Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication
Kang Kang, Xue Sun, Lizhong Wang, Xiaotian Yao, Senwei Tang, Junjie Deng, Xiaoli Wu, WeGene Research Team, Can Yang, Gang Chen
Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication
Background: The direct-to-consumer genetic testing (DTC-GT) industry has exploded in recent years, initiated by market pioneers from the United States and quickly followed by companies from Europe and Asia. In addition to their primary objective of providing ancestry and health information to customers, DTC-GT services have emerged as a valuable data resource for large-scale population and genetics studies.
Methods: We assessed DTC-GT market leaders in the U.S. and China, user participation in research, and academic reports based on this information. We also investigated DTC-GT end-user value by tracing key updates of companies provided via health risk reports and evaluating their predictive power. We then assessed the replicability of several genome-wide association studies (GWAS) based on a Chinese DTC-GT biobank.
Results: As recent entrants to the market, Chinese DTC-GT service providers have published less academic research than their Western counterparts; however, a larger proportion of Chinese users consent to participate in research projects. Dramatic increases in user volume and resultant report updates led to reclassification of some users’ polygenic risk levels, but within a reasonable scale and with increased predictive power. Replicability among GWAS using the Chinese DTC-GT biobank varied by studied trait, population background, and sample size.
Conclusions: We speculate that the rapid growth in DTC-GT services, particularly in non-Caucasian populations, will yield an important and much-needed resource for biobanking, large-scale genetic studies, clinical trials, and post-clinical applications.
Direct-to-consumer genetic testing in China has exploded over the past five years. Chinese DTC-GC users are overwhelmingly willing to participate in research initiated by service providers. As most of these users are non-Caucasian, we evaluated the reliability of GWAS-derived polygenic disease reports using populations of predominantly European ancestry and found that prediction power increased alongside new GWAS loci integration. In assessing the outcomes of different GWAS, replicability varied among studies with different ethnic backgrounds and sample sizes. We speculate that Chinese DTC-GT databases represent valuable biobanks for genetic studies and clinical applications.
DTC-GT; biobank / Chinese population / polygenic risk / GWAS replication
[1] |
Gibson, G. (2010) Hints of hidden heritability in GWAS. Nat. Genet., 42, 558–560
CrossRef
Pubmed
Google scholar
|
[2] |
Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E. and Cox, N. J. (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet., 6, e1000888
CrossRef
Pubmed
Google scholar
|
[3] |
More than 26 million people have taken an at-home ancestry test. https://www.technologyreview.com/s/612880/more-than-26-million-people-have-taken-an-at-home-ancestry-test/. Accessed: 12 October, 2019
|
[4] |
