Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication

Kang Kang, Xue Sun, Lizhong Wang, Xiaotian Yao, Senwei Tang, Junjie Deng, Xiaoli Wu, WeGene Research Team, Can Yang, Gang Chen

PDF(1473 KB)
PDF(1473 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 201-215. DOI: 10.1007/s40484-020-0209-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication

Author information +
History +

Abstract

Background: The direct-to-consumer genetic testing (DTC-GT) industry has exploded in recent years, initiated by market pioneers from the United States and quickly followed by companies from Europe and Asia. In addition to their primary objective of providing ancestry and health information to customers, DTC-GT services have emerged as a valuable data resource for large-scale population and genetics studies.

Methods: We assessed DTC-GT market leaders in the U.S. and China, user participation in research, and academic reports based on this information. We also investigated DTC-GT end-user value by tracing key updates of companies provided via health risk reports and evaluating their predictive power. We then assessed the replicability of several genome-wide association studies (GWAS) based on a Chinese DTC-GT biobank.

Results: As recent entrants to the market, Chinese DTC-GT service providers have published less academic research than their Western counterparts; however, a larger proportion of Chinese users consent to participate in research projects. Dramatic increases in user volume and resultant report updates led to reclassification of some users’ polygenic risk levels, but within a reasonable scale and with increased predictive power. Replicability among GWAS using the Chinese DTC-GT biobank varied by studied trait, population background, and sample size.

Conclusions: We speculate that the rapid growth in DTC-GT services, particularly in non-Caucasian populations, will yield an important and much-needed resource for biobanking, large-scale genetic studies, clinical trials, and post-clinical applications.

Author summary

Direct-to-consumer genetic testing in China has exploded over the past five years. Chinese DTC-GC users are overwhelmingly willing to participate in research initiated by service providers. As most of these users are non-Caucasian, we evaluated the reliability of GWAS-derived polygenic disease reports using populations of predominantly European ancestry and found that prediction power increased alongside new GWAS loci integration. In assessing the outcomes of different GWAS, replicability varied among studies with different ethnic backgrounds and sample sizes. We speculate that Chinese DTC-GT databases represent valuable biobanks for genetic studies and clinical applications.

Graphical abstract

Keywords

DTC-GT; biobank / Chinese population / polygenic risk / GWAS replication

Cite this article

Download citation ▾
Kang Kang, Xue Sun, Lizhong Wang, Xiaotian Yao, Senwei Tang, Junjie Deng, Xiaoli Wu, WeGene Research Team, Can Yang, Gang Chen. Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication. Quant. Biol., 2021, 9(2): 201‒215 https://doi.org/10.1007/s40484-020-0209-2

