., Emberson, J., Halsey, J., Qizilbash, N., Peto, R., Collins, R., Collins, R., (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet, 370, 1829–1839
CrossRef Pubmed Google scholar
[51]
Voight, B. F., Peloso, G. M., Orho-Melander, M., Frikke-Schmidt, R., Barbalic, M., Jensen, M. K., Hindy, G., Hólm, H., Ding, E. L., Johnson, T., (2012) Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet, 380, 572–580
CrossRef Pubmed Google scholar
[52]
Geller, A. S., Polisecki, E. Y., Diffenderfer, M. R., Asztalos, B. F., Karathanasis, S. K., Hegele, R. A. and Schaefer, E. J. (2018) Genetic and secondary causes of severe HDL deficiency and cardiovascular disease. J. Lipid Res., 59, 2421–2435
CrossRef Pubmed Google scholar
[53]
Holmes, M. V., Asselbergs, F. W., Palmer, T. M., Drenos, F., Lanktree, M. B., Nelson, C. P., Dale, C. E., Padmanabhan, S., Finan, C., Swerdlow, D. I., (2015) Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J., 36, 539–550
CrossRef Pubmed Google scholar
[54]
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575
CrossRef Pubmed Google scholar
[55]
Cortes, A., Albers, P. K., Dendrou, C. A., Fugger, L. and McVean, G. (2020) Identifying cross-disease components of genetic risk across hospital data in the UK Biobank. Nat. Genet., 52, 126–134
CrossRef Pubmed Google scholar
[56]
Burgess, S. and Thompson, S. G. (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol., 181, 251–260
CrossRef Pubmed Google scholar
[57]
Davies, R. B. (1980) The distribution of a linear combination of χ2 random variables. J. R. Stat. Soc. C Appl. Stat., 29, 323–333
[58]
Richardson, T. G., Harrison, S., Hemani, G. and Davey Smith, G. (2019) An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. eLife, 8, e43657
CrossRef Pubmed Google scholar
[59]
Bentley, A. R., Sung, Y. J., Brown, M. R., Winkler, T. W., Kraja, A. T., Ntalla, I., Schwander, K., Chasman, D. I., Lim, E., Deng, X., (2019) Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nat. Genet., 51, 636–648
CrossRef Pubmed Google scholar
[60]
Sung, Y. J., Winkler, T. W., de Las Fuentes, L., Bentley, A. R., Brown, M. R., Kraja, A. T., Schwander, K., Ntalla, I., Guo, X., Franceschini, N., (2018) A Large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. Am. J. Hum. Genet., 102, 375–400
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by grants HG003054 and HG011052 (to X.Z.) from the National Human Genome Research Institute (NHGRI), USA.

COMPLIANCE WITH ETHICS GUIDELINES

The author Xiaofeng Zhu declare that he has no conflict of interests.ƒThis article is a review article and does not contain any studies with human or animal subjects performed by the author.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(456 KB)

Accesses

Citations

Detail

Sections
Recommended

/