2018 China dtc-gt market research report. https://www.iyiou.com/intelligence/report605.html. Accessed: 12 October, 2019
|
[5] |
Covolo, L., Rubinelli, S., Ceretti, E. and Gelatti, U. (2015) Internet-based direct-to-consumer genetic testing: A systematic review. J. Med. Internet Res., 17, e279
CrossRef
Pubmed
Google scholar
|
[6] |
Frueh, F. W., Greely, H. T., Green, R. C., Hogarth, S. and Siegel, S. (2011) The future of direct-to-consumer clinical genetic tests. Nat. Rev. Genet., 12, 511–515
CrossRef
Pubmed
Google scholar
|
[7] |
Kalf, R. R., Mihaescu, R., Kundu, S., de Knijff, P., Green, R. C. and Janssens, A. C. (2014) Variations in predicted risks in personal genome testing for common complex diseases. Genet. Med., 16, 85–91
CrossRef
Pubmed
Google scholar
|
[8] |
Kolor, K., Duquette, D., Zlot, A., Foland, J., Anderson, B., Giles, R., Wrathall, J. and Khoury, M. J. (2012) Public awareness and use of direct-to-consumer personal genomic tests from four state population-based surveys, and implications for clinical and public health practice. Genet. Med., 14, 860–867
CrossRef
Pubmed
Google scholar
|
[9] |
Adams, S. D., Evans, J. P. and Aylsworth, A. S. (2013) Direct-to-consumer genomic testing offers little clinical utility but appears to cause minimal harm. N C Med. J., 74, 494–498
Pubmed
|
[10] |
Buitendijk, G. H., Amin, N., Hofman, A., van Duijn, C. M., Vingerling, J. R. and Klaver, C. C. (2014) Direct-to-consumer personal genome testing for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 55, 6167–6174
CrossRef
Pubmed
Google scholar
|
[11] |
Imai, K., Kricka, L. J. and Fortina, P. (2011) Concordance study of 3 direct-to-consumer genetic-testing services. Clin. Chem., 57, 518–521
CrossRef
Pubmed
Google scholar
|
[12] |
Kido, T., Kawashima, M., Nishino, S., Swan, M., Kamatani, N. and Butte, A. J. (2013) Systematic evaluation of personal genome services for Japanese individuals. J. Hum. Genet., 58, 734–741
CrossRef
Pubmed
Google scholar
|
[13] |
Bloss, C. S., Topol, E. J. and Schork, N. J. (2012) Association of direct-to-consumer genome-wide disease risk estimates and self-reported disease. Genet. Epidemiol., 36, 66–70
CrossRef
Pubmed
Google scholar
|
[14] |
Krier, J., Barfield, R., Green, R. C. and Kraft, P. (2016) Reclassification of genetic-based risk predictions as GWAS data accumulate. Genome Med., 8, 20
CrossRef
Pubmed
Google scholar
|
[15] |
Lewis, C. M. and Vassos, E. (2017) Prospects for using risk scores in polygenic medicine. Genome Med., 9, 96
CrossRef
Pubmed
Google scholar
|
[16] |
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M. and Daly, M. J. (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet., 51, 584–591
CrossRef
Pubmed
Google scholar
|
[17] |
Reisberg, S., Iljasenko, T., Läll, K., Fischer, K. and Vilo, J. (2017) Comparing distributions of polygenic risk scores of type 2 diabetes and coronary heart disease within different populations. PLoS One, 12, e0179238
CrossRef
Pubmed
Google scholar
|
[18] |
Sirugo, G., Williams, S. M. and Tishkoff, S. A. (2019) The missing diversity in human genetic studies. Cell, 177, 26–31
CrossRef
Pubmed
Google scholar
|
[19] |
Liu, S., Huang, S., Chen, F., Zhao, L., Yuan, Y., Francis, S. S., Fang, L., Li, Z., Lin, L., Liu, R.,
|
[20] |
Li, Z., Chen, J., Yu, H., He, L., Xu, Y., Zhang, D., Yi, Q., Li, C., Li, X., Shen, J.,
CrossRef
Pubmed
Google scholar
|
[21] |
Autosomal DNA testing comparison chart. https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart. Accessed: 12 October, 2019
|
[22] |
Dtc-gt business sense: Data “fosse” behind free service. https://new.qq.com/omn/20190830/20190830A0OTIP00.html. Accessed: 12 October, 2019
|
[23] |
23andme’s new research overview page. https://blog.23andme.com/23andme-research/23andmes-new-research-overview-page/. Accessed: 12 October, 2019
|
[24] |
Chen, P., Wu, J., Luo, L., Gao, H., Wang, M., Zou, X., Li, Y., Chen, G., Luo, H., Yu, L.,
CrossRef
Pubmed
Google scholar
|
[25] |
Li, Y. C., Ye, W. J., Jiang, C. G., Zeng, Z., Tian, J. Y., Yang, L. Q., Liu, K. J. and Kong, Q. P. (2019) River valleys shaped the maternal genetic landscape of han chinese. Mol. Biol. Evol., 36, 1643–1652
CrossRef
Pubmed
Google scholar
|
[26] |
Huang, X., Zhou, Q., Bin, X., Lai, S., Lin, C., Hu, R., Xiao, J., Luo, D., Li, Y., Wei, L. H.,
CrossRef
Pubmed
Google scholar
|
[27] |
Yao, H. B., Tang, S., Yao, X., Yeh, H. Y., Zhang, W., Xie, Z., Du, Q., Ma, L., Wei, S., Gong, X.,
CrossRef
Pubmed
Google scholar
|
[28] |
Yao, X., Tang, S., Bian, B., Wu, X., Chen, G. and Wang, C. C. (2017) Improved phylogenetic resolution for Y-chromosome Haplogroup O2a1c-002611. Sci. Rep., 7, 1146
CrossRef
Pubmed
Google scholar
|
[29] |
Zeng, Z., Tian, J., Jiang, C., Ye, W., Liu, K. and Li, Y. (2019) Inferring the history of surname Ye based on Y chromosome high-resolution genotyping and sequencing data. J. Hum. Genet., 64, 703–709
CrossRef
Pubmed
Google scholar
|
[30] |
Zhao, J., Ming, J., Hu, X., Chen, G., Liu, J. and Yang, C. (2020) Bayesian weighted Mendelian randomization for causal inference based on summary statistics. Bioinformatics, btz749
CrossRef
Pubmed
Google scholar
|
[31] |
Wang, M., Sun, X., Shi, Y., Song, X. and Mi, H. (2019) A genome-wide association study on photic sneeze reflex in the Chinese population. Sci. Rep., 9, 4993
CrossRef
Pubmed
Google scholar
|
[32] |
23andme wants to solve the patient recruitment problem. https://www.clinicalleader.com/doc/andme-wants-to-solve-the-patient-recruitment-problem-0001. Accessed: 12 October, 2019
|
[33] |
Clark, R. F., Hutton, M., Fuldner, M., Froelich, S., Karran, E., Talbot, C., Crook, R., Lendon, C., Prihar, G., He, C.,
CrossRef
Pubmed
Google scholar
|
[34] |
Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T.,
CrossRef
Pubmed
Google scholar
|
[35] |
Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K.,
CrossRef
Pubmed
Google scholar
|
[36] |
Kwok, J. B., Taddei, K., Hallupp, M., Fisher, C., Brooks, W. S., Broe, G. A., Hardy, J., Fulham, M. J., Nicholson, G. A., Stell, R.,
CrossRef
Pubmed
Google scholar
|
[37] |
Bruni, A. C. (1998) Cloning of a gene bearing missense mutations in early onset familial Alzheimer’s disease: a Calabrian study. Funct. Neurol., 13, 257–261
Pubmed
|
[38] |
Harvey, R. J., Ellison, D., Hardy, J., Hutton, M., Roques, P. K., Collinge, J., Fox, N. C. and Rossor, M. N. (1998) Chromosome 14 familial Alzheimer’s disease: the clinical and neuropathological characteristics of a family with a leucineright-arrowserine (L250S) substitution at codon 250 of the presenilin 1 gene. J. Neurol. Neurosurg. Psychiatry, 64, 44–49
CrossRef
Pubmed
Google scholar
|
[39] |
Poorkaj, P., Sharma, V., Anderson, L., Nemens, E., Alonso, M. E., Orr, H., White, J., Heston, L., Bird, T. D. and Schellenberg, G. D. (1998) Missense mutations in the chromosome 14 familial Alzheimer’s disease presenilin 1 gene. Hum. Mutat., 11, 216–221
CrossRef
Pubmed
Google scholar
|
[40] |
Lewis, P. A., Perez-Tur, J., Golde, T. E. and Hardy, J. (2000) The presenilin 1 C92S mutation increases abeta 42 production. Biochem. Biophys. Res. Commun., 277, 261–263
CrossRef
Pubmed
Google scholar
|
[41] |
Tedde, A., Forleo, P., Nacmias, B., Piccini, C., Bracco, L., Piacentini, S. and Sorbi, S. (2000) A presenilin-1 mutation (Leu392Pro) in a familial AD kindred with psychiatric symptoms at onset. Neurology, 55, 1590–1591
CrossRef
Pubmed
Google scholar
|
[42] |
Avella, A. B., Teruel, B. M., Rodriguez, J. L., Viera, N. G., Martinez, I. B., e, S., M, J., Duijn, C., Baute, L. H. and P, H. (2002) A novel presenilin 1 mutation (L174 M) in a large Cuban family with early onset Alzheimer disease. Neurogenetics, 4, 97–104
CrossRef
Pubmed
Google scholar
|
[43] |
Queralt, R., Ezquerra, M., Lleó, A., Castellví, M., Gelpí, J., Ferrer, I., Acarín, N., Pasarín, L., Blesa, R. and Oliva, R. (2002) A novel mutation (V89L) in the presenilin 1 gene in a family with early onset Alzheimer’s disease and marked behavioural disturbances. J. Neurol. Neurosurg. Psychiatry, 72, 266–269
CrossRef
Pubmed
Google scholar
|
[44] |
Miklossy, J., Taddei, K., Suva, D., Verdile, G., Fonte, J., Fisher, C., Gnjec, A., Ghika, J., Suard, F., Mehta, P. D.,
CrossRef
Pubmed
Google scholar
|
[45] |
Snider, B. J., Norton, J., Coats, M. A., Chakraverty, S., Hou, C. E., Jervis, R., Lendon, C. L., Goate, A. M., McKeel, Jr D. W. and Morris, J. C. (2005) Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch. Neurol., 62, 1821–1830
CrossRef
Pubmed
Google scholar
|
[46] |
Larner, A. J. and Doran, M. (2006) Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J. Neurol., 253, 139–158
CrossRef
Pubmed
Google scholar
|
[47] |
Kauwe, J. S., Jacquart, S., Chakraverty, S., Wang, J., Mayo, K., Fagan, A. M., Holtzman, D. M., Morris, J. C. and Goate, A. M. (2007) Extreme cerebrospinal fluid amyloid beta levels identify family with late-onset Alzheimer’s disease presenilin 1 mutation. Ann. Neurol., 61, 446–453
CrossRef
Pubmed
Google scholar
|
[48] |
Meng, Y., Lee, J. H., Cheng, R., St George-Hyslop, P., Mayeux, R. and Farrer, L. A. (2007) Association between SORL1 and Alzheimer’s disease in a genome-wide study. Neuroreport, 18, 1761–1764
CrossRef
Pubmed
Google scholar
|
[49] |
Aidaralieva, N. J., Kamino, K., Kimura, R., Yamamoto, M., Morihara, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., Kida, T.,
CrossRef
Pubmed
Google scholar
|
[50] |
Piscopo, P., Marcon, G., Piras, M. R., Crestini, A., Campeggi, L. M., Deiana, E., Cherchi, R., Tanda, F., Deplano, A., Vanacore, N.,
CrossRef
Pubmed
Google scholar
|
[51] |
Rademakers, R., Eriksen, J. L., Baker, M., Robinson, T., Ahmed, Z., Lincoln, S. J., Finch, N., Rutherford, N. J., Crook, R. J., Josephs, K. A.,
CrossRef
Pubmed
Google scholar
|
[52] |
Schjeide, B. M., Hooli, B., Parkinson, M., Hogan, M. F., DiVito, J., Mullin, K., Blacker, D., Tanzi, R. E. and Bertram, L. (2009) GAB2 as an Alzheimer disease susceptibility gene: follow-up of genomewide association results. Arch. Neurol., 66, 250–254
CrossRef
Pubmed
Google scholar
|
[53] |
Bennet, A. M., Reynolds, C. A., Gatz, M., Blennow, K., Pedersen, N. L. and Prince, J. A. (2010) Pleiotropy in the presence of allelic heterogeneity: alternative genetic models for the influence of APOE on serum LDL, CSF amyloid-b42, and dementia. J. Alzheimers Dis., 22, 129–134
CrossRef
Pubmed
Google scholar
|
[54] |
Sanders, A. E., Wang, C., Katz, M., Derby, C. A., Barzilai, N., Ozelius, L. and Lipton, R. B. (2010) Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA, 303, 150–158
CrossRef
Pubmed
Google scholar
|
[55] |
Xu, X., Wang, Y., Wang, L., Liao, Q., Chang, L., Xu, L., Huang, Y., Ye, H., Xu, L., Chen, C.,
CrossRef
Pubmed
Google scholar
|
[56] |
Cruchaga, C., Karch, C. M., Jin, S. C., Benitez, B. A., Cai, Y., Guerreiro, R., Harari, O., Norton, J., Budde, J., Bertelsen, S.,
CrossRef
Pubmed
Google scholar
|
[57] |
Floudas, C. S., Um, N., Kamboh, M. I., Barmada, M. M. and Visweswaran, S. (2014) Identifying genetic interactions associated with late-onset Alzheimer’s disease. BioData Min., 7, 35
CrossRef
Pubmed
Google scholar
|
[58] |
Medway, C. and Morgan, K. (2014) Review: The genetics of Alzheimer’s disease; putting flesh on the bones. Neuropathol. Appl. Neurobiol., 40, 97–105
CrossRef
Pubmed
Google scholar
|
[59] |
Gao, Y., Tan, M. S., Wang, H. F., Zhang, W., Wang, Z. X., Jiang, T., Yu, J. T. and Tan, L. (2016) ZCWPW1 is associated with late-onset Alzheimer’s disease in Han Chinese: a replication study and meta-analyses. Oncotarget, 7, 20305–20311
CrossRef
Pubmed
Google scholar
|
[60] |
Wang, H. Z., Bi, R., Hu, Q. X., Xiang, Q., Zhang, C., Zhang, D. F., Zhang, W., Ma, X., Guo, W., Deng, W.,
CrossRef
Pubmed
Google scholar
|
[61] |
Sims, R., van der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B. W., Boland, A., Raybould, R., Bis, J. C.,
CrossRef
Pubmed
Google scholar
|
[62] |
Zhang, X. Y., Wang, H. F., Tan, M. S., Wan, Y., Kong, L. L., Zheng, Z. J., Tan, C. C., Zhang, W., Wang, Z. X., Tan, L.,
CrossRef
Pubmed
Google scholar
|
[63] |
Zhu, X. C., Cao, L., Tan, M. S., Jiang, T., Wang, H. F., Lu, H., Tan, C. C., Zhang, W., Tan, L. and Yu, J. T. (2017) Association of parkinson’s disease GWAS-linked loci with Alzheimer’s disease in Han Chinese. Mol. Neurobiol., 54, 308–318
CrossRef
Pubmed
Google scholar
|
[64] |
Zhou, X., Chen, Y., Mok, K. Y., Zhao, Q., Chen, K., Chen, Y., Hardy, J., Li, Y., Fu, A. K. Y., Guo, Q.,
CrossRef
Pubmed
Google scholar
|
[65] |
Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., Sealock, J., Karlsson, I. K., Hägg, S., Athanasiu, L.,
CrossRef
Pubmed
Google scholar
|
[66] |
Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A.,
CrossRef
Pubmed
Google scholar
|
[67] |
Rubin, D., Helwig, U., Pfeuffer, M., Schreiber, S., Boeing, H., Fisher, E., Pfeiffer, A., Freitag-Wolf, S., Foelsch, U. R., Doering, F.,
CrossRef
Pubmed
Google scholar
|
[68] |
Takeuchi, F., Serizawa, M., Yamamoto, K., Fujisawa, T., Nakashima, E., Ohnaka, K., Ikegami, H., Sugiyama, T., Katsuya, T., Miyagishi, M.,
CrossRef
Pubmed
Google scholar
|
[69] |
Bouatia-Naji, N., Bonnefond, A., Cavalcanti-Proença, C., Sparsø, T., Holmkvist, J., Marchand, M., Delplanque, J., Lobbens, S., Rocheleau, G., Durand, E.,
CrossRef
Pubmed
Google scholar
|
[70] |
Wellcome Trust Case Control, C., and the Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678
CrossRef
Pubmed
Google scholar
|
[71] |
Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker, P. I., Abecasis, G. R., Almgren, P., Andersen, G.,
CrossRef
Pubmed
Google scholar
|
[72] |
Horikawa, Y., Miyake, K., Yasuda, K., Enya, M., Hirota, Y., Yamagata, K., Hinokio, Y., Oka, Y., Iwasaki, N., Iwamoto, Y.,
CrossRef
Pubmed
Google scholar
|
[73] |
Prudente, S., Morini, E., Marselli, L., Baratta, R., Copetti, M., Mendonca, C., Andreozzi, F., Chandalia, M., Pellegrini, F., Bailetti, D.,
CrossRef
Pubmed
Google scholar
|
[74] |
Tabara, Y., Osawa, H., Kawamoto, R., Onuma, H., Shimizu, I., Miki, T., Kohara, K. and Makino, H. (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes, 58, 493–498
CrossRef
Pubmed
Google scholar
|
[75] |
Prudente, S., Scarpelli, D., Chandalia, M., Zhang, Y. Y., Morini, E., Del Guerra, S., Perticone, F., Li, R., Powers, C., Andreozzi, F.,
CrossRef
Pubmed
Google scholar
|
[76] |
Yasuda, K., Miyake, K., Horikawa, Y., Hara, K., Osawa, H., Furuta, H., Hirota, Y., Mori, H., Jonsson, A., Sato, Y.,
CrossRef
Pubmed
Google scholar
|
[77] |
Friedrich, B., Weyrich, P., Stancáková, A., Wang, J., Kuusisto, J., Laakso, M., Sesti, G., Succurro, E., Smith, U., Hansen, T.,
CrossRef
Pubmed
Google scholar
|
[78] |
Keramati, A. R., Fathzadeh, M., Go, G. W., Singh, R., Choi, M., Faramarzi, S., Mane, S., Kasaei, M., Sarajzadeh-Fard, K., Hwa, J.,
CrossRef
Pubmed
Google scholar
|
[79] |
Tsai, F. J., Yang, C. F., Chen, C. C., Chuang, L. M., Lu, C. H., Chang, C. T., Wang, T. Y., Chen, R. H., Shiu, C. F., Liu, Y. M.,
CrossRef
Pubmed
Google scholar
|
[80] |
Murad, A. S., Smith, G. D., Lewis, S. J., Cox, A., Donovan, J. L., Neal, D. E., Hamdy, F. C. and Martin, R. M. (2010) A polymorphism in the glucokinase gene that raises plasma fasting glucose, rs1799884, is associated with diabetes mellitus and prostate cancer: findings from a population-based, case-control study (the ProtecT study). Int J Mol Epidemiol Genet, 1, 175–183
Pubmed
|
[81] |
Zheng, J. S., Arnett, D. K., Parnell, L. D., Smith, C. E., Li, D., Borecki, I. B., Tucker, K. L., Ordovás, J. M. and Lai, C. Q. (2013) Modulation by dietary fat and carbohydrate of IRS1 association with type 2 diabetes traits in two populations of different ancestries. Diabetes Care, 36, 2621–2627
CrossRef
Pubmed
Google scholar
|
[82] |
Uma Jyothi, K., Jayaraj, M., Subburaj, K. S., Prasad, K. J., Kumuda, I., Lakshmi, V. and Reddy, B. M. (2013) Association of TCF7L2 gene polymorphisms with T2DM in the population of Hyderabad, India. PLoS One, 8, e60212
CrossRef
Pubmed
Google scholar
|
[83] |
Pei, Q., Huang, Q., Yang, G. P., Zhao, Y. C., Yin, J. Y., Song, M., Zheng, Y., Mo, Z. H., Zhou, H. H. and Liu, Z. Q. (2013) PPAR-g2 and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone in China. Acta Pharmacol. Sin., 34, 255–261
CrossRef
Pubmed
Google scholar
|
[84] |
Cho, Y. S., Chen, C.-H., Hu, C., Long, J., Hee Ong, R. T., Sim, X., Takeuchi, F., Wu, Y., Go, M. J., Yamauchi, T.,
CrossRef
Pubmed
Google scholar
|
[85] |
Sokolova, E. A., Bondar, I. A., Shabelnikova, O. Y., Pyankova, O. V. and Filipenko, M. L. (2015) Replication of kcnj11 (p.E23k) and abcc8 (p.S1369a) association in Russian diabetes mellitus 2 type cohort and meta-analysis. PLoS One, 10, e0124662
CrossRef
Pubmed
Google scholar
|
[86] |
Williams, A. L., Jacobs, S. B., Moreno-Macías, H., Huerta-Chagoya, A., Churchhouse, C., Márquez-Luna, C., García-Ortíz, H., Gómez-Vázquez, M. J., Burtt, N. P., Aguilar-Salinas, C. A.,
CrossRef
Pubmed
Google scholar
|
[87] |
Sim, X., Ong, R. T., Suo, C., Tay, W. T., Liu, J., Ng, D. P., Boehnke, M., Chia, K. S., Wong, T. Y., Seielstad, M.,
CrossRef
Pubmed
Google scholar
|
[88] |
Xue, A., Wu, Y., Zhu, Z., Zhang, F., Kemper, K. E., Zheng, Z., Yengo, L., Lloyd-Jones, L. R., Sidorenko, J., Wu, Y.,
CrossRef
Pubmed
Google scholar
|
[89] |
Morris, A. P. (2018) Progress in defining the genetic contribution to type 2 diabetes susceptibility. Curr. Opin. Genet. Dev., 50, 41–51
CrossRef
Pubmed
Google scholar
|
[90] |
Imamura, M., Takahashi, A., Yamauchi, T., Hara, K., Yasuda, K., Grarup, N., Zhao, W., Wang, X., Huerta-Chagoya, A., Hu, C.,
CrossRef
Pubmed
Google scholar
|
[91] |
Suzuki, K., Akiyama, M., Ishigaki, K., Kanai, M., Hosoe, J., Shojima, N., Hozawa, A., Kadota, A., Kuriki, K., Naito, M.,
CrossRef
Pubmed
Google scholar
|
[92] |
Cheng, L., Zhang, D., Zhou, L., Zhao, J. and Chen, B. (2015) Association between slc30a8 rs13266634 polymorphism and type 2 diabetes risk: A meta-analysis. Med. Sci. Monit., 21, 2178–2189
CrossRef
Pubmed
Google scholar
|
[93] |
Chen, X., Wang, X., Chen, Q., Williamson, V., van den Oord, E., Maher, B. S., O’Neill, F. A., Walsh, D. and Kendler, K. S. (2008) MEGF10 association with schizophrenia. Biol. Psychiatry, 63, 441–448
CrossRef
Pubmed
Google scholar
|
[94] |
Lohoff, F. W., Weller, A. E., Bloch, P. J., Buono, R. J., Doyle, G. A., Ferraro, T. N. and Berrettini, W. H. (2008) Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology, 57, 55–60
CrossRef
Pubmed
Google scholar
|
[95] |
Monakhov, M., Golimbet, V., Abramova, L., Kaleda, V. and Karpov, V. (2008) Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophr. Res., 100, 302–307
CrossRef
Pubmed
Google scholar
|
[96] |
Pal, P., Mihanović, M., Molnar, S., Xi, H., Sun, G., Guha, S., Jeran, N., Tomljenović, A., Malnar, A., Missoni, S.,
CrossRef
Pubmed
Google scholar
|
[97] |
Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., Werge, T., Pietiläinen, O. P., Mors, O., Mortensen, P. B.,
CrossRef
Pubmed
Google scholar
|
[98] |
Cichon, S., Mühleisen, T. W., Degenhardt, F. A., Mattheisen, M., Miró, X., Strohmaier, J., Steffens, M., Meesters, C., Herms, S., Weingarten, M. (2011) Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am. J. Hum. Genet., 88, 372–381
CrossRef
Pubmed
Google scholar
|
[99] |
Tsutsumi, A., Glatt, S. J., Kanazawa, T., Kawashige, S., Uenishi, H., Hokyo, A., Kaneko, T., Moritani, M., Kikuyama, H., Koh, J.,
CrossRef
Pubmed
Google scholar
|
[100] |
Xiao, B., Li, W., Zhang, H., Lv, L., Song, X., Yang, Y., Li, W., Yang, G., Jiang, C., Zhao, J.,
|
[101] |
Yue, W., Yang, Y., Zhang, Y., Lu, T., Hu, X., Wang, L., Ruan, Y., Lv, L. and Zhang, D. (2011) A case-control association study of NRXN1 polymorphisms with schizophrenia in Chinese Han population. Behav. Brain Funct., 7, 7
CrossRef
Pubmed
Google scholar
|
[102] |
Fineberg, A. M. and Ellman, L. M. (2013) Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol. Psychiatry, 73, 951–966
CrossRef
Pubmed
Google scholar
|
[103] |
Yan, P., Qiao, X., Wu, H., Yin, F., Zhang, J., Ji, Y., Wei, S. and Lai, J. (2016) An association study between genetic polymorphisms in functional regions of five genes and the risk of schizophrenia. J. Mol. Neurosci., 59, 366–375
CrossRef
Pubmed
Google scholar
|
[104] |
Yu, H., Yan, H., Li, J., Li, Z., Zhang, X., Ma, Y., Mei, L., Liu, C., Cai, L., Wang, Q.,
CrossRef
Pubmed
Google scholar
|
[105] |
Pardiñas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., Legge, S. E., Bishop, S., Cameron, D., Hamshere, M. L.,
CrossRef
Pubmed
Google scholar
|
[106] |
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427
CrossRef
Pubmed
Google scholar
|
[107] |
Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, Jr, P. C.Rimmler, J. B., Locke, P. A., Conneally, P. M., Schmader, K. E.,
CrossRef
Pubmed
Google scholar
|
[108] |
Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-MacLachlan, D. R., Alberts, M. J.,
CrossRef
Pubmed
Google scholar
|
[109] |
Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., Perry, J. R., Elliott, K. S., Lango, H., Rayner, N. W.,
CrossRef
Pubmed
Google scholar
|
[110] |
Eriksson, N. W., Wu, S., Do, C. B., Kiefer, A. K., Tung, J. Y., Mountain, J. L., Hinds, D. A. and Francke, U. (2012) A genetic variant near olfactory receptor genes influences cilantro preference. Flavour (Lond.), 1, 22
CrossRef
Google scholar
|
[111] |
Wiberg, A., Ng, M., Al Omran, Y., Alfaro-Almagro, F., McCarthy, P., Marchini, J., Bennett, D. L., Smith, S., Douaud, G. and Furniss, D. (2019) Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain, 142, 2938–2947
CrossRef
Pubmed
Google scholar
|
[112] |
Jin, B., Zhu, J., Wang, H., Chen, D., Su, Q., Wang, L., Liang, W. B. and Zhang, L. (2015) A primary investigation on SNPs associated with eyelid traits of Chinese Han adults. Forensic Sci. International. Genet. Suppl. Ser., 5, e669–e670
CrossRef
Google scholar
|
[113] |
Zhang, M., Wu, S., Zhang, J., Yang, Y., Tan, J., Guan, H., Liu, Y., Tang, K., Krutmann, J., Xu, S.,
CrossRef
Pubmed
Google scholar
|
[114] |
About UK biobank. https://www.ukbiobank.ac.uk/about-biobank-uk/. Accessed: 12 October, 2019
|
[115] |
23andme sells access to biobank to more than 13 drug companies. https://privacyinternational.org/examples-abuse/1854/23andme-sells-access-biobank-more-13-drug-companies. Accessed: 12 October, 2019
|
[116] |
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J.,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |