Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response

Xue Jiang, Mohammad Asad, Lin Li, Zhanpeng Sun, Jean-Sébastien Milanese, Bo Liao, Edwin Wang

PDF(1722 KB)
PDF(1722 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 216-227. DOI: 10.1007/s40484-020-0212-7
REVIEW
REVIEW

Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response

Author information +
History +

Abstract

Background: Immune evasion is a fundamental hallmark for cancer. At the early stages of tumor development, immune evasion strategies must be implemented by tumors to prevent attacks from the host immune systems. Blocking tumors’ immune evasion will re-activate the host immune systems to eliminate tumors. Immune-checkpoint therapy (ICT) which applies anti-PD-1/PD-L1 or anti-CTLA4 treatment has been a remarkable success in the past few years. However, ~70% of patients cannot gain any clinical benefits from ICT treatment due to the tumor-immunity system’s complexity. In the past, germline pathogenic variants have been thought to have only minor-heritable contributions to cancer.

Results: Emerging evidence has shown that germline genomes play a dominant-heritable contribution to cancer via encoding the host immune system. The functional components of the immune system are encoded by the host genome, thus the germline genome might have a profound impact on cancer immune evasion and immunotherapy response. Indeed, recent studies showed that germline pathogenic variants can influence immune capacity in cancer patients at a population level by (i) shaping tumor somatic mutations, altering methylation patterns and antigen-presentation capacity or (ii) influencing NK cell’s function to modulate lymphocyte infiltration in the tumor microenvironment. In addition, the HLA (types A, B or C) genotypes also shape the landscape of tumor somatic mutations.

Conclusion: These results highlight the indispensable roles of germline genome in immunity and cancer development and suggest that germline genomics should be integrated into the research field of cancer biology and cancer immunotherapy.

Graphical abstract

Keywords

germline / genomics / cancer / immune evasion / immunotherapy response

Cite this article

Download citation ▾
Xue Jiang, Mohammad Asad, Lin Li, Zhanpeng Sun, Jean-Sébastien Milanese, Bo Liao, Edwin Wang. Germline genomes have a dominant-heritable contribution to cancer immune evasion and immunotherapy response. Quant. Biol., 2020, 8(3): 216‒227 https://doi.org/10.1007/s40484-020-0212-7

