Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication

Kang Kang , Xue Sun , Lizhong Wang , Xiaotian Yao , Senwei Tang , Junjie Deng , Xiaoli Wu , WeGene Research Team , Can Yang , Gang Chen

Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 201 -215.

PDF (1473KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 201 -215. DOI: 10.1007/s40484-020-0209-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication

Author information +
History +
PDF (1473KB)

Abstract

Background: The direct-to-consumer genetic testing (DTC-GT) industry has exploded in recent years, initiated by market pioneers from the United States and quickly followed by companies from Europe and Asia. In addition to their primary objective of providing ancestry and health information to customers, DTC-GT services have emerged as a valuable data resource for large-scale population and genetics studies.

Methods: We assessed DTC-GT market leaders in the U.S. and China, user participation in research, and academic reports based on this information. We also investigated DTC-GT end-user value by tracing key updates of companies provided via health risk reports and evaluating their predictive power. We then assessed the replicability of several genome-wide association studies (GWAS) based on a Chinese DTC-GT biobank.

Results: As recent entrants to the market, Chinese DTC-GT service providers have published less academic research than their Western counterparts; however, a larger proportion of Chinese users consent to participate in research projects. Dramatic increases in user volume and resultant report updates led to reclassification of some users’ polygenic risk levels, but within a reasonable scale and with increased predictive power. Replicability among GWAS using the Chinese DTC-GT biobank varied by studied trait, population background, and sample size.

Conclusions: We speculate that the rapid growth in DTC-GT services, particularly in non-Caucasian populations, will yield an important and much-needed resource for biobanking, large-scale genetic studies, clinical trials, and post-clinical applications.

Graphical abstract

Keywords

DTC-GT; biobank / Chinese population / polygenic risk / GWAS replication

Cite this article

Download citation ▾
Kang Kang, Xue Sun, Lizhong Wang, Xiaotian Yao, Senwei Tang, Junjie Deng, Xiaoli Wu, WeGene Research Team, Can Yang, Gang Chen. Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication. Quant. Biol., 2021, 9(2): 201-215 DOI:10.1007/s40484-020-0209-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gibson, G. (2010) Hints of hidden heritability in GWAS. Nat. Genet., 42, 558–560

[2]

Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E. and Cox, N. J. (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet., 6, e1000888

[3]

More than 26 million people have taken an at-home ancestry test. Accessed: 12 October, 2019

[4]

2018 China dtc-gt market research report. Accessed: 12 October, 2019

[5]

Covolo, L., Rubinelli, S., Ceretti, E. and Gelatti, U. (2015) Internet-based direct-to-consumer genetic testing: A systematic review. J. Med. Internet Res., 17, e279

[6]

Frueh, F. W., Greely, H. T., Green, R. C., Hogarth, S. and Siegel, S. (2011) The future of direct-to-consumer clinical genetic tests. Nat. Rev. Genet., 12, 511–515

[7]

Kalf, R. R., Mihaescu, R., Kundu, S., de Knijff, P., Green, R. C. and Janssens, A. C. (2014) Variations in predicted risks in personal genome testing for common complex diseases. Genet. Med., 16, 85–91

[8]

Kolor, K., Duquette, D., Zlot, A., Foland, J., Anderson, B., Giles, R., Wrathall, J. and Khoury, M. J. (2012) Public awareness and use of direct-to-consumer personal genomic tests from four state population-based surveys, and implications for clinical and public health practice. Genet. Med., 14, 860–867

[9]

Adams, S. D., Evans, J. P. and Aylsworth, A. S. (2013) Direct-to-consumer genomic testing offers little clinical utility but appears to cause minimal harm. N C Med. J., 74, 494–498

[10]

Buitendijk, G. H., Amin, N., Hofman, A., van Duijn, C. M., Vingerling, J. R. and Klaver, C. C. (2014) Direct-to-consumer personal genome testing for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 55, 6167–6174

[11]

Imai, K., Kricka, L. J. and Fortina, P. (2011) Concordance study of 3 direct-to-consumer genetic-testing services. Clin. Chem., 57, 518–521

[12]

