Cellbow: a robust customizable cell segmentation program

Huixia Ren , Mengdi Zhao , Bo Liu , Ruixiao Yao , Qi liu , Zhipeng Ren , Zirui Wu , Zongmao Gao , Xiaojing Yang , Chao Tang

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 245 -255.

PDF (3675KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 245 -255. DOI: 10.1007/s40484-020-0213-6
METHOD
METHOD

Cellbow: a robust customizable cell segmentation program

Author information +
History +
PDF (3675KB)

Abstract

Background: Time-lapse live cell imaging of a growing cell population is routine in many biological investigations. A major challenge in imaging analysis is accurate segmentation, a process to define the boundaries of cells based on raw image data. Current segmentation methods relying on single boundary features have problems in robustness when dealing with inhomogeneous foci which invariably happens in cell population imaging.

Methods: Combined with a multi-layer training set strategy, we developed a neural-network-based algorithm — Cellbow.

Results: Cellbow can achieve accurate and robust segmentation of cells in broad and general settings. It can also facilitate long-term tracking of cell growth and division. To facilitate the application of Cellbow, we provide a website on which one can online test the software, as well as an ImageJ plugin for the user to visualize the performance before software installation.

Conclusion: Cellbow is customizable and generalizable. It is broadly applicable to segmenting fluorescent images of diverse cell types with no further training needed. For bright-field images, only a small set of sample images of the specific cell type from the user may be needed for training.

Graphical abstract

Keywords

deep neural network / cell segmentation / fluorescent cell imaging / bright-field cell imaging / lineage tracking

Cite this article

Download citation ▾
Huixia Ren, Mengdi Zhao, Bo Liu, Ruixiao Yao, Qi liu, Zhipeng Ren, Zirui Wu, Zongmao Gao, Xiaojing Yang, Chao Tang. Cellbow: a robust customizable cell segmentation program. Quant. Biol., 2020, 8(3): 245-255 DOI:10.1007/s40484-020-0213-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tantama, M., Martínez-François, J., Mongeon, R.Yellen, G. (2013) Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat. Commun., 4, 2550

[2]

Li, F., Yin, Z., Jin, G., Zhao, H. and Wong, S. T. C. (2013) Chapter 17: Bioimage informatics for systems pharmacology. PLOS Comput. Biol., 9, e1003043

[3]

Dimopoulos, S., Mayer, C. E., Rudolf, F. and Stelling, J. (2014) Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics, 30, 2644–2651

[4]

Van Valen, D. A., Kudo, T., Lane, K. M., Macklin, D. N., Quach, N. T., DeFelice, M. M., Maayan, I., Tanouchi, Y., Ashley, E. A. and Covert, M. W. (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLOS Comput. Biol., 12, e1005177

[5]

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J., (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, R100

[6]

O’Brien, J., Hoque, S., Mulvihill, D. and Sirlantzis, K. (2017) Automated cell segmentation of fission yeast phase images—segmenting cells from light microscopy images. In: Proc.10th Inter. Joint Conf. Biomed. Eng. Syst. Technol., pp. 92–99

[7]

Versari, C., Stoma, S., Batmanov, K., Llamosi, A., Mroz, F., Kaczmarek, A., Deyell, M., Lhoussaine, C., Hersen, P. and Batt, G. (2017) Long-term tracking of budding yeast cells in brightfield microscopy: cellStar and the evaluation platform. J. R. Soc. Interface, 14, 20160705

[8]

Meijering, E. (2012) Cell segmentation: 50 years down the road. IEEE Signal Process. Mag., 29, 140–145

[9]

Hodneland, E., Kögel, T., Frei, D. M., Gerdes, H. H. and Lundervold, A. (2013) CellSegm — a MATLAB toolbox for high-throughput 3D cell segmentation. Source Code Biol. Med., 8, 16

[10]

Wood, N. E. and Doncic, A. (2019) A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking. PLoS One, 14, e0206395

[11]

Bakker, E., Swain, P. S. and Crane, M. M. (2018) Morphologically constrained and data informed cell segmentation of budding yeast. Bioinformatics, 34, 88–96

[12]

Peng, J. Y., Chen, Y. J., Green, M. D., Sabatinos, S. A., Forsburg, S. L. and Hsu, C. N. (2013) PombeX: robust cell segmentation for fission yeast transillumination images. PLoS One, 8, e81434

[13]

Peng, J. Y., Chen, Y. J., Green, M. D., Forsburg, S. L. and Hsu, C. N. (2013) Robust cell segmentation for schizosaccharomyces pombe images with focus gradient. In: Proc. Inter. Sympo. on Biomed. Imag.doi:10.1109/ISBI.2013.6556500.

[14]

Bourne, R. (2010) ImageJ. In: Fundamentals of Digital Imaging in Medicine. London: Springer doi:10.1007/978-1-84882-087-6_9.

[15]

Zhang, Y., Qiu, Z., Yao, T., Liu, D. and Mei, T. (2018) Fully convolutional adaptation networks for semantic segmentation. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 6810–6818

[16]

Shelhamer, E., Long, J. and Darrell, T. (2017) Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39, 640–651

[17]

Bajcsy, P., Cardone, A., Chalfoun, J., Halter, M., Juba, D., Kociolek, M., Majurski, M., Peskin, A., Simon, C., Simon, M., (2015) Survey statistics of automated segmentations applied to optical imaging of mammalian cells. BMC Bioinformatics, 16, 330

[18]

Ljosa, V., Sokolnicki, K. L. and Carpenter, A. E. (2012) Annotated high-throughput microscopy image sets for validation. Nat. Methods, 9, 637

[19]

Wang, Z. Z. (2016) A new approach for segmentation and quantification of cells or nanoparticles. IEEE Trans. Ind. Informatics, 12, 962–971 doi10.1109/TII.2016.2542043.

[20]

Wang, Z. (2016) A semi-automatic method for robust and efficient identification of neighboring muscle cells. Pattern Recognit., 53, 300–312

[21]

Meyer, F. (1994) Topographic distance and watershed lines. Signal Process., 38, 113–125

[22]

Abadi, M., Agarwal, A., Barham, P., Brevdo, Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv, 1603.04467v2

[23]

Eliceiri, K. W., Berthold, M. R., Goldberg, I. G., Ibáñez, L., Manjunath, B. S., Martone, M. E., Murphy, R. F., Peng, H., Plant, A. L., Roysam, B., (2012) Biological imaging software tools. Nat. Methods, 9, 697–710

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (3675KB)

3405

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/