Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response
Xue Jiang, Mohammad Asad, Lin Li, Zhanpeng Sun, Jean-Sébastien Milanese, Bo Liao, Edwin Wang
Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response
Background: Immune evasion is a fundamental hallmark for cancer. At the early stages of tumor development, immune evasion strategies must be implemented by tumors to prevent attacks from the host immune systems. Blocking tumors’ immune evasion will re-activate the host immune systems to eliminate tumors. Immune-checkpoint therapy (ICT) which applies anti-PD-1/PD-L1 or anti-CTLA4 treatment has been a remarkable success in the past few years. However, ~70% of patients cannot gain any clinical benefits from ICT treatment due to the tumor-immunity system’s complexity. In the past, germline pathogenic variants have been thought to have only minor-heritable contributions to cancer.
Results: Emerging evidence has shown that germline genomes play a dominant-heritable contribution to cancer via encoding the host immune system. The functional components of the immune system are encoded by the host genome, thus the germline genome might have a profound impact on cancer immune evasion and immunotherapy response. Indeed, recent studies showed that germline pathogenic variants can influence immune capacity in cancer patients at a population level by (i) shaping tumor somatic mutations, altering methylation patterns and antigen-presentation capacity or (ii) influencing NK cell’s function to modulate lymphocyte infiltration in the tumor microenvironment. In addition, the HLA (types A, B or C) genotypes also shape the landscape of tumor somatic mutations.
Conclusion: These results highlight the indispensable roles of germline genome in immunity and cancer development and suggest that germline genomics should be integrated into the research field of cancer biology and cancer immunotherapy.
germline / genomics / cancer / immune evasion / immunotherapy response
[1] |
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674
CrossRef
Pubmed
Google scholar
|
[2] |
Kriegsman, B. A., Vangala, P., Chen, B. J., Meraner, P., Brass, A. L., Garber, M. and Rock, K. L. (2019) Frequent loss of IRF2 in cancers leads to immune evasion through decreased MHC class I antigen presentation and increased PD-L1 expression. J. Immunol., 203, 1999–2010
CrossRef
Pubmed
Google scholar
|
[3] |
Zhang, S., Kohli, K., Black, R. G., Yao, L., Spadinger, S. M., He, Q., Pillarisetty, V. G., Cranmer, L. D., Van Tine, B. A., Yee, C.,
CrossRef
Pubmed
Google scholar
|
[4] |
Lu, Y., Zhang, M., Wang, S., Hong, B., Wang, Z., Li, H., Zheng, Y., Yang, J., Davis, R. E., Qian, J.,
CrossRef
Pubmed
Google scholar
|
[5] |
Loi, S., Dushyanthen, S., Beavis, P. A., Salgado, R., Denkert, C., Savas, P., Combs, S., Rimm, D. L., Giltnane, J. M., Estrada, M. V.,
CrossRef
Pubmed
Google scholar
|
[6] |
Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. and Gajewski, T. F. (2019) WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res., 25, 3074–3083
CrossRef
Pubmed
Google scholar
|
[7] |
Wang, B., Tian, T., Kalland, K.-H., Ke, X. and Qu, Y. (2018) Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol. Sci., 39, 648–658
CrossRef
Pubmed