References

[1]
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674
CrossRef Pubmed Google scholar
[2]
Kriegsman, B. A., Vangala, P., Chen, B. J., Meraner, P., Brass, A. L., Garber, M. and Rock, K. L. (2019) Frequent loss of IRF2 in cancers leads to immune evasion through decreased MHC class I antigen presentation and increased PD-L1 expression. J. Immunol., 203, 1999–2010
CrossRef Pubmed Google scholar
[3]
Zhang, S., Kohli, K., Black, R. G., Yao, L., Spadinger, S. M., He, Q., Pillarisetty, V. G., Cranmer, L. D., Van Tine, B. A., Yee, C., (2019) Systemic interferon-γ increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial. Cancer Immunol. Res., 7, 1237–1243
CrossRef Pubmed Google scholar
[4]
Lu, Y., Zhang, M., Wang, S., Hong, B., Wang, Z., Li, H., Zheng, Y., Yang, J., Davis, R. E., Qian, J., (2014) p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression. Nat. Commun., 5, 4229
CrossRef Pubmed Google scholar
[5]
Loi, S., Dushyanthen, S., Beavis, P. A., Salgado, R., Denkert, C., Savas, P., Combs, S., Rimm, D. L., Giltnane, J. M., Estrada, M. V., (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin. Cancer Res., 22, 1499–1509
CrossRef Pubmed Google scholar
[6]
Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. and Gajewski, T. F. (2019) WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res., 25, 3074–3083
CrossRef Pubmed Google scholar
[7]
Wang, B., Tian, T., Kalland, K.-H., Ke, X. and Qu, Y. (2018) Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol. Sci., 39, 648–658
CrossRef Pubmed Google scholar
[8]
Haslam, A. and Prasad, V. (2019) Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open, 2, e192535
CrossRef Pubmed Google scholar
[9]
Khair, D. O., Bax, H. J., Mele, S., Crescioli, S., Pellizzari, G., Khiabany, A., Nakamura, M., Harris, R. J., French, E., Hoffmann, R. M., (2019) Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front. Immunol., 10, 453
CrossRef Pubmed Google scholar
[10]
Chen, D. S. and Mellman, I. (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity, 39, 1–10
CrossRef Pubmed Google scholar
[11]
Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., Coussens, L. M., Gabrilovich, D. I., Ostrand-Rosenberg, S., Hedrick, C. C., (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med., 24, 541–550
CrossRef Pubmed Google scholar
[12]
Gonzalez, H., Hagerling, C. and Werb, Z. (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 32, 1267–1284
CrossRef Pubmed Google scholar
[13]
Darvin, P., Toor, S. M., Sasidharan Nair, V. and Elkord, E. (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med., 50, 1–11
CrossRef Pubmed Google scholar
[14]
Szabo, C. I. and King, M. C. (1997) Population genetics of BRCA1 and BRCA2. Am. J. Hum. Genet., 60, 1013–1020
Pubmed
[15]
Malone, K. E., Daling, J. R., Doody, D. R., Hsu, L., Bernstein, L., Coates, R. J., Marchbanks, P. A., Simon, M. S., McDonald, J. A., Norman, S. A., (2006) Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res., 66, 8297–8308
CrossRef Pubmed Google scholar
[16]
Bodmer, W. and Tomlinson, I. (2010) Rare genetic variants and the risk of cancer. Curr. Opin. Genet. Dev., 20, 262–267
CrossRef Pubmed Google scholar
[17]
Knudson, Jr., A. G. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA, 68, 820–823
CrossRef Pubmed Google scholar
[18]
Knudson, A. G. (2001) Two genetic hits (more or less) to cancer. Nat. Rev. Cancer, 1, 157–162
CrossRef Pubmed Google scholar
[19]
Donovan, S. L., Schweers, B., Martins, R., Johnson, D. and Dyer, M. A. (2006) Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol., 4, 14
CrossRef Pubmed Google scholar
[20]
Ajioka, I., Martins, R. A. P., Bayazitov, I. T., Donovan, S., Johnson, D. A., Frase, S., Cicero, S. A., Boyd, K., Zakharenko, S. S. and Dyer, M. A. (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell, 131, 378–390
CrossRef Pubmed Google scholar
[21]
Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F. Jr, Nelson, C. E., Kim, D. H., Kassel, J., Gryka, M. A., Bischoff, F. Z., Tainsky, M. A., (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 250, 1233–1238
CrossRef Pubmed Google scholar
[22]