References

[1]
Gibson, G. (2010) Hints of hidden heritability in GWAS. Nat. Genet., 42, 558–560
CrossRef Pubmed Google scholar
[2]
Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E. and Cox, N. J. (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet., 6, e1000888
CrossRef Pubmed Google scholar
[3]
More than 26 million people have taken an at-home ancestry test. https://www.technologyreview.com/s/612880/more-than-26-million-people-have-taken-an-at-home-ancestry-test/. Accessed: 12 October, 2019
[4]
2018 China dtc-gt market research report. https://www.iyiou.com/intelligence/report605.html. Accessed: 12 October, 2019
[5]
Covolo, L., Rubinelli, S., Ceretti, E. and Gelatti, U. (2015) Internet-based direct-to-consumer genetic testing: A systematic review. J. Med. Internet Res., 17, e279
CrossRef Pubmed Google scholar
[6]
Frueh, F. W., Greely, H. T., Green, R. C., Hogarth, S. and Siegel, S. (2011) The future of direct-to-consumer clinical genetic tests. Nat. Rev. Genet., 12, 511–515
CrossRef Pubmed Google scholar
[7]
Kalf, R. R., Mihaescu, R., Kundu, S., de Knijff, P., Green, R. C. and Janssens, A. C. (2014) Variations in predicted risks in personal genome testing for common complex diseases. Genet. Med., 16, 85–91
CrossRef Pubmed Google scholar
[8]
Kolor, K., Duquette, D., Zlot, A., Foland, J., Anderson, B., Giles, R., Wrathall, J. and Khoury, M. J. (2012) Public awareness and use of direct-to-consumer personal genomic tests from four state population-based surveys, and implications for clinical and public health practice. Genet. Med., 14, 860–867
CrossRef Pubmed Google scholar
[9]
Adams, S. D., Evans, J. P. and Aylsworth, A. S. (2013) Direct-to-consumer genomic testing offers little clinical utility but appears to cause minimal harm. N C Med. J., 74, 494–498
Pubmed
[10]
Buitendijk, G. H., Amin, N., Hofman, A., van Duijn, C. M., Vingerling, J. R. and Klaver, C. C. (2014) Direct-to-consumer personal genome testing for age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 55, 6167–6174
CrossRef Pubmed Google scholar
[11]
Imai, K., Kricka, L. J. and Fortina, P. (2011) Concordance study of 3 direct-to-consumer genetic-testing services. Clin. Chem., 57, 518–521
CrossRef Pubmed Google scholar
[12]
Kido, T., Kawashima, M., Nishino, S., Swan, M., Kamatani, N. and Butte, A. J. (2013) Systematic evaluation of personal genome services for Japanese individuals. J. Hum. Genet., 58, 734–741
CrossRef Pubmed Google scholar
[13]
Bloss, C. S., Topol, E. J. and Schork, N. J. (2012) Association of direct-to-consumer genome-wide disease risk estimates and self-reported disease. Genet. Epidemiol., 36, 66–70
CrossRef Pubmed Google scholar
[14]
Krier, J., Barfield, R., Green, R. C. and Kraft, P. (2016) Reclassification of genetic-based risk predictions as GWAS data accumulate. Genome Med., 8, 20
CrossRef Pubmed Google scholar
[15]
Lewis, C. M. and Vassos, E. (2017) Prospects for using risk scores in polygenic medicine. Genome Med., 9, 96
CrossRef Pubmed Google scholar
[16]
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M. and Daly, M. J. (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet., 51, 584–591
CrossRef Pubmed Google scholar
[17]
Reisberg, S., Iljasenko, T., Läll, K., Fischer, K. and Vilo, J. (2017) Comparing distributions of polygenic risk scores of type 2 diabetes and coronary heart disease within different populations. PLoS One, 12, e0179238
CrossRef Pubmed Google scholar
[18]
Sirugo, G., Williams, S. M. and Tishkoff, S. A. (2019) The missing diversity in human genetic studies. Cell, 177, 26–31
CrossRef Pubmed Google scholar
[19]
Liu, S., Huang, S., Chen, F., Zhao, L., Yuan, Y., Francis, S. S., Fang, L., Li, Z., Lin, L., Liu, R., (2018) Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell, 175, 347–359
[20]
Li, Z., Chen, J., Yu, H., He, L., Xu, Y., Zhang, D., Yi, Q., Li, C., Li, X., Shen, J., (2017) Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet., 49, 1576–1583