Google scholar
|
[8] |
Haslam, A. and Prasad, V. (2019) Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open, 2, e192535
CrossRef
Pubmed
Google scholar
|
[9] |
Khair, D. O., Bax, H. J., Mele, S., Crescioli, S., Pellizzari, G., Khiabany, A., Nakamura, M., Harris, R. J., French, E., Hoffmann, R. M.,
CrossRef
Pubmed
Google scholar
|
[10] |
Chen, D. S. and Mellman, I. (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity, 39, 1–10
CrossRef
Pubmed
Google scholar
|
[11] |
Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., Coussens, L. M., Gabrilovich, D. I., Ostrand-Rosenberg, S., Hedrick, C. C.,
CrossRef
Pubmed
Google scholar
|
[12] |
Gonzalez, H., Hagerling, C. and Werb, Z. (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 32, 1267–1284
CrossRef
Pubmed
Google scholar
|
[13] |
Darvin, P., Toor, S. M., Sasidharan Nair, V. and Elkord, E. (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med., 50, 1–11
CrossRef
Pubmed
Google scholar
|
[14] |
Szabo, C. I. and King, M. C. (1997) Population genetics of BRCA1 and BRCA2. Am. J. Hum. Genet., 60, 1013–1020
Pubmed
|
[15] |
Malone, K. E., Daling, J. R., Doody, D. R., Hsu, L., Bernstein, L., Coates, R. J., Marchbanks, P. A., Simon, M. S., McDonald, J. A., Norman, S. A.,
CrossRef
Pubmed
Google scholar
|
[16] |
Bodmer, W. and Tomlinson, I. (2010) Rare genetic variants and the risk of cancer. Curr. Opin. Genet. Dev., 20, 262–267
CrossRef
Pubmed
Google scholar
|
[17] |
Knudson, Jr., A. G. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA, 68, 820–823
CrossRef
Pubmed
Google scholar
|
[18] |
Knudson, A. G. (2001) Two genetic hits (more or less) to cancer. Nat. Rev. Cancer, 1, 157–162
CrossRef
Pubmed
Google scholar
|
[19] |
Donovan, S. L., Schweers, B., Martins, R., Johnson, D. and Dyer, M. A. (2006) Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol., 4, 14
CrossRef
Pubmed
Google scholar
|
[20] |
Ajioka, I., Martins, R. A. P., Bayazitov, I. T., Donovan, S., Johnson, D. A., Frase, S., Cicero, S. A., Boyd, K., Zakharenko, S. S. and Dyer, M. A. (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell, 131, 378–390
CrossRef
Pubmed
Google scholar
|
[21] |
Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F. Jr, Nelson, C. E., Kim, D. H., Kassel, J., Gryka, M. A., Bischoff, F. Z., Tainsky, M. A.,
CrossRef
Pubmed
Google scholar
|
[22] |
Kemp, C. J., Wheldon, T. and Balmain, A. (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat. Genet., 8, 66–69
CrossRef
Pubmed
Google scholar
|
[23] |
Lee, J. M., Abrahamson, J. L. A., Kandel, R., Donehower, L. A. and Bernstein, A. (1994) Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice. Oncogene, 9, 3731–3736
Pubmed
|
[24] |
Levine, A. J., Hu, W. and Feng, Z. (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ., 13, 1027–1036
CrossRef
Pubmed
Google scholar
|
[25] |
Maistro, S., Teixeira, N., Encinas, G., Katayama, M. L. H., Niewiadonski, V. D. T., Cabral, L. G., Ribeiro, R. M., Gaburo Junior, N., de Gouvêa, A. C., Carraro, D. M.,
CrossRef
Pubmed
Google scholar
|
[26] |
Chan, S. H., Lim, W. K., Ishak, N. D. B., Li, S.-T., Goh, W. L., Tan, G. S., Lim, K. H., Teo, M., Young, C. N. C., Malik, S.,
CrossRef
Pubmed
Google scholar
|
[27] |