Kemp, C. J., Wheldon, T. and Balmain, A. (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat. Genet., 8, 66–69
CrossRef Pubmed Google scholar
[23]
Lee, J. M., Abrahamson, J. L. A., Kandel, R., Donehower, L. A. and Bernstein, A. (1994) Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice. Oncogene, 9, 3731–3736
Pubmed
[24]
Levine, A. J., Hu, W. and Feng, Z. (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ., 13, 1027–1036
CrossRef Pubmed Google scholar
[25]
Maistro, S., Teixeira, N., Encinas, G., Katayama, M. L. H., Niewiadonski, V. D. T., Cabral, L. G., Ribeiro, R. M., Gaburo Junior, N., de Gouvêa, A. C., Carraro, D. M., (2016) Germline mutations in BRCA1 and BRCA2 in epithelial ovarian cancer patients in Brazil. BMC Cancer, 16, 934
CrossRef Pubmed Google scholar
[26]
Chan, S. H., Lim, W. K., Ishak, N. D. B., Li, S.-T., Goh, W. L., Tan, G. S., Lim, K. H., Teo, M., Young, C. N. C., Malik, S., (2017) Germline mutations in cancer predisposition genes are frequent in sporadic sarcomas. Sci. Rep., 7, 10660
CrossRef Pubmed Google scholar
[27]
Kuchenbaecker, K. B., Hopper, J. L., Barnes, D. R., Phillips, K.-A., Mooij, T. M., Roos-Blom, M.-J., Jervis, S., van Leeuwen, F. E., Milne, R. L., Andrieu, N., (2017) Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA, 317, 2402–2416
CrossRef Pubmed Google scholar
[28]
Liaw, D., Marsh, D. J., Li, J., Dahia, P. L. M., Wang, S. I., Zheng, Z., Bose, S., Call, K. M., Tsou, H. C., Peacoke, M., (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet., 16, 64–67
CrossRef Pubmed Google scholar
[29]
De Queiroz Rossanese, L. B., De Lima Marson, F. A., Ribeiro, J. D., Coy, C. S. and Bertuzzo, C. S. (2013) APC germline mutations in families with familial adenomatous polyposis. Oncol. Rep., 30, 2081–2088
CrossRef Pubmed Google scholar
[30]
Washington, K. and Zemper, A. E. D. (2019) Apc-related models of intestinal neoplasia: a brief review for pathologists. Surg. Exp. Pathol., 2, 11
CrossRef Google scholar
[31]
Zeineldin, M. and Neufeld, K. L. (2013) More than two decades of Apc modeling in rodents. Biochim. Biophys. Acta, 1836, 80–89
CrossRef Pubmed Google scholar
[32]
Moore, L. E., Nickerson, M. L., Brennan, P., Toro, J. R., Jaeger, E., Rinsky, J., Han, S. S., Zaridze, D., Matveev, V., Janout, V., (2011) Von hippel-lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet., 7, e1002312
CrossRef Pubmed Google scholar
[33]
Gray, P. N., Tsai, P., Chen, D., Wu, S., Hoo, J., Mu, W., Li, B., Vuong, H., Lu, H. M., Batth, N., (2018) TumorNext-Lynch-MMR: a comprehensive next generation sequencing assay for the detection of germline and somatic mutations in genes associated with mismatch repair deficiency and Lynch syndrome. Oncotarget, 9, 20304–20322
CrossRef Pubmed Google scholar
[34]
Mou, H., Kennedy, Z., Anderson, D. G., Yin, H. and Xue, W. (2015) Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med., 7, 53
CrossRef Pubmed Google scholar
[35]
Guernet, A. and Grumolato, L. (2017) CRISPR/Cas9 editing of the genome for cancer modeling. Methods, 121–122, 130–137
CrossRef Pubmed Google scholar
[36]
Park, S., Supek, F. and Lehner, B. (2018) Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits. Nat. Commun., 9, 2601
CrossRef Pubmed Google scholar
[37]
Huang, K. L., Mashl, R. J., Wu, Y., Ritter, D. I., Wang, J., Oh, C., Paczkowska, M., Reynolds, S., Wyczalkowski, M. A., Oak, N., (2018) Pathogenic germline variants in 10,389 adult cancers. Cell, 173, 355–370.e14
CrossRef Pubmed Google scholar
[38]
Kilpivaara, O. and Aaltonen, L. A. (2013) Diagnostic cancer genome sequencing and the contribution of germline variants. Science, 339, 1559–1562
CrossRef Pubmed Google scholar
[39]
Wang, E., Zaman, N., Mcgee, S., Milanese, J.-S., Masoudi-Nejad, A. and O’Connor-McCourt, M. (2015) Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin. Cancer Biol., 30, 4–12
CrossRef Pubmed Google scholar
[40]
Sever, R. and Brugge, J. S. (2015) Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 5, a006098–a006098
CrossRef Pubmed Google scholar
[41]
Wellenstein, M. D. and de Visser, K. E. (2018) Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity, 48, 399–416
CrossRef Pubmed Google scholar