Kido, T., Kawashima, M., Nishino, S., Swan, M., Kamatani, N. and Butte, A. J. (2013) Systematic evaluation of personal genome services for Japanese individuals. J. Hum. Genet., 58, 734–741

[13]

Bloss, C. S., Topol, E. J. and Schork, N. J. (2012) Association of direct-to-consumer genome-wide disease risk estimates and self-reported disease. Genet. Epidemiol., 36, 66–70

[14]

Krier, J., Barfield, R., Green, R. C. and Kraft, P. (2016) Reclassification of genetic-based risk predictions as GWAS data accumulate. Genome Med., 8, 20

[15]

Lewis, C. M. and Vassos, E. (2017) Prospects for using risk scores in polygenic medicine. Genome Med., 9, 96

[16]

Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M. and Daly, M. J. (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet., 51, 584–591

[17]

Reisberg, S., Iljasenko, T., Läll, K., Fischer, K. and Vilo, J. (2017) Comparing distributions of polygenic risk scores of type 2 diabetes and coronary heart disease within different populations. PLoS One, 12, e0179238

[18]

Sirugo, G., Williams, S. M. and Tishkoff, S. A. (2019) The missing diversity in human genetic studies. Cell, 177, 26–31

[19]

Liu, S., Huang, S., Chen, F., Zhao, L., Yuan, Y., Francis, S. S., Fang, L., Li, Z., Lin, L., Liu, R., (2018) Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell, 175, 347–359

[20]

Li, Z., Chen, J., Yu, H., He, L., Xu, Y., Zhang, D., Yi, Q., Li, C., Li, X., Shen, J., (2017) Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet., 49, 1576–1583

[21]

Autosomal DNA testing comparison chart. Accessed: 12 October, 2019

[22]

Dtc-gt business sense: Data “fosse” behind free service. Accessed: 12 October, 2019

[23]

23andme’s new research overview page. Accessed: 12 October, 2019

[24]

Chen, P., Wu, J., Luo, L., Gao, H., Wang, M., Zou, X., Li, Y., Chen, G., Luo, H., Yu, L., (2019) Population genetic analysis of modern and ancient DNA variations yields new insights into the formation, genetic structure, and phylogenetic relationship of northern han chinese. Front. Genet., 10, 1045

[25]

Li, Y. C., Ye, W. J., Jiang, C. G., Zeng, Z., Tian, J. Y., Yang, L. Q., Liu, K. J. and Kong, Q. P. (2019) River valleys shaped the maternal genetic landscape of han chinese. Mol. Biol. Evol., 36, 1643–1652

[26]

Huang, X., Zhou, Q., Bin, X., Lai, S., Lin, C., Hu, R., Xiao, J., Luo, D., Li, Y., Wei, L. H., (2018) The genetic assimilation in language borrowing inferred from Jing People. Am. J. Phys. Anthropol., 166, 638–648

[27]

Yao, H. B., Tang, S., Yao, X., Yeh, H. Y., Zhang, W., Xie, Z., Du, Q., Ma, L., Wei, S., Gong, X., (2017) The genetic admixture in Tibetan-Yi Corridor. Am. J. Phys. Anthropol., 164, 522–532

[28]

Yao, X., Tang, S., Bian, B., Wu, X., Chen, G. and Wang, C. C. (2017) Improved phylogenetic resolution for Y-chromosome Haplogroup O2a1c-002611. Sci. Rep., 7, 1146

[29]

Zeng, Z., Tian, J., Jiang, C., Ye, W., Liu, K. and Li, Y. (2019) Inferring the history of surname Ye based on Y chromosome high-resolution genotyping and sequencing data. J. Hum. Genet., 64, 703–709

[30]

Zhao, J., Ming, J., Hu, X., Chen, G., Liu, J. and Yang, C. (2020) Bayesian weighted Mendelian randomization for causal inference based on summary statistics. Bioinformatics, btz749

[31]

Wang, M., Sun, X., Shi, Y., Song, X. and Mi, H. (2019) A genome-wide association study on photic sneeze reflex in the Chinese population. Sci. Rep., 9, 4993

[32]

23andme wants to solve the patient recruitment problem. Accessed: 12 October, 2019

[33]

Clark, R. F., Hutton, M., Fuldner, M., Froelich, S., Karran, E., Talbot, C., Crook, R., Lendon, C., Prihar, G., He, C., (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat. Genet., 11, 219–222

[34]

Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376, 775–778

[35]

Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754–760

[36]

Kwok, J. B., Taddei, K., Hallupp, M., Fisher, C., Brooks, W. S., Broe, G. A., Hardy, J., Fulham, M. J., Nicholson, G. A., Stell, R., (1997) Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer’s disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport, 8, 1537–1542

[37]

Bruni, A. C. (1998) Cloning of a gene bearing missense mutations in early onset familial Alzheimer’s disease: a Calabrian study. Funct. Neurol., 13, 257–261

[38]

Harvey, R. J., Ellison, D., Hardy, J., Hutton, M., Roques, P. K., Collinge, J., Fox, N. C. and Rossor, M. N. (1998) Chromosome 14 familial Alzheimer’s disease: the clinical and neuropathological characteristics of a family with a leucineright-arrowserine (L250S) substitution at codon 250 of the presenilin 1 gene. J. Neurol. Neurosurg. Psychiatry, 64, 44–49

[39]

Poorkaj, P., Sharma, V., Anderson, L., Nemens, E., Alonso, M. E., Orr, H., White, J., Heston, L., Bird, T. D. and Schellenberg, G. D. (1998) Missense mutations in the chromosome 14 familial Alzheimer’s disease presenilin 1 gene. Hum. Mutat., 11, 216–221

[40]

Lewis, P. A., Perez-Tur, J., Golde, T. E. and Hardy, J. (2000) The presenilin 1 C92S mutation increases abeta 42 production. Biochem. Biophys. Res. Commun., 277, 261–263

[41]

Tedde, A., Forleo, P., Nacmias, B., Piccini, C., Bracco, L., Piacentini, S. and Sorbi, S. (2000) A presenilin-1 mutation (Leu392Pro) in a familial AD kindred with psychiatric symptoms at onset. Neurology, 55, 1590–1591

[42]

Avella, A. B., Teruel, B. M., Rodriguez, J. L., Viera, N. G., Martinez, I. B., e, S., M, J., Duijn, C., Baute, L. H. and P, H. (2002) A novel presenilin 1 mutation (L174 M) in a large Cuban family with early onset Alzheimer disease. Neurogenetics, 4, 97–104

[43]

Queralt, R., Ezquerra, M., Lleó A., Castellví M., Gelpí J., Ferrer, I., Acarín, N., Pasarín, L., Blesa, R. and Oliva, R. (2002) A novel mutation (V89L) in the presenilin 1 gene in a family with early onset Alzheimer’s disease and marked behavioural disturbances. J. Neurol. Neurosurg. Psychiatry, 72, 266–269

[44]

Miklossy, J., Taddei, K., Suva, D., Verdile, G., Fonte, J., Fisher, C., Gnjec, A., Ghika, J., Suard, F., Mehta, P. D., (2003) Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer’s disease. Neurobiol. Aging, 24, 655–662

[45]

Snider, B. J., Norton, J., Coats, M. A., Chakraverty, S., Hou, C. E., Jervis, R., Lendon, C. L., Goate, A. M., McKeel, Jr D. W. and Morris, J. C. (2005) Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch. Neurol., 62, 1821–1830

[46]

Larner, A. J. and Doran, M. (2006) Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J. Neurol., 253, 139–158

[47]

Kauwe, J. S., Jacquart, S., Chakraverty, S., Wang, J., Mayo, K., Fagan, A. M., Holtzman, D. M., Morris, J. C. and Goate, A. M. (2007) Extreme cerebrospinal fluid amyloid beta levels identify family with late-onset Alzheimer’s disease presenilin 1 mutation. Ann. Neurol., 61, 446–453

[48]

Meng, Y., Lee, J. H., Cheng, R., St George-Hyslop, P., Mayeux, R. and Farrer, L. A. (2007) Association between SORL1 and Alzheimer’s disease in a genome-wide study. Neuroreport, 18, 1761–1764

[49]

Aidaralieva, N. J., Kamino, K., Kimura, R., Yamamoto, M., Morihara, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., Kida, T., (2008) Dynamin 2 gene is a novel susceptibility gene for late-onset Alzheimer disease in non-APOE-epsilon4 carriers. J. Hum. Genet., 53, 296–302

[50]

Piscopo, P., Marcon, G., Piras, M. R., Crestini, A., Campeggi, L. M., Deiana, E., Cherchi, R., Tanda, F., Deplano, A., Vanacore, N., (2008) A novel PSEN2 mutation associated with a peculiar phenotype. Neurology, 70, 1549–1554

[51]

Rademakers, R., Eriksen, J. L., Baker, M., Robinson, T., Ahmed, Z., Lincoln, S. J., Finch, N., Rutherford, N. J., Crook, R. J., Josephs, K. A., (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum. Mol. Genet., 17, 3631–3642

[52]

Schjeide, B. M., Hooli, B., Parkinson, M., Hogan, M. F., DiVito, J., Mullin, K., Blacker, D., Tanzi, R. E. and Bertram, L. (2009) GAB2 as an Alzheimer disease susceptibility gene: follow-up of genomewide association results. Arch. Neurol., 66, 250–254

[53]

Bennet, A. M., Reynolds, C. A., Gatz, M., Blennow, K., Pedersen, N. L. and Prince, J. A. (2010) Pleiotropy in the presence of allelic heterogeneity: alternative genetic models for the influence of APOE on serum LDL, CSF amyloid-b42, and dementia. J. Alzheimers Dis., 22, 129–134

[54]

Sanders, A. E., Wang, C., Katz, M., Derby, C. A., Barzilai, N., Ozelius, L. and Lipton, R. B. (2010) Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA, 303, 150–158

[55]

Xu, X., Wang, Y., Wang, L., Liao, Q., Chang, L., Xu, L., Huang, Y., Ye, H., Xu, L., Chen, C., (2013) Meta-analyses of 8 polymorphisms associated with the risk of the Alzheimer’s disease. PLoS One, 8, e73129

[56]

Cruchaga, C., Karch, C. M., Jin, S. C., Benitez, B. A., Cai, Y., Guerreiro, R., Harari, O., Norton, J., Budde, J., Bertelsen, S., (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature, 505, 550–554

[57]

Floudas, C. S., Um, N., Kamboh, M. I., Barmada, M. M. and Visweswaran, S. (2014) Identifying genetic interactions associated with late-onset Alzheimer’s disease. BioData Min., 7, 35

[58]

Medway, C. and Morgan, K. (2014) Review: The genetics of Alzheimer’s disease; putting flesh on the bones. Neuropathol. Appl. Neurobiol., 40, 97–105

[59]

Gao, Y., Tan, M. S., Wang, H. F., Zhang, W., Wang, Z. X., Jiang, T., Yu, J. T. and Tan, L. (2016) ZCWPW1 is associated with late-onset Alzheimer’s disease in Han Chinese: a replication study and meta-analyses. Oncotarget, 7, 20305–20311

[60]

Wang, H. Z., Bi, R., Hu, Q. X., Xiang, Q., Zhang, C., Zhang, D. F., Zhang, W., Ma, X., Guo, W., Deng, W., (2016) Validating GWAS-identified risk loci for alzheimer’s disease in Han Chinese populations. Mol. Neurobiol., 53, 379–390

[61]

Sims, R., van der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B. W., Boland, A., Raybould, R., Bis, J. C., (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet., 49, 1373–1384

[62]

Zhang, X. Y., Wang, H. F., Tan, M. S., Wan, Y., Kong, L. L., Zheng, Z. J., Tan, C. C., Zhang, W., Wang, Z. X., Tan, L., (2017) Association of disc1 polymorphisms with late-onset Alzheimer’s disease in northern Han Chinese. Mol. Neurobiol., 54, 2922–2927

[63]

Zhu, X. C., Cao, L., Tan, M. S., Jiang, T., Wang, H. F., Lu, H., Tan, C. C., Zhang, W., Tan, L. and Yu, J. T. (2017) Association of parkinson’s disease GWAS-linked loci with Alzheimer’s disease in Han Chinese. Mol. Neurobiol., 54, 308–318

[64]

Zhou, X., Chen, Y., Mok, K. Y., Zhao, Q., Chen, K., Chen, Y., Hardy, J., Li, Y., Fu, A. K. Y., Guo, Q., (2018) Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. USA, 115, 1697–1706

[65]

Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., Sealock, J., Karlsson, I. K., Hägg, S., Athanasiu, L., (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet., 51, 404–413

[66]

Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A., (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Ab, tau, immunity and lipid processing. Nat. Genet., 51, 414–430

[67]

Rubin, D., Helwig, U., Pfeuffer, M., Schreiber, S., Boeing, H., Fisher, E., Pfeiffer, A., Freitag-Wolf, S., Foelsch, U. R., Doering, F., (2006) A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J. Hum. Genet., 51, 567–574

[68]

Takeuchi, F., Serizawa, M., Yamamoto, K., Fujisawa, T., Nakashima, E., Ohnaka, K., Ikegami, H., Sugiyama, T., Katsuya, T., Miyagishi, M., (2009) Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes, 58, 1690–1699

[69]

Bouatia-Naji, N., Bonnefond, A., Cavalcanti-Proença, C., Sparsø T., Holmkvist, J., Marchand, M., Delplanque, J., Lobbens, S., Rocheleau, G., Durand, E., (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet., 41, 89–94

[70]

Wellcome Trust Case Control, C., and the Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678

[71]

Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker, P. I., Abecasis, G. R., Almgren, P., Andersen, G., (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet., 40, 638–645

[72]

Horikawa, Y., Miyake, K., Yasuda, K., Enya, M., Hirota, Y., Yamagata, K., Hinokio, Y., Oka, Y., Iwasaki, N., Iwamoto, Y., (2008) Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J. Clin. Endocrinol. Metab., 93, 3136–3141

[73]

Prudente, S., Morini, E., Marselli, L., Baratta, R., Copetti, M., Mendonca, C., Andreozzi, F., Chandalia, M., Pellegrini, F., Bailetti, D., (2013) Joint effect of insulin signaling genes on insulin secretion and glucose homeostasis. J. Clin. Endocrinol. Metab., 98, E1143–E1147

[74]

Tabara, Y., Osawa, H., Kawamoto, R., Onuma, H., Shimizu, I., Miki, T., Kohara, K. and Makino, H. (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes, 58, 493–498

[75]

Prudente, S., Scarpelli, D., Chandalia, M., Zhang, Y. Y., Morini, E., Del Guerra, S., Perticone, F., Li, R., Powers, C., Andreozzi, F., (2009) The TRIB3 Q84R polymorphism and risk of early-onset type 2 diabetes. J. Clin. Endocrinol. Metab., 94, 190–196

[76]

Yasuda, K., Miyake, K., Horikawa, Y., Hara, K., Osawa, H., Furuta, H., Hirota, Y., Mori, H., Jonsson, A., Sato, Y., (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet., 40, 1092–1097

[77]

Friedrich, B., Weyrich, P., Stancáková A., Wang, J., Kuusisto, J., Laakso, M., Sesti, G., Succurro, E., Smith, U., Hansen, T., (2008) Variance of the SGK1 gene is associated with insulin secretion in different European populations: results from the TUEF, EUGENE2, and METSIM studies. PLoS One, 3, e3506

[78]

Keramati, A. R., Fathzadeh, M., Go, G. W., Singh, R., Choi, M., Faramarzi, S., Mane, S., Kasaei, M., Sarajzadeh-Fard, K., Hwa, J., (2014) A form of the metabolic syndrome associated with mutations in DYRK1B. N. Engl. J. Med., 370, 1909–1919

[79]

Tsai, F. J., Yang, C. F., Chen, C. C., Chuang, L. M., Lu, C. H., Chang, C. T., Wang, T. Y., Chen, R. H., Shiu, C. F., Liu, Y. M., (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet., 6, e1000847

[80]

Murad, A. S., Smith, G. D., Lewis, S. J., Cox, A., Donovan, J. L., Neal, D. E., Hamdy, F. C. and Martin, R. M. (2010) A polymorphism in the glucokinase gene that raises plasma fasting glucose, rs1799884, is associated with diabetes mellitus and prostate cancer: findings from a population-based, case-control study (the ProtecT study). Int J Mol Epidemiol Genet, 1, 175–183

[81]

Zheng, J. S., Arnett, D. K., Parnell, L. D., Smith, C. E., Li, D., Borecki, I. B., Tucker, K. L., Ordovás, J. M. and Lai, C. Q. (2013) Modulation by dietary fat and carbohydrate of IRS1 association with type 2 diabetes traits in two populations of different ancestries. Diabetes Care, 36, 2621–2627

[82]

Uma Jyothi, K., Jayaraj, M., Subburaj, K. S., Prasad, K. J., Kumuda, I., Lakshmi, V. and Reddy, B. M. (2013) Association of TCF7L2 gene polymorphisms with T2DM in the population of Hyderabad, India. PLoS One, 8, e60212

[83]

Pei, Q., Huang, Q., Yang, G. P., Zhao, Y. C., Yin, J. Y., Song, M., Zheng, Y., Mo, Z. H., Zhou, H. H. and Liu, Z. Q. (2013) PPAR-g2 and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone in China. Acta Pharmacol. Sin., 34, 255–261

[84]

Cho, Y. S., Chen, C.-H., Hu, C., Long, J., Hee Ong, R. T., Sim, X., Takeuchi, F., Wu, Y., Go, M. J., Yamauchi, T., (2012) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in East Asians. Nat. Genet., 44, 67–72

[85]

Sokolova, E. A., Bondar, I. A., Shabelnikova, O. Y., Pyankova, O. V. and Filipenko, M. L. (2015) Replication of kcnj11 (p.E23k) and abcc8 (p.S1369a) association in Russian diabetes mellitus 2 type cohort and meta-analysis. PLoS One, 10, e0124662

[86]

Williams, A. L., Jacobs, S. B., Moreno-Macías, H., Huerta-Chagoya, A., Churchhouse, C., Márquez-Luna, C., García-Ortíz, H., Gómez-Vázquez, M. J., Burtt, N. P., Aguilar-Salinas, C. A., (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature, 506, 97–101

[87]

Sim, X., Ong, R. T., Suo, C., Tay, W. T., Liu, J., Ng, D. P., Boehnke, M., Chia, K. S., Wong, T. Y., Seielstad, M., (2011) Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet., 7, e1001363

[88]

Xue, A., Wu, Y., Zhu, Z., Zhang, F., Kemper, K. E., Zheng, Z., Yengo, L., Lloyd-Jones, L. R., Sidorenko, J., Wu, Y., (2018) Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun., 9, 2941

[89]

Morris, A. P. (2018) Progress in defining the genetic contribution to type 2 diabetes susceptibility. Curr. Opin. Genet. Dev., 50, 41–51

[90]

Imamura, M., Takahashi, A., Yamauchi, T., Hara, K., Yasuda, K., Grarup, N., Zhao, W., Wang, X., Huerta-Chagoya, A., Hu, C., (2016) Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat. Commun., 7, 10531

[91]

Suzuki, K., Akiyama, M., Ishigaki, K., Kanai, M., Hosoe, J., Shojima, N., Hozawa, A., Kadota, A., Kuriki, K., Naito, M., (2019) Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet., 51, 379–386

[92]

Cheng, L., Zhang, D., Zhou, L., Zhao, J. and Chen, B. (2015) Association between slc30a8 rs13266634 polymorphism and type 2 diabetes risk: A meta-analysis. Med. Sci. Monit., 21, 2178–2189

[93]

Chen, X., Wang, X., Chen, Q., Williamson, V., van den Oord, E., Maher, B. S., O’Neill, F. A., Walsh, D. and Kendler, K. S. (2008) MEGF10 association with schizophrenia. Biol. Psychiatry, 63, 441–448

[94]

Lohoff, F. W., Weller, A. E., Bloch, P. J., Buono, R. J., Doyle, G. A., Ferraro, T. N. and Berrettini, W. H. (2008) Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology, 57, 55–60

[95]

Monakhov, M., Golimbet, V., Abramova, L., Kaleda, V. and Karpov, V. (2008) Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophr. Res., 100, 302–307

[96]

Pal, P., Mihanović M., Molnar, S., Xi, H., Sun, G., Guha, S., Jeran, N., Tomljenović A., Malnar, A., Missoni, S., (2009) Association of tagging single nucleotide polymorphisms on 8 candidate genes in dopaminergic pathway with schizophrenia in Croatian population. Croat. Med. J., 50, 361–369

[97]

Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., Werge, T., Pietiläinen, O. P., Mors, O., Mortensen, P. B., (2009) Common variants conferring risk of schizophrenia. Nature, 460, 744–747

[98]

Cichon, S., Mühleisen, T. W., Degenhardt, F. A., Mattheisen, M., Miró X., Strohmaier, J., Steffens, M., Meesters, C., Herms, S., Weingarten, M. (2011) Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am. J. Hum. Genet., 88, 372–381

[99]

Tsutsumi, A., Glatt, S. J., Kanazawa, T., Kawashige, S., Uenishi, H., Hokyo, A., Kaneko, T., Moritani, M., Kikuyama, H., Koh, J., (2011) The genetic validation of heterogeneity in schizophrenia. Behav. Brain Funct., 7, 43

[100]

Xiao, B., Li, W., Zhang, H., Lv, L., Song, X., Yang, Y., Li, W., Yang, G., Jiang, C., Zhao, J., (2011) To the editor: Association of znf804a polymorphisms with schizophrenia and antipsychotic drug efficacy in a Chinese Han population. Psychiatry Res. 190, 379–381

[101]

Yue, W., Yang, Y., Zhang, Y., Lu, T., Hu, X., Wang, L., Ruan, Y., Lv, L. and Zhang, D. (2011) A case-control association study of NRXN1 polymorphisms with schizophrenia in Chinese Han population. Behav. Brain Funct., 7, 7

[102]

Fineberg, A. M. and Ellman, L. M. (2013) Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol. Psychiatry, 73, 951–966

[103]

Yan, P., Qiao, X., Wu, H., Yin, F., Zhang, J., Ji, Y., Wei, S. and Lai, J. (2016) An association study between genetic polymorphisms in functional regions of five genes and the risk of schizophrenia. J. Mol. Neurosci., 59, 366–375

[104]

Yu, H., Yan, H., Li, J., Li, Z., Zhang, X., Ma, Y., Mei, L., Liu, C., Cai, L., Wang, Q., (2017) Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population. Mol. Psychiatry, 22, 954–960

[105]

Pardiñas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., Legge, S. E., Bishop, S., Cameron, D., Hamshere, M. L., (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet., 50, 381–389

[106]

Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427

[107]

Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, Jr, P. C.Rimmler, J. B., Locke, P. A., Conneally, P. M., Schmader, K. E., (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet., 7, 180–184

[108]

Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-MacLachlan, D. R., Alberts, M. J., (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472

[109]

Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., Perry, J. R., Elliott, K. S., Lango, H., Rayner, N. W., (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894

[110]

Eriksson, N. W., Wu, S., Do, C. B., Kiefer, A. K., Tung, J. Y., Mountain, J. L., Hinds, D. A. and Francke, U. (2012) A genetic variant near olfactory receptor genes influences cilantro preference. Flavour (Lond.), 1, 22

[111]

Wiberg, A., Ng, M., Al Omran, Y., Alfaro-Almagro, F., McCarthy, P., Marchini, J., Bennett, D. L., Smith, S., Douaud, G. and Furniss, D. (2019) Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain, 142, 2938–2947

[112]

Jin, B., Zhu, J., Wang, H., Chen, D., Su, Q., Wang, L., Liang, W. B. and Zhang, L. (2015) A primary investigation on SNPs associated with eyelid traits of Chinese Han adults. Forensic Sci. International. Genet. Suppl. Ser., 5, e669–e670

[113]

Zhang, M., Wu, S., Zhang, J., Yang, Y., Tan, J., Guan, H., Liu, Y., Tang, K., Krutmann, J., Xu, S., (2016) Large-scale genome-wide scans do not support petaloid toenail as a Mendelian trait. J. Genet. Genomics, 43, 702–704

[114]

About UK biobank. Accessed: 12 October, 2019

[115]

23andme sells access to biobank to more than 13 drug companies. Accessed: 12 October, 2019

[116]

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1473KB)

Supplementary files

QB-20209-OF-CG_suppl_1

4925

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/