CrossRef Pubmed Google scholar
[21]
Autosomal DNA testing comparison chart. https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart. Accessed: 12 October, 2019
[22]
Dtc-gt business sense: Data “fosse” behind free service. https://new.qq.com/omn/20190830/20190830A0OTIP00.html. Accessed: 12 October, 2019
[23]
23andme’s new research overview page. https://blog.23andme.com/23andme-research/23andmes-new-research-overview-page/. Accessed: 12 October, 2019
[24]
Chen, P., Wu, J., Luo, L., Gao, H., Wang, M., Zou, X., Li, Y., Chen, G., Luo, H., Yu, L., (2019) Population genetic analysis of modern and ancient DNA variations yields new insights into the formation, genetic structure, and phylogenetic relationship of northern han chinese. Front. Genet., 10, 1045
CrossRef Pubmed Google scholar
[25]
Li, Y. C., Ye, W. J., Jiang, C. G., Zeng, Z., Tian, J. Y., Yang, L. Q., Liu, K. J. and Kong, Q. P. (2019) River valleys shaped the maternal genetic landscape of han chinese. Mol. Biol. Evol., 36, 1643–1652
CrossRef Pubmed Google scholar
[26]
Huang, X., Zhou, Q., Bin, X., Lai, S., Lin, C., Hu, R., Xiao, J., Luo, D., Li, Y., Wei, L. H., (2018) The genetic assimilation in language borrowing inferred from Jing People. Am. J. Phys. Anthropol., 166, 638–648
CrossRef Pubmed Google scholar
[27]
Yao, H. B., Tang, S., Yao, X., Yeh, H. Y., Zhang, W., Xie, Z., Du, Q., Ma, L., Wei, S., Gong, X., (2017) The genetic admixture in Tibetan-Yi Corridor. Am. J. Phys. Anthropol., 164, 522–532
CrossRef Pubmed Google scholar
[28]
Yao, X., Tang, S., Bian, B., Wu, X., Chen, G. and Wang, C. C. (2017) Improved phylogenetic resolution for Y-chromosome Haplogroup O2a1c-002611. Sci. Rep., 7, 1146
CrossRef Pubmed Google scholar
[29]
Zeng, Z., Tian, J., Jiang, C., Ye, W., Liu, K. and Li, Y. (2019) Inferring the history of surname Ye based on Y chromosome high-resolution genotyping and sequencing data. J. Hum. Genet., 64, 703–709
CrossRef Pubmed Google scholar
[30]
Zhao, J., Ming, J., Hu, X., Chen, G., Liu, J. and Yang, C. (2020) Bayesian weighted Mendelian randomization for causal inference based on summary statistics. Bioinformatics, btz749
CrossRef Pubmed Google scholar
[31]
Wang, M., Sun, X., Shi, Y., Song, X. and Mi, H. (2019) A genome-wide association study on photic sneeze reflex in the Chinese population. Sci. Rep., 9, 4993
CrossRef Pubmed Google scholar
[32]
23andme wants to solve the patient recruitment problem. https://www.clinicalleader.com/doc/andme-wants-to-solve-the-patient-recruitment-problem-0001. Accessed: 12 October, 2019
[33]
Clark, R. F., Hutton, M., Fuldner, M., Froelich, S., Karran, E., Talbot, C., Crook, R., Lendon, C., Prihar, G., He, C., (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nat. Genet., 11, 219–222
CrossRef Pubmed Google scholar
[34]
Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376, 775–778
CrossRef Pubmed Google scholar
[35]
Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754–760
CrossRef Pubmed Google scholar
[36]
Kwok, J. B., Taddei, K., Hallupp, M., Fisher, C., Brooks, W. S., Broe, G. A., Hardy, J., Fulham, M. J., Nicholson, G. A., Stell, R., (1997) Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer’s disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport, 8, 1537–1542
CrossRef Pubmed Google scholar
[37]
Bruni, A. C. (1998) Cloning of a gene bearing missense mutations in early onset familial Alzheimer’s disease: a Calabrian study. Funct. Neurol., 13, 257–261
Pubmed
[38]
Harvey, R. J., Ellison, D., Hardy, J., Hutton, M., Roques, P. K., Collinge, J., Fox, N. C. and Rossor, M. N. (1998) Chromosome 14 familial Alzheimer’s disease: the clinical and neuropathological characteristics of a family with a leucineright-arrowserine (L250S) substitution at codon 250 of the presenilin 1 gene. J. Neurol. Neurosurg. Psychiatry, 64, 44–49
CrossRef Pubmed Google scholar
[39]
Poorkaj, P., Sharma, V., Anderson, L., Nemens, E., Alonso, M. E., Orr, H., White, J., Heston, L., Bird, T. D. and Schellenberg, G. D. (1998) Missense mutations in the chromosome 14 familial Alzheimer’s disease presenilin 1 gene. Hum. Mutat., 11, 216–221
CrossRef Pubmed Google scholar
[40]
Lewis, P. A., Perez-Tur, J., Golde, T. E. and Hardy, J. (2000) The presenilin 1 C92S mutation increases abeta 42 production. Biochem. Biophys. Res. Commun., 277, 261–263
CrossRef Pubmed Google scholar
[41]
Tedde, A., Forleo, P., Nacmias, B., Piccini, C., Bracco, L., Piacentini, S. and Sorbi, S. (2000) A presenilin-1 mutation (Leu392Pro) in a familial AD kindred with psychiatric symptoms at onset. Neurology, 55, 1590–1591
CrossRef Pubmed Google scholar
[42]
Avella, A. B., Teruel, B. M., Rodriguez, J. L., Viera, N. G., Martinez, I. B., e, S., M, J., Duijn, C., Baute, L. H. and P, H. (2002) A novel presenilin 1 mutation (L174 M) in a large Cuban family with early onset Alzheimer disease. Neurogenetics, 4, 97–104
CrossRef Pubmed Google scholar
[43]
Queralt, R., Ezquerra, M., Lleó, A., Castellví, M., Gelpí, J., Ferrer, I., Acarín, N., Pasarín, L., Blesa, R. and Oliva, R. (2002) A novel mutation (V89L) in the presenilin 1 gene in a family with early onset Alzheimer’s disease and marked behavioural disturbances. J. Neurol. Neurosurg. Psychiatry, 72, 266–269
CrossRef Pubmed Google scholar
[44]
Miklossy, J., Taddei, K., Suva, D., Verdile, G., Fonte, J., Fisher, C., Gnjec, A., Ghika, J., Suard, F., Mehta, P. D., (2003) Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer’s disease. Neurobiol. Aging, 24, 655–662
CrossRef Pubmed Google scholar
[45]
Snider, B. J., Norton, J., Coats, M. A., Chakraverty, S., Hou, C. E., Jervis, R., Lendon, C. L., Goate, A. M., McKeel, Jr D. W. and Morris, J. C. (2005) Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch. Neurol., 62, 1821–1830
CrossRef Pubmed Google scholar
[46]
Larner, A. J. and Doran, M. (2006) Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J. Neurol., 253, 139–158
CrossRef Pubmed Google scholar
[47]
Kauwe, J. S., Jacquart, S., Chakraverty, S., Wang, J., Mayo, K., Fagan, A. M., Holtzman, D. M., Morris, J. C. and Goate, A. M. (2007) Extreme cerebrospinal fluid amyloid beta levels identify family with late-onset Alzheimer’s disease presenilin 1 mutation. Ann. Neurol., 61, 446–453
CrossRef Pubmed Google scholar
[48]
Meng, Y., Lee, J. H., Cheng, R., St George-Hyslop, P., Mayeux, R. and Farrer, L. A. (2007) Association between SORL1 and Alzheimer’s disease in a genome-wide study. Neuroreport, 18, 1761–1764
CrossRef Pubmed Google scholar
[49]
Aidaralieva, N. J., Kamino, K., Kimura, R., Yamamoto, M., Morihara, T., Kazui, H., Hashimoto, R., Tanaka, T., Kudo, T., Kida, T., (2008) Dynamin 2 gene is a novel susceptibility gene for late-onset Alzheimer disease in non-APOE-epsilon4 carriers. J. Hum. Genet., 53, 296–302
CrossRef Pubmed Google scholar
[50]
Piscopo, P., Marcon, G., Piras, M. R., Crestini, A., Campeggi, L. M., Deiana, E., Cherchi, R., Tanda, F., Deplano, A., Vanacore, N., (2008) A novel PSEN2 mutation associated with a peculiar phenotype. Neurology, 70, 1549–1554
CrossRef Pubmed Google scholar
[51]
Rademakers, R., Eriksen, J. L., Baker, M., Robinson, T., Ahmed, Z., Lincoln, S. J., Finch, N., Rutherford, N. J., Crook, R. J., Josephs, K. A., (2008) Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum. Mol. Genet., 17, 3631–3642
CrossRef Pubmed Google scholar
[52]
Schjeide, B. M., Hooli, B., Parkinson, M., Hogan, M. F., DiVito, J., Mullin, K., Blacker, D., Tanzi, R. E. and Bertram, L. (2009) GAB2 as an Alzheimer disease susceptibility gene: follow-up of genomewide association results. Arch. Neurol., 66, 250–254
CrossRef Pubmed Google scholar
[53]
Bennet, A. M., Reynolds, C. A., Gatz, M., Blennow, K., Pedersen, N. L. and Prince, J. A. (2010) Pleiotropy in the presence of allelic heterogeneity: alternative genetic models for the influence of APOE on serum LDL, CSF amyloid-b42, and dementia. J. Alzheimers Dis., 22, 129–134
CrossRef Pubmed Google scholar
[54]
Sanders, A. E., Wang, C., Katz, M., Derby, C. A., Barzilai, N., Ozelius, L. and Lipton, R. B. (2010) Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia. JAMA, 303, 150–158
CrossRef Pubmed Google scholar
[55]
Xu, X., Wang, Y., Wang, L., Liao, Q., Chang, L., Xu, L., Huang, Y., Ye, H., Xu, L., Chen, C., (2013) Meta-analyses of 8 polymorphisms associated with the risk of the Alzheimer’s disease. PLoS One, 8, e73129
CrossRef Pubmed Google scholar
[56]
Cruchaga, C., Karch, C. M., Jin, S. C., Benitez, B. A., Cai, Y., Guerreiro, R., Harari, O., Norton, J., Budde, J., Bertelsen, S., (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature, 505, 550–554
CrossRef Pubmed Google scholar
[57]
Floudas, C. S., Um, N., Kamboh, M. I., Barmada, M. M. and Visweswaran, S. (2014) Identifying genetic interactions associated with late-onset Alzheimer’s disease. BioData Min., 7, 35
CrossRef Pubmed Google scholar
[58]
Medway, C. and Morgan, K. (2014) Review: The genetics of Alzheimer’s disease; putting flesh on the bones. Neuropathol. Appl. Neurobiol., 40, 97–105
CrossRef Pubmed Google scholar
[59]
Gao, Y., Tan, M. S., Wang, H. F., Zhang, W., Wang, Z. X., Jiang, T., Yu, J. T. and Tan, L. (2016) ZCWPW1 is associated with late-onset Alzheimer’s disease in Han Chinese: a replication study and meta-analyses. Oncotarget, 7, 20305–20311
CrossRef Pubmed Google scholar
[60]
Wang, H. Z., Bi, R., Hu, Q. X., Xiang, Q., Zhang, C., Zhang, D. F., Zhang, W., Ma, X., Guo, W., Deng, W., (2016) Validating GWAS-identified risk loci for alzheimer’s disease in Han Chinese populations. Mol. Neurobiol., 53, 379–390
CrossRef Pubmed Google scholar
[61]
Sims, R., van der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B. W., Boland, A., Raybould, R., Bis, J. C., (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet., 49, 1373–1384
CrossRef Pubmed Google scholar
[62]
Zhang, X. Y., Wang, H. F., Tan, M. S., Wan, Y., Kong, L. L., Zheng, Z. J., Tan, C. C., Zhang, W., Wang, Z. X., Tan, L., (2017) Association of disc1 polymorphisms with late-onset Alzheimer’s disease in northern Han Chinese. Mol. Neurobiol., 54, 2922–2927
CrossRef Pubmed Google scholar
[63]
Zhu, X. C., Cao, L., Tan, M. S., Jiang, T., Wang, H. F., Lu, H., Tan, C. C., Zhang, W., Tan, L. and Yu, J. T. (2017) Association of parkinson’s disease GWAS-linked loci with Alzheimer’s disease in Han Chinese. Mol. Neurobiol., 54, 308–318
CrossRef Pubmed Google scholar
[64]
Zhou, X., Chen, Y., Mok, K. Y., Zhao, Q., Chen, K., Chen, Y., Hardy, J., Li, Y., Fu, A. K. Y., Guo, Q., (2018) Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer’s disease pathogenesis. Proc. Natl. Acad. Sci. USA, 115, 1697–1706
CrossRef Pubmed Google scholar
[65]
Jansen, I. E., Savage, J. E., Watanabe, K., Bryois, J., Williams, D. M., Steinberg, S., Sealock, J., Karlsson, I. K., Hägg, S., Athanasiu, L., (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet., 51, 404–413
CrossRef Pubmed Google scholar
[66]
Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., Boland, A., Vronskaya, M., van der Lee, S. J., Amlie-Wolf, A., (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Ab, tau, immunity and lipid processing. Nat. Genet., 51, 414–430
CrossRef Pubmed Google scholar
[67]
Rubin, D., Helwig, U., Pfeuffer, M., Schreiber, S., Boeing, H., Fisher, E., Pfeiffer, A., Freitag-Wolf, S., Foelsch, U. R., Doering, F., (2006) A common functional exon polymorphism in the microsomal triglyceride transfer protein gene is associated with type 2 diabetes, impaired glucose metabolism and insulin levels. J. Hum. Genet., 51, 567–574
CrossRef Pubmed Google scholar
[68]
Takeuchi, F., Serizawa, M., Yamamoto, K., Fujisawa, T., Nakashima, E., Ohnaka, K., Ikegami, H., Sugiyama, T., Katsuya, T., Miyagishi, M., (2009) Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes, 58, 1690–1699
CrossRef Pubmed Google scholar
[69]
Bouatia-Naji, N., Bonnefond, A., Cavalcanti-Proença, C., Sparsø, T., Holmkvist, J., Marchand, M., Delplanque, J., Lobbens, S., Rocheleau, G., Durand, E., (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet., 41, 89–94
CrossRef Pubmed Google scholar
[70]
Wellcome Trust Case Control, C., and the Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678
CrossRef Pubmed Google scholar
[71]
Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker, P. I., Abecasis, G. R., Almgren, P., Andersen, G., (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet., 40, 638–645
CrossRef Pubmed Google scholar
[72]
Horikawa, Y., Miyake, K., Yasuda, K., Enya, M., Hirota, Y., Yamagata, K., Hinokio, Y., Oka, Y., Iwasaki, N., Iwamoto, Y., (2008) Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J. Clin. Endocrinol. Metab., 93, 3136–3141
CrossRef Pubmed Google scholar
[73]
Prudente, S., Morini, E., Marselli, L., Baratta, R., Copetti, M., Mendonca, C., Andreozzi, F., Chandalia, M., Pellegrini, F., Bailetti, D., (2013) Joint effect of insulin signaling genes on insulin secretion and glucose homeostasis. J. Clin. Endocrinol. Metab., 98, E1143–E1147
CrossRef Pubmed Google scholar
[74]
Tabara, Y., Osawa, H., Kawamoto, R., Onuma, H., Shimizu, I., Miki, T., Kohara, K. and Makino, H. (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes, 58, 493–498
CrossRef Pubmed Google scholar
[75]
Prudente, S., Scarpelli, D., Chandalia, M., Zhang, Y. Y., Morini, E., Del Guerra, S., Perticone, F., Li, R., Powers, C., Andreozzi, F., (2009) The TRIB3 Q84R polymorphism and risk of early-onset type 2 diabetes. J. Clin. Endocrinol. Metab., 94, 190–196
CrossRef Pubmed Google scholar
[76]
Yasuda, K., Miyake, K., Horikawa, Y., Hara, K., Osawa, H., Furuta, H., Hirota, Y., Mori, H., Jonsson, A., Sato, Y., (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet., 40, 1092–1097
CrossRef Pubmed Google scholar
[77]
Friedrich, B., Weyrich, P., Stancáková, A., Wang, J., Kuusisto, J., Laakso, M., Sesti, G., Succurro, E., Smith, U., Hansen, T., (2008) Variance of the SGK1 gene is associated with insulin secretion in different European populations: results from the TUEF, EUGENE2, and METSIM studies. PLoS One, 3, e3506
CrossRef Pubmed Google scholar
[78]
Keramati, A. R., Fathzadeh, M., Go, G. W., Singh, R., Choi, M., Faramarzi, S., Mane, S., Kasaei, M., Sarajzadeh-Fard, K., Hwa, J., (2014) A form of the metabolic syndrome associated with mutations in DYRK1B. N. Engl. J. Med., 370, 1909–1919
CrossRef Pubmed Google scholar
[79]
Tsai, F. J., Yang, C. F., Chen, C. C., Chuang, L. M., Lu, C. H., Chang, C. T., Wang, T. Y., Chen, R. H., Shiu, C. F., Liu, Y. M., (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet., 6, e1000847
CrossRef Pubmed Google scholar
[80]
Murad, A. S., Smith, G. D., Lewis, S. J., Cox, A., Donovan, J. L., Neal, D. E., Hamdy, F. C. and Martin, R. M. (2010) A polymorphism in the glucokinase gene that raises plasma fasting glucose, rs1799884, is associated with diabetes mellitus and prostate cancer: findings from a population-based, case-control study (the ProtecT study). Int J Mol Epidemiol Genet, 1, 175–183
Pubmed
[81]
Zheng, J. S., Arnett, D. K., Parnell, L. D., Smith, C. E., Li, D., Borecki, I. B., Tucker, K. L., Ordovás, J. M. and Lai, C. Q. (2013) Modulation by dietary fat and carbohydrate of IRS1 association with type 2 diabetes traits in two populations of different ancestries. Diabetes Care, 36, 2621–2627
CrossRef Pubmed Google scholar
[82]
Uma Jyothi, K., Jayaraj, M., Subburaj, K. S., Prasad, K. J., Kumuda, I., Lakshmi, V. and Reddy, B. M. (2013) Association of TCF7L2 gene polymorphisms with T2DM in the population of Hyderabad, India. PLoS One, 8, e60212
CrossRef Pubmed Google scholar
[83]
Pei, Q., Huang, Q., Yang, G. P., Zhao, Y. C., Yin, J. Y., Song, M., Zheng, Y., Mo, Z. H., Zhou, H. H. and Liu, Z. Q. (2013) PPAR-g2 and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone in China. Acta Pharmacol. Sin., 34, 255–261
CrossRef Pubmed Google scholar
[84]
Cho, Y. S., Chen, C.-H., Hu, C., Long, J., Hee Ong, R. T., Sim, X., Takeuchi, F., Wu, Y., Go, M. J., Yamauchi, T., (2012) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in East Asians. Nat. Genet., 44, 67–72
CrossRef Pubmed Google scholar
[85]
Sokolova, E. A., Bondar, I. A., Shabelnikova, O. Y., Pyankova, O. V. and Filipenko, M. L. (2015) Replication of kcnj11 (p.E23k) and abcc8 (p.S1369a) association in Russian diabetes mellitus 2 type cohort and meta-analysis. PLoS One, 10, e0124662
CrossRef Pubmed Google scholar
[86]
Williams, A. L., Jacobs, S. B., Moreno-Macías, H., Huerta-Chagoya, A., Churchhouse, C., Márquez-Luna, C., García-Ortíz, H., Gómez-Vázquez, M. J., Burtt, N. P., Aguilar-Salinas, C. A., (2014) Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature, 506, 97–101
CrossRef Pubmed Google scholar
[87]
Sim, X., Ong, R. T., Suo, C., Tay, W. T., Liu, J., Ng, D. P., Boehnke, M., Chia, K. S., Wong, T. Y., Seielstad, M., (2011) Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet., 7, e1001363
CrossRef Pubmed Google scholar
[88]
Xue, A., Wu, Y., Zhu, Z., Zhang, F., Kemper, K. E., Zheng, Z., Yengo, L., Lloyd-Jones, L. R., Sidorenko, J., Wu, Y., (2018) Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun., 9, 2941
CrossRef Pubmed Google scholar
[89]
Morris, A. P. (2018) Progress in defining the genetic contribution to type 2 diabetes susceptibility. Curr. Opin. Genet. Dev., 50, 41–51
CrossRef Pubmed Google scholar
[90]
Imamura, M., Takahashi, A., Yamauchi, T., Hara, K., Yasuda, K., Grarup, N., Zhao, W., Wang, X., Huerta-Chagoya, A., Hu, C., (2016) Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat. Commun., 7, 10531
CrossRef Pubmed Google scholar
[91]
Suzuki, K., Akiyama, M., Ishigaki, K., Kanai, M., Hosoe, J., Shojima, N., Hozawa, A., Kadota, A., Kuriki, K., Naito, M., (2019) Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet., 51, 379–386
CrossRef Pubmed Google scholar
[92]
Cheng, L., Zhang, D., Zhou, L., Zhao, J. and Chen, B. (2015) Association between slc30a8 rs13266634 polymorphism and type 2 diabetes risk: A meta-analysis. Med. Sci. Monit., 21, 2178–2189
CrossRef Pubmed Google scholar
[93]
Chen, X., Wang, X., Chen, Q., Williamson, V., van den Oord, E., Maher, B. S., O’Neill, F. A., Walsh, D. and Kendler, K. S. (2008) MEGF10 association with schizophrenia. Biol. Psychiatry, 63, 441–448
CrossRef Pubmed Google scholar
[94]
Lohoff, F. W., Weller, A. E., Bloch, P. J., Buono, R. J., Doyle, G. A., Ferraro, T. N. and Berrettini, W. H. (2008) Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology, 57, 55–60
CrossRef Pubmed Google scholar
[95]
Monakhov, M., Golimbet, V., Abramova, L., Kaleda, V. and Karpov, V. (2008) Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophr. Res., 100, 302–307
CrossRef Pubmed Google scholar
[96]
Pal, P., Mihanović, M., Molnar, S., Xi, H., Sun, G., Guha, S., Jeran, N., Tomljenović, A., Malnar, A., Missoni, S., (2009) Association of tagging single nucleotide polymorphisms on 8 candidate genes in dopaminergic pathway with schizophrenia in Croatian population. Croat. Med. J., 50, 361–369
CrossRef Pubmed Google scholar
[97]
Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., Werge, T., Pietiläinen, O. P., Mors, O., Mortensen, P. B., (2009) Common variants conferring risk of schizophrenia. Nature, 460, 744–747
CrossRef Pubmed Google scholar
[98]
Cichon, S., Mühleisen, T. W., Degenhardt, F. A., Mattheisen, M., Miró, X., Strohmaier, J., Steffens, M., Meesters, C., Herms, S., Weingarten, M. (2011) Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am. J. Hum. Genet., 88, 372–381
CrossRef Pubmed Google scholar
[99]
Tsutsumi, A., Glatt, S. J., Kanazawa, T., Kawashige, S., Uenishi, H., Hokyo, A., Kaneko, T., Moritani, M., Kikuyama, H., Koh, J., (2011) The genetic validation of heterogeneity in schizophrenia. Behav. Brain Funct., 7, 43
CrossRef Pubmed Google scholar
[100]
Xiao, B., Li, W., Zhang, H., Lv, L., Song, X., Yang, Y., Li, W., Yang, G., Jiang, C., Zhao, J., (2011) To the editor: Association of znf804a polymorphisms with schizophrenia and antipsychotic drug efficacy in a Chinese Han population. Psychiatry Res. 190, 379–381
[101]
Yue, W., Yang, Y., Zhang, Y., Lu, T., Hu, X., Wang, L., Ruan, Y., Lv, L. and Zhang, D. (2011) A case-control association study of NRXN1 polymorphisms with schizophrenia in Chinese Han population. Behav. Brain Funct., 7, 7
CrossRef Pubmed Google scholar
[102]
Fineberg, A. M. and Ellman, L. M. (2013) Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol. Psychiatry, 73, 951–966
CrossRef Pubmed Google scholar
[103]
Yan, P., Qiao, X., Wu, H., Yin, F., Zhang, J., Ji, Y., Wei, S. and Lai, J. (2016) An association study between genetic polymorphisms in functional regions of five genes and the risk of schizophrenia. J. Mol. Neurosci., 59, 366–375
CrossRef Pubmed Google scholar
[104]
Yu, H., Yan, H., Li, J., Li, Z., Zhang, X., Ma, Y., Mei, L., Liu, C., Cai, L., Wang, Q., (2017) Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population. Mol. Psychiatry, 22, 954–960
CrossRef Pubmed Google scholar
[105]
Pardiñas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., Legge, S. E., Bishop, S., Cameron, D., Hamshere, M. L., (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet., 50, 381–389
CrossRef Pubmed Google scholar
[106]
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427
CrossRef Pubmed Google scholar
[107]
Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, Jr, P. C.Rimmler, J. B., Locke, P. A., Conneally, P. M., Schmader, K. E., (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet., 7, 180–184
CrossRef Pubmed Google scholar
[108]
Saunders, A. M., Strittmatter, W. J., Schmechel, D., George-Hyslop, P. H., Pericak-Vance, M. A., Joo, S. H., Rosi, B. L., Gusella, J. F., Crapper-MacLachlan, D. R., Alberts, M. J., (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43, 1467–1472
CrossRef Pubmed Google scholar
[109]
Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., Perry, J. R., Elliott, K. S., Lango, H., Rayner, N. W., (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894
CrossRef Pubmed Google scholar
[110]
Eriksson, N. W., Wu, S., Do, C. B., Kiefer, A. K., Tung, J. Y., Mountain, J. L., Hinds, D. A. and Francke, U. (2012) A genetic variant near olfactory receptor genes influences cilantro preference. Flavour (Lond.), 1, 22
CrossRef Google scholar
[111]
Wiberg, A., Ng, M., Al Omran, Y., Alfaro-Almagro, F., McCarthy, P., Marchini, J., Bennett, D. L., Smith, S., Douaud, G. and Furniss, D. (2019) Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain, 142, 2938–2947
CrossRef Pubmed Google scholar
[112]
Jin, B., Zhu, J., Wang, H., Chen, D., Su, Q., Wang, L., Liang, W. B. and Zhang, L. (2015) A primary investigation on SNPs associated with eyelid traits of Chinese Han adults. Forensic Sci. International. Genet. Suppl. Ser., 5, e669–e670
CrossRef Google scholar
[113]
Zhang, M., Wu, S., Zhang, J., Yang, Y., Tan, J., Guan, H., Liu, Y., Tang, K., Krutmann, J., Xu, S., (2016) Large-scale genome-wide scans do not support petaloid toenail as a Mendelian trait. J. Genet. Genomics, 43, 702–704
CrossRef Pubmed Google scholar
[114]
About UK biobank. https://www.ukbiobank.ac.uk/about-biobank-uk/. Accessed: 12 October, 2019
[115]
23andme sells access to biobank to more than 13 drug companies. https://privacyinternational.org/examples-abuse/1854/23andme-sells-access-biobank-more-13-drug-companies. Accessed: 12 October, 2019
[116]
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://doi.org/ 10.1007/s40484-020-0209-2.

ACKNOWLEDGEMENTS

We thank all WeGene users who consented to share their genotype and phenotype data for research purposes.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Kang Kang, Xue Sun, Lizhong Wang, Xiaotian Yao, Senwei Tang, Junjie Deng, Xiaoli Wu, and Gang Chen work for WeGene (Shenzhen Zaozhidao Teehnology Co. Ltd. or Shenzhen WeGene Clinical Laboratory).
All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(1473 KB)

Accesses

Citations

Detail

Sections
Recommended


/