[42]
Nguyen, K. B. and Spranger, S. (2020) Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. J. Cell Biol., 219, e201908224
CrossRef Pubmed Google scholar
[43]
Lim, Y. W., Chen-Harris, H., Mayba, O., Lianoglou, S., Wuster, A., Bhangale, T., Khan, Z., Mariathasan, S., Daemen, A., Reeder, J., (2018) Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. Proc. Natl. Acad. Sci. USA, 115, E11701–E11710
CrossRef Pubmed Google scholar
[44]
Robinson, J., Halliwell, J. A., Hayhurst, J. D., Flicek, P., Parham, P. and Marsh, S. G. E. (2015) The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res., 43, D423–D431
CrossRef Pubmed Google scholar
[45]
Marty, R., Kaabinejadian, S., Rossell, D., Slifker, M. J., van de Haar, J., Engin, H. B., de Prisco, N., Ideker, T., Hildebrand, W. H., Font-Burgada, J., (2017) MHC-I genotype restricts the oncogenic mutational landscape. Cell, 171, 1272–1283.e15
CrossRef Pubmed Google scholar
[46]
Wang, E., Zou, J., Zaman, N., Beitel, L. K., Trifiro, M. and Paliouras, M. (2013) Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance. Semin. Cancer Biol., 23, 286–292
CrossRef Pubmed Google scholar
[47]
Wang, E., Zou, J., Zaman, N., Beitel, L. K., Trifiro, M. and Paliouras, M. (2013) Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks. Semin. Cancer Biol., 23, 279–285
CrossRef Pubmed Google scholar
[48]
Milanese J.-S., Tibiche C., Zou J., Meng Z., Nantel A., Drouin S., Marcotte R., and Wang E. (2019) Germline variants associated with leukocyte genes predict tumor recurrence in breast cancer patients. NPJ Precis. Oncol., 3, 28
CrossRef Google scholar
[49]
Parsons, B. L. (2008) Many different tumor types have polyclonal tumor origin: evidence and implications. Mutat. Res., 659, 232–247
CrossRef Pubmed Google scholar
[50]
Parsons, B. L. (2018) Multiclonal tumor origin: evidence and implications. Mutat. Res., 777, 1–18
CrossRef Pubmed Google scholar
[51]
Knudson, A. G. Jr. (1973) Mutation and human cancer. Adv. Cancer Res., 17, 317–352
CrossRef Google scholar
[52]
Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science, 194, 23–28
CrossRef Pubmed Google scholar
[53]
Fearon, E. R., Hamilton, S. R. and Vogelstein, B. (1987) Clonal analysis of human colorectal tumors. Science, 238, 193–197
CrossRef Pubmed Google scholar
[54]
Vogelstein, B., Fearon, E. R., Hamilton, S. R. and Feinberg, A. P. (1985) Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science, 227, 642–645
CrossRef Pubmed Google scholar
[55]
Ross, E. M. and Markowetz, F. (2016) OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol., 17, 69
CrossRef Pubmed Google scholar
[56]
Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873–885
CrossRef Pubmed Google scholar
[57]
Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H., (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886–895
CrossRef Pubmed Google scholar
[58]
Shi, X., Chakraborty, P. and Chaudhuri, A. (2018) Unmasking tumor heterogeneity and clonal evolution by single-cell analysis. J. Cancer Metastasis Treat., 4, 47
CrossRef Google scholar
[59]
Milanese, J., Tibiche, C., Zaman, N., Zou, J., Han, P., Meng, Z., Nantel, A., Droit, A. and Wang, E. (2020) eTumorMetastasis, a network-based algorithm predicts clinical outcomes using whole-exome sequencing data of cancer patients. Genom. Proteom. Bioinfor., (In press)
CrossRef Google scholar
[60]
Li, J., Lenferink, A. E. G., Deng, Y., Collins, C., Cui, Q., Purisima, E. O., O’Connor-McCourt, M. D. and Wang, E. (2010) Identification of high-quality cancer prognostic markers and metastasis network modules. Nat. Commun., 1, 34
CrossRef Pubmed Google scholar
[61]
Gao, S., Tibiche, C., Zou, J., Zaman, N., Trifiro, M., O’Connor-McCourt, M. and Wang, E. (2016) Identification and construction of combinatory cancer hallmark-based gene signature sets to predict recurrence and chemotherapy benefit in stage II colorectal cancer. JAMA Oncol., 2, 37–45
CrossRef Pubmed Google scholar
[62]
Toi, M., Iwata, H., Yamanaka, T., Masuda, N., Ohno, S., Nakamura, S., Nakayama, T., Kashiwaba, M., Kamigaki, S. and Kuroi, K., (2010) Clinical significance of the 21-gene signature (oncotype DX) in hormone receptor-positive early stage primary breast cancer in the Japanese population. Cancer, 116, 3112–3118
CrossRef Pubmed Google scholar
[63]
Feng, X., Xu, X., Li, D., Cui, Q. and Wang, E. (2019) Germline genomic patterns are associated with cancer risk, oncogenic pathways and clinical outcomes. bioRxiv, 616268
CrossRef Google scholar
[64]
Xu, X., Li, J., Zou, J., Feng, X., Zhang, C., Zheng, R., Duanmu, W., Saha-Mandal, A., Ming, Z. and Wang, E. (2019) Association of germline variants in natural killer cells with tumor immune microenvironment subtypes, tumor-infiltrating lymphocytes, immunotherapy response, clinical outcomes, and cancer risk. JAMA Netw. Open, 2, e199292
CrossRef Pubmed Google scholar
[65]
Sharma, S., Kelly, T. K. and Jones, P. A. (2010) Epigenetics in cancer. Carcinogenesis, 31, 27–36
CrossRef Pubmed Google scholar
[66]
Witkowski, L., Carrot-Zhang, J., Albrecht, S., Fahiminiya, S., Hamel, N., Tomiak, E., Grynspan, D., Saloustros, E., Nadaf, J., Rivera, B., (2014) Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat. Genet., 46, 438–443
CrossRef Pubmed Google scholar
[67]
Butler, J. S., Koutelou, E., Schibler, A. C. and Dent, S. Y. R. (2012) Histone-modifying enzymes: regulators of developmental decisions and drivers of human disease. Epigenomics, 4, 163–177
CrossRef Pubmed Google scholar
[68]
Klutstein, M., Nejman, D., Greenfield, R. and Cedar, H. (2016) DNA methylation in cancer and aging. Cancer Res., 76, 3446–3450
CrossRef Pubmed Google scholar
[69]
Miao, D., Margolis, C. A., Gao, W., Voss, M. H., Li, W., Martini, D. J., Norton, C., Bossé, D., Wankowicz, S. M., Cullen, D., (2018) Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science, 359, 801–806
CrossRef Pubmed Google scholar
[70]
Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R. E., Luoma, A. M., Tsoucas, D., Qiu, X., Lim, K., Rao, P., (2018) A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science, 359, 770–775
CrossRef Pubmed Google scholar
[71]
Kearney, C. J., Vervoort, S. J., Hogg, S. J., Ramsbottom, K. M., Freeman, A. J., Lalaoui, N., Pijpers, L., Michie, J., Brown, K. K., Knight, D. A., (2018) Tumor immune evasion arises through loss of TNF sensitivity. Sci. Immunol., 3, eaar3451
CrossRef Pubmed Google scholar
[72]
Beatty, G. L. and Paterson, Y. (2000) IFN-γ can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J. Immunol., 165, 5502–5508
CrossRef Pubmed Google scholar
[73]
Houlahan, K. E., Shiah, Y.-J., Gusev, A., Yuan, J., Ahmed, M., Shetty, A., Ramanand, S. G., Yao, C. Q., Bell, C., O’Connor, E., (2019) Genome-wide germline correlates of the epigenetic landscape of prostate cancer. Nat. Med., 25, 1615–1626
CrossRef Pubmed Google scholar
[74]
Foulkes, W. D. (2008) Inherited susceptibility to common cancers. N. Engl. J. Med., 359, 2143–2153
CrossRef Pubmed Google scholar
[75]
Torgovnick, A. and Schumacher, B. (2015) DNA repair mechanisms in cancer development and therapy. Front. Genet., 6, 157
CrossRef Pubmed Google scholar
[76]
Büttner, R., Longshore, J. W., López-Ríos, F., Merkelbach-Bruse, S., Normanno, N., Rouleau, E. and Penault-Llorca, F. (2019) Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open, 4, e000442
CrossRef Pubmed Google scholar
[77]
Caruso, C. (2019) TMB faces validation hurdles. Cancer Discov., 9, 1334–1334
CrossRef Pubmed Google scholar
[78]
Potapova, T. A., Zhu, J. and Li, R. (2013) Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev., 32, 377–389
CrossRef Pubmed Google scholar
[79]
Pérez de Castro, I. and Malumbres, M. (2012) Mitotic stress and chromosomal instability in cancer: the case for TPX2. Genes Cancer, 3, 721–730
CrossRef Pubmed Google scholar
[80]
Mackenzie, K. J., Carroll, P., Martin, C.-A., Murina, O., Fluteau, A., Simpson, D. J., Olova, N., Sutcliffe, H., Rainger, J. K., Leitch, A., (2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature, 548, 461–465
CrossRef Pubmed Google scholar
[81]
Motwani, M. and Fitzgerald, K. A. (2017) cGAS micro-manages genotoxic stress. Immunity, 47, 616–617
CrossRef Pubmed Google scholar
[82]
Breunis, W. B., Tarazona-Santos, E., Chen, R., Kiley, M., Rosenberg, S. A. and Chanock, S. J. (2008) Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J. Immunother., 31, 586–590
CrossRef Pubmed Google scholar
[83]
Hamid, O., Schmidt, H., Nissan, A., Ridolfi, L., Aamdal, S., Hansson, J., Guida, M., Hyams, D. M., Gómez, H., Bastholt, L., (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med., 9, 204
CrossRef Pubmed Google scholar
[84]
Kuehn H. S., Ouyang W., Lo B., Deenick E. K., Niemela J. E., Avery D. T., Schickel J.-N., Tran D. Q., Stoddard J., Zhang Y., (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science, 345,1623–1627
CrossRef Google scholar
[85]
Chat, V., Ferguson, R., Simpson, D., Kazlow, E., Lax, R., Moran, U., Wilson, M., Pavlick, A. C., Sullivan, R. J., Flaherty, K., (2018) Autoimmune genetic variants as germline biomarkers of response in melanoma immunotherapy treatment. J. Clin. Oncol., 36, 3079–3079
CrossRef Google scholar
[86]
Ugurel, S., Schrama, D., Keller, G., Schadendorf, D., Bröcker, E.-B., Houben, R., Zapatka, M., Fink, W., Kaufman, H. L. and Becker, J. C. (2008) Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol. Immunother., 57, 685–691
CrossRef Pubmed Google scholar
[87]
Uccellini, L., De Giorgi, V., Zhao, Y., Tumaini, B., Erdenebileg, N., Dudley, M. E., Tomei, S., Bedognetti, D., Ascierto, M. L., Liu, Q., (2012) IRF5 gene polymorphisms in melanoma. J. Transl. Med., 10, 170
CrossRef Pubmed Google scholar
[88]
Arce Vargas, F., Furness, A. J. S., Litchfield, K., Joshi, K., Rosenthal, R., Ghorani, E., Solomon, I., Lesko, M. H., Ruef, N., Roddie, C., (2018) Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell, 33, 649–663.e4
CrossRef Pubmed Google scholar
[89]
Van Allen, E. M., Golay, H. G., Liu, Y., Koyama, S., Wong, K., Taylor-Weiner, A., Giannakis, M., Harden, M., Rojas-Rudilla, V., Chevalier, A., (2015) Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation. Cancer Immunol. Res., 3, 855–863
CrossRef Pubmed Google scholar
[90]
Zitvogel, L., Kepp, O. and Kroemer, G. (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol., 8, 151–160
CrossRef Pubmed Google scholar
[91]
Vacchelli E., Ma Y., Baracco E. E., Sistigu A., Enot D. P., Pietrocola F., Yang H., Adjemian S., Chaba K., Semeraro M., (2015) Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 350, 972–978
CrossRef Google scholar
[92]
Lamichhane, P., Karyampudi, L., Shreeder, B., Krempski, J., Bahr, D., Daum, J., Kalli, K. R., Goode, E. L., Block, M. S., Cannon, M. J., (2017) IL10 Release upon PD-1 blockade sustains immunosuppression in ovarian cancer. Cancer Res., 77, 6667–6678
CrossRef Pubmed Google scholar
[93]
Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D. Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med., 375, 819–829
CrossRef Pubmed Google scholar
[94]
Gao, J., Shi, L. Z., Zhao, H., Chen, J., Xiong, L., He, Q., Chen, T., Roszik, J., Bernatchez, C., Woodman, S. E., (2016) Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell, 167, 397–404.e9
CrossRef Pubmed Google scholar
[95]
Shan, J., Chouchane, A., Mokrab, Y., Saad, M., Boujassoum, S., Sayaman, R. W., Ziv, E., Bouaouina, N., Remadi, Y., Gabbouj, S., (2019) Genetic variation in CCL5 signaling genes and triple negative breast cancer: susceptibility and prognosis implications. Front. Oncol., 9, 1328
CrossRef Pubmed Google scholar
[96]
Hosseini, E., Schwarer, A. P. and Ghasemzadeh, M. (2015) Do human leukocyte antigen E polymorphisms influence graft-versus-leukemia after allogeneic hematopoietic stem cell transplantation? Exp. Hematol., 43, 149–157
CrossRef Pubmed Google scholar
[97]
Wu, S., Powers, S., Zhu, W. and Hannun, Y. A. (2016) Substantial contribution of extrinsic risk factors to cancer development. Nature, 529, 43–47
CrossRef Pubmed Google scholar
[98]
Tomasetti, C., Li, L. and Vogelstein, B. (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science, 355, 1330–1334
CrossRef Pubmed Google scholar

COMPLIANCE WITH ETHICS GUIDELINES

The authors Xue Jiang, Mohammad Asad, Lin Li, Zhanpeng Sun, Jean-Sébastien Milanese, Bo Liao and Edwin Wang declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1722 KB)

Accesses

Citations

Detail

Sections
Recommended

/