Kuchenbaecker, K. B., Hopper, J. L., Barnes, D. R., Phillips, K.-A., Mooij, T. M., Roos-Blom, M.-J., Jervis, S., van Leeuwen, F. E., Milne, R. L., Andrieu, N.,
CrossRef
Pubmed
Google scholar
|
[28] |
Liaw, D., Marsh, D. J., Li, J., Dahia, P. L. M., Wang, S. I., Zheng, Z., Bose, S., Call, K. M., Tsou, H. C., Peacoke, M.,
CrossRef
Pubmed
Google scholar
|
[29] |
De Queiroz Rossanese, L. B., De Lima Marson, F. A., Ribeiro, J. D., Coy, C. S. and Bertuzzo, C. S. (2013) APC germline mutations in families with familial adenomatous polyposis. Oncol. Rep., 30, 2081–2088
CrossRef
Pubmed
Google scholar
|
[30] |
Washington, K. and Zemper, A. E. D. (2019) Apc-related models of intestinal neoplasia: a brief review for pathologists. Surg. Exp. Pathol., 2, 11
CrossRef
Google scholar
|
[31] |
Zeineldin, M. and Neufeld, K. L. (2013) More than two decades of Apc modeling in rodents. Biochim. Biophys. Acta, 1836, 80–89
CrossRef
Pubmed
Google scholar
|
[32] |
Moore, L. E., Nickerson, M. L., Brennan, P., Toro, J. R., Jaeger, E., Rinsky, J., Han, S. S., Zaridze, D., Matveev, V., Janout, V.,
CrossRef
Pubmed
Google scholar
|
[33] |
Gray, P. N., Tsai, P., Chen, D., Wu, S., Hoo, J., Mu, W., Li, B., Vuong, H., Lu, H. M., Batth, N.,
CrossRef
Pubmed
Google scholar
|
[34] |
Mou, H., Kennedy, Z., Anderson, D. G., Yin, H. and Xue, W. (2015) Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med., 7, 53
CrossRef
Pubmed
Google scholar
|
[35] |
Guernet, A. and Grumolato, L. (2017) CRISPR/Cas9 editing of the genome for cancer modeling. Methods, 121–122, 130–137
CrossRef
Pubmed
Google scholar
|
[36] |
Park, S., Supek, F. and Lehner, B. (2018) Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits. Nat. Commun., 9, 2601
CrossRef
Pubmed
Google scholar
|
[37] |
Huang, K. L., Mashl, R. J., Wu, Y., Ritter, D. I., Wang, J., Oh, C., Paczkowska, M., Reynolds, S., Wyczalkowski, M. A., Oak, N.,
CrossRef
Pubmed
Google scholar
|
[38] |
Kilpivaara, O. and Aaltonen, L. A. (2013) Diagnostic cancer genome sequencing and the contribution of germline variants. Science, 339, 1559–1562
CrossRef
Pubmed
Google scholar
|
[39] |
Wang, E., Zaman, N., Mcgee, S., Milanese, J.-S., Masoudi-Nejad, A. and O’Connor-McCourt, M. (2015) Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin. Cancer Biol., 30, 4–12
CrossRef
Pubmed
Google scholar
|
[40] |
Sever, R. and Brugge, J. S. (2015) Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 5, a006098–a006098
CrossRef
Pubmed
Google scholar
|
[41] |
Wellenstein, M. D. and de Visser, K. E. (2018) Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity, 48, 399–416
CrossRef
Pubmed
Google scholar
|
[42] |
Nguyen, K. B. and Spranger, S. (2020) Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. J. Cell Biol., 219, e201908224
CrossRef
Pubmed
Google scholar
|
[43] |
Lim, Y. W., Chen-Harris, H., Mayba, O., Lianoglou, S., Wuster, A., Bhangale, T., Khan, Z., Mariathasan, S., Daemen, A., Reeder, J.,
CrossRef
Pubmed
Google scholar
|
[44] |
Robinson, J., Halliwell, J. A., Hayhurst, J. D., Flicek, P., Parham, P. and Marsh, S. G. E. (2015) The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res., 43, D423–D431
CrossRef
Pubmed
Google scholar
|
[45] |
Marty, R., Kaabinejadian, S., Rossell, D., Slifker, M. J., van de Haar, J., Engin, H. B., de Prisco, N., Ideker, T., Hildebrand, W. H., Font-Burgada, J.,
CrossRef
Pubmed
Google scholar
|
[46] |
Wang, E., Zou, J., Zaman, N., Beitel, L. K., Trifiro, M. and Paliouras, M. (2013) Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance. Semin. Cancer Biol., 23, 286–292
CrossRef
Pubmed
Google scholar
|
[47] |
Wang, E., Zou, J., Zaman, N., Beitel, L. K., Trifiro, M. and Paliouras, M. (2013) Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks. Semin. Cancer Biol., 23, 279–285
CrossRef
Pubmed
Google scholar
|
[48] |
Milanese J.-S., Tibiche C., Zou J., Meng Z., Nantel A., Drouin S., Marcotte R., and Wang E. (2019) Germline variants associated with leukocyte genes predict tumor recurrence in breast cancer patients. NPJ Precis. Oncol., 3, 28
CrossRef
Google scholar
|
[49] |
Parsons, B. L. (2008) Many different tumor types have polyclonal tumor origin: evidence and implications. Mutat. Res., 659, 232–247
CrossRef
Pubmed
Google scholar
|
[50] |
Parsons, B. L. (2018) Multiclonal tumor origin: evidence and implications. Mutat. Res., 777, 1–18
CrossRef
Pubmed
Google scholar
|
[51] |
Knudson, A. G. Jr. (1973) Mutation and human cancer. Adv. Cancer Res., 17, 317–352
CrossRef
Google scholar
|
[52] |
Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science, 194, 23–28
CrossRef
Pubmed
Google scholar
|
[53] |
Fearon, E. R., Hamilton, S. R. and Vogelstein, B. (1987) Clonal analysis of human colorectal tumors. Science, 238, 193–197
CrossRef
Pubmed
Google scholar
|
[54] |
Vogelstein, B., Fearon, E. R., Hamilton, S. R. and Feinberg, A. P. (1985) Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science, 227, 642–645
CrossRef
Pubmed
Google scholar
|
[55] |
Ross, E. M. and Markowetz, F. (2016) OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol., 17, 69
CrossRef
Pubmed
Google scholar
|
[56] |
Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D.,
CrossRef
Pubmed
Google scholar
|
[57] |
Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H.,
CrossRef
Pubmed
Google scholar
|
[58] |
Shi, X., Chakraborty, P. and Chaudhuri, A. (2018) Unmasking tumor heterogeneity and clonal evolution by single-cell analysis. J. Cancer Metastasis Treat., 4, 47
CrossRef
Google scholar
|
[59] |
Milanese, J., Tibiche, C., Zaman, N., Zou, J., Han, P., Meng, Z., Nantel, A., Droit, A. and Wang, E. (2020) eTumorMetastasis, a network-based algorithm predicts clinical outcomes using whole-exome sequencing data of cancer patients. Genom. Proteom. Bioinfor., (In press)
CrossRef
Google scholar
|
[60] |
Li, J., Lenferink, A. E. G., Deng, Y., Collins, C., Cui, Q., Purisima, E. O., O’Connor-McCourt, M. D. and Wang, E. (2010) Identification of high-quality cancer prognostic markers and metastasis network modules. Nat. Commun., 1, 34
CrossRef
Pubmed
Google scholar
|
[61] |
Gao, S., Tibiche, C., Zou, J., Zaman, N., Trifiro, M., O’Connor-McCourt, M. and Wang, E. (2016) Identification and construction of combinatory cancer hallmark-based gene signature sets to predict recurrence and chemotherapy benefit in stage II colorectal cancer. JAMA Oncol., 2, 37–45
CrossRef
Pubmed
Google scholar
|
[62] |
Toi, M., Iwata, H., Yamanaka, T., Masuda, N., Ohno, S., Nakamura, S., Nakayama, T., Kashiwaba, M., Kamigaki, S. and Kuroi, K.,
CrossRef
Pubmed
Google scholar
|
[63] |
Feng, X., Xu, X., Li, D., Cui, Q. and Wang, E. (2019) Germline genomic patterns are associated with cancer risk, oncogenic pathways and clinical outcomes. bioRxiv, 616268
CrossRef
Google scholar
|
[64] |
Xu, X., Li, J., Zou, J., Feng, X., Zhang, C., Zheng, R., Duanmu, W., Saha-Mandal, A., Ming, Z. and Wang, E. (2019) Association of germline variants in natural killer cells with tumor immune microenvironment subtypes, tumor-infiltrating lymphocytes, immunotherapy response, clinical outcomes, and cancer risk. JAMA Netw. Open, 2, e199292
CrossRef
Pubmed
Google scholar
|
[65] |
Sharma, S., Kelly, T. K. and Jones, P. A. (2010) Epigenetics in cancer. Carcinogenesis, 31, 27–36
CrossRef
Pubmed
Google scholar
|
[66] |
Witkowski, L., Carrot-Zhang, J., Albrecht, S., Fahiminiya, S., Hamel, N., Tomiak, E., Grynspan, D., Saloustros, E., Nadaf, J., Rivera, B.,
CrossRef
Pubmed
Google scholar
|
[67] |
Butler, J. S., Koutelou, E., Schibler, A. C. and Dent, S. Y. R. (2012) Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease. Epigenomics, 4, 163–177
CrossRef
Pubmed
Google scholar
|
[68] |
Klutstein, M., Nejman, D., Greenfield, R. and Cedar, H. (2016) DNA methylation in cancer and aging. Cancer Res., 76, 3446–3450
CrossRef
Pubmed
Google scholar
|
[69] |
Miao, D., Margolis, C. A., Gao, W., Voss, M. H., Li, W., Martini, D. J., Norton, C., Bossé, D., Wankowicz, S. M., Cullen, D.,
CrossRef
Pubmed
Google scholar
|
[70] |
Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R. E., Luoma, A. M., Tsoucas, D., Qiu, X., Lim, K., Rao, P.,
CrossRef
Pubmed
Google scholar
|
[71] |
Kearney, C. J., Vervoort, S. J., Hogg, S. J., Ramsbottom, K. M., Freeman, A. J., Lalaoui, N., Pijpers, L., Michie, J., Brown, K. K., Knight, D. A.,
CrossRef
Pubmed
Google scholar
|
[72] |
Beatty, G. L. and Paterson, Y. (2000) IFN-γ can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J. Immunol., 165, 5502–5508
CrossRef
Pubmed
Google scholar
|
[73] |
Houlahan, K. E., Shiah, Y.-J., Gusev, A., Yuan, J., Ahmed, M., Shetty, A., Ramanand, S. G., Yao, C. Q., Bell, C., O’Connor, E.,
CrossRef
Pubmed
Google scholar
|
[74] |
Foulkes, W. D. (2008) Inherited susceptibility to common cancers. N. Engl. J. Med., 359, 2143–2153
CrossRef
Pubmed
Google scholar
|
[75] |
Torgovnick, A. and Schumacher, B. (2015) DNA repair mechanisms in cancer development and therapy. Front. Genet., 6, 157
CrossRef
Pubmed
Google scholar
|
[76] |
Büttner, R., Longshore, J. W., López-Ríos, F., Merkelbach-Bruse, S., Normanno, N., Rouleau, E. and Penault-Llorca, F. (2019) Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open, 4, e000442
CrossRef
Pubmed
Google scholar
|
[77] |
Caruso, C. (2019) TMB faces validation hurdles. Cancer Discov., 9, 1334–1334
CrossRef
Pubmed
Google scholar
|
[78] |
Potapova, T. A., Zhu, J. and Li, R. (2013) Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev., 32, 377–389
CrossRef
Pubmed
Google scholar
|
[79] |
Pérez de Castro, I. and Malumbres, M. (2012) Mitotic stress and chromosomal instability in cancer: the case for TPX2. Genes Cancer, 3, 721–730
CrossRef
Pubmed
Google scholar
|
[80] |
Mackenzie, K. J., Carroll, P., Martin, C.-A., Murina, O., Fluteau, A., Simpson, D. J., Olova, N., Sutcliffe, H., Rainger, J. K., Leitch, A.,
CrossRef
Pubmed
Google scholar
|
[81] |
Motwani, M. and Fitzgerald, K. A. (2017) cGAS micro-manages genotoxic stress. Immunity, 47, 616–617
CrossRef
Pubmed
Google scholar
|
[82] |
Breunis, W. B., Tarazona-Santos, E., Chen, R., Kiley, M., Rosenberg, S. A. and Chanock, S. J. (2008) Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J. Immunother., 31, 586–590
CrossRef
Pubmed
Google scholar
|
[83] |
Hamid, O., Schmidt, H., Nissan, A., Ridolfi, L., Aamdal, S., Hansson, J., Guida, M., Hyams, D. M., Gómez, H., Bastholt, L.,
CrossRef
Pubmed
Google scholar
|
[84] |
Kuehn H. S., Ouyang W., Lo B., Deenick E. K., Niemela J. E., Avery D. T., Schickel J.-N., Tran D. Q., Stoddard J., Zhang Y.,
CrossRef
Google scholar
|
[85] |
Chat, V., Ferguson, R., Simpson, D., Kazlow, E., Lax, R., Moran, U., Wilson, M., Pavlick, A. C., Sullivan, R. J., Flaherty, K.,
CrossRef
Google scholar
|
[86] |
Ugurel, S., Schrama, D., Keller, G., Schadendorf, D., Bröcker, E.-B., Houben, R., Zapatka, M., Fink, W., Kaufman, H. L. and Becker, J. C. (2008) Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol. Immunother., 57, 685–691
CrossRef
Pubmed
Google scholar
|
[87] |
Uccellini, L., De Giorgi, V., Zhao, Y., Tumaini, B., Erdenebileg, N., Dudley, M. E., Tomei, S., Bedognetti, D., Ascierto, M. L., Liu, Q.,
CrossRef
Pubmed
Google scholar
|
[88] |
Arce Vargas, F., Furness, A. J. S., Litchfield, K., Joshi, K., Rosenthal, R., Ghorani, E., Solomon, I., Lesko, M. H., Ruef, N., Roddie, C.,
CrossRef
Pubmed
Google scholar
|
[89] |
Van Allen, E. M., Golay, H. G., Liu, Y., Koyama, S., Wong, K., Taylor-Weiner, A., Giannakis, M., Harden, M., Rojas-Rudilla, V., Chevalier, A.,
CrossRef
Pubmed
Google scholar
|
[90] |
Zitvogel, L., Kepp, O. and Kroemer, G. (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol., 8, 151–160
CrossRef
Pubmed
Google scholar
|
[91] |
Vacchelli E., Ma Y., Baracco E. E., Sistigu A., Enot D. P., Pietrocola F., Yang H., Adjemian S., Chaba K., Semeraro M.,
CrossRef
Google scholar
|
[92] |
Lamichhane, P., Karyampudi, L., Shreeder, B., Krempski, J., Bahr, D., Daum, J., Kalli, K. R., Goode, E. L., Block, M. S., Cannon, M. J.,
CrossRef
Pubmed
Google scholar
|
[93] |
Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L.,
CrossRef
Pubmed
Google scholar
|
[94] |
Gao, J., Shi, L. Z., Zhao, H., Chen, J., Xiong, L., He, Q., Chen, T., Roszik, J., Bernatchez, C., Woodman, S. E.,
CrossRef
Pubmed
Google scholar
|
[95] |
Shan, J., Chouchane, A., Mokrab, Y., Saad, M., Boujassoum, S., Sayaman, R. W., Ziv, E., Bouaouina, N., Remadi, Y., Gabbouj, S.,
CrossRef
Pubmed
Google scholar
|
[96] |
Hosseini, E., Schwarer, A. P. and Ghasemzadeh, M. (2015) Do human leukocyte antigen E polymorphisms influence graft-versus-leukemia after allogeneic hematopoietic stem cell transplantation? Exp. Hematol., 43, 149–157
CrossRef
Pubmed
Google scholar
|
[97] |
Wu, S., Powers, S., Zhu, W. and Hannun, Y. A. (2016) Substantial contribution of extrinsic risk factors to cancer development. Nature, 529, 43–47
CrossRef
Pubmed
Google scholar
|
[98] |
Tomasetti, C., Li, L. and Vogelstein, B. (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science, 355, 1330–1334
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |