Transcriptome-wide association studies: a view from Mendelian randomization

Huanhuan Zhu, Xiang Zhou

PDF(828 KB)
PDF(828 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (2) : 107-121. DOI: 10.1007/s40484-020-0207-4
REVIEW
REVIEW

Transcriptome-wide association studies: a view from Mendelian randomization

Author information +
History +

Abstract

Background: Genome-wide association studies (GWASs) have identified thousands of genetic variants that are associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome-wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene regulatory mechanisms underlying variant-trait associations. Specifically, TWAS integrate GWAS with expression mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each such method has a different modeling assumption and many were initially developed to answer different biological questions. Consequently, it is not straightforward to understand their modeling property from a theoretical perspective.

Results: We present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all be viewed as two-sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and re-interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe future directions for TWAS methodology development.

Conclusions: We hope that this review would serve as a useful reference for both methodologists who develop TWAS methods and practitioners who perform TWAS analysis.

Author summary

Transcriptome wide association studies (TWAS) integrate expression mapping studies and GWAS studies and aim to identify candidate genes whose genetically regulated expression is associated with trait of interest. We present a comprehensive review on a broad category of recently developed and commonly used TWAS methods. Our review covers different modeling assumptions, different inference procedures, modeling of horizontal pleiotropic effects, and extensions of TWAS towards multivariate MR analysis and summary statistics. Our review also aims to provide a unified view of various TWAS methods from the perspective of Mendelian randomization (MR).

Graphical abstract

Keywords

transcriptome-wide association studies / genome-wide association studies / expression mapping studies

Cite this article

Download citation ▾
Huanhuan Zhu, Xiang Zhou. Transcriptome-wide association studies: a view from Mendelian randomization. Quant. Biol., 2021, 9(2): 107‒121 https://doi.org/10.1007/s40484-020-0207-4

References

[1]
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W. J. H., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A., (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 48, 245–252
CrossRef Pubmed Google scholar
[2]
Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., (2013) The genotype-tissue expression (GTEx) project. Nat. Genet., 45, 580–585
CrossRef Pubmed Google scholar
[3]
Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511
CrossRef Pubmed Google scholar
[4]
Battle, A., Mostafavi, S., Zhu, X., Potash, J. B., Weissman, M. M., McCormick, C., Haudenschild, C. D., Beckman, K. B., Shi, J., Mei, R., (2014) Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res., 24, 14–24
CrossRef Pubmed Google scholar
[5]
Ramasamy, A., Trabzuni, D., Guelfi, S., Varghese, V., Smith, C., Walker, R., De, T., Coin, L., de Silva, R., Cookson, M. R., (2014) Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci., 17, 1418–1428
CrossRef Pubmed Google scholar
[6]
Gibbs, J. R., van der Brug, M. P., Hernandez, D. G., Traynor, B. J., Nalls, M. A., Lai, S.-L., Arepalli, S., Dillman, A., Rafferty, I. P., Troncoso, J., (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet., 6, e1000952
CrossRef Pubmed Google scholar
[7]
Tung, J., Zhou, X., Alberts, S. C., Stephens, M. and Gilad, Y. (2015) The genetic architecture of gene expression levels in wild baboons. eLife, 4, e04729
CrossRef Pubmed Google scholar
[8]
Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras, J. B., Stephens, M., Gilad, Y. and Pritchard, J. K. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768–772
CrossRef Pubmed Google scholar
[9]
Stancáková, A., Civelek, M., Saleem, N. K., Soininen, P., Kangas, A. J., Cederberg, H., Paananen, J., Pihlajamäki, J., Bonnycastle, L. L., Morken, M. A., (2012) Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes, 61, 1895–1902
CrossRef Pubmed Google scholar
[10]
Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., Andry, C. D., Annala, M., Aprikian, A., Armenia, J., Arora, A., (2015) The molecular taxonomy of primary prostate cancer. Cell, 163, 1011–1025
CrossRef Pubmed Google scholar
[11]
Fromer, M., Roussos, P., Sieberts, S. K., Johnson, J. S., Kavanagh, D. H., Perumal, T. M., Ruderfer, D. M., Oh, E. C., Topol, A., Shah, H. R., (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci., 19, 1442–1453
CrossRef Pubmed Google scholar
[12]
Wright, F. A., Sullivan, P. F., Brooks, A. I., Zou, F., Sun, W., Xia, K., Madar, V., Jansen, R., Chung, W., Zhou, Y. H., (2014) Heritability and genomics of gene expression in peripheral blood. Nat. Genet., 46, 430–437
CrossRef Pubmed Google scholar
[13]
Raitakari, O. T., Juonala, M., Rönnemaa, T., Keltikangas-Järvinen, L., Räsänen, L., Pietikäinen, M., Hutri-Kähönen, N., Taittonen, L., Jokinen, E., Marniemi, J., (2008) Cohort profile: the cardiovascular risk in Young Finns Study. Int. J. Epidemiol., 37, 1220–1226
CrossRef Pubmed Google scholar
[14]
Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., Eyler, A. E., Denny, J. C., Nicolae, D. L., Cox, N. J., (2015) A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet., 47, 1091–1098
CrossRef Pubmed Google scholar
[15]
Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. B, 67, 301–320
CrossRef Google scholar
[16]
Zhou, X., Carbonetto, P. and Stephens, M. (2013) Polygenic modeling with bayesian sparse linear mixed models. PLoS Genet., 9, e1003264
CrossRef Pubmed Google scholar
[17]
Zeng, P. and Zhou, X. (2017) Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models. Nat. Commun., 8, 456
CrossRef Pubmed Google scholar
[18]
Nagpal, S., Meng, X., Epstein, M. P., Tsoi, L. C., Patrick, M., Gibson, G., De Jager, P. L., Bennett, D. A., Wingo, A. P., Wingo, T. S., (2019) TIGAR: an improved Bayesian tool for transcriptomic data imputation enhances gene mapping of complex traits. Am. J. Hum. Genet., 105, 258–266
CrossRef Pubmed Google scholar
[19]
Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M. R., Powell, J. E., Montgomery, G. W., Goddard, M. E., Wray, N. R., Visscher, P. M., (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet., 48, 481–487
CrossRef Pubmed Google scholar
[20]
Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., Robinson, M. R., McGrath, J. J., Visscher, P. M., Wray, N. R., (2018) Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun., 9, 224
CrossRef Pubmed Google scholar
[21]
Yuan, Z., Zhu, H., Zeng, P., Yang, S., Sun, S., Yang, C., Liu, J., Zhou, X. (2019) Testing and controlling for horizontal pleiotropy with the probabilistic Mendelian randomization in transcriptome-wide association studies. bioRxiv, 691014
[22]
Sanderson, E., Davey Smith, G., Windmeijer, F. and Bowden, J. (2019) An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol., 48, 713–727
CrossRef Pubmed Google scholar
[23]
Burgess, S. and Thompson, S. G. (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol., 181, 251–260
CrossRef Pubmed Google scholar
[24]
Rees, J. M. B., Foley, C. N. and Burgess, S. (2019) Factorial Mendelian randomization: using genetic variants to assess interactions. Int. J. Epidemiol., dyz161
CrossRef Pubmed Google scholar
[25]
Burgess, S., Daniel, R. M., Butterworth, A. S. and Thompson, S. G., and the EPIC-InterAct Consortium. (2015) Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol., 44, 484–495
CrossRef Pubmed Google scholar
[26]
Porcu, E., Rüeger, S., Lepik, K., the eQTLGen Consortium, the BIOS Consortium, Santoni, F. A., Reymond, A. and Kutalik, Z. (2019) Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun., 10, 3300
CrossRef Pubmed Google scholar
[27]
Zuber, V., Colijn, J. M., Klaver, C. and Burgess, S. (2020) Selecting causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat. Commun. 11, 29
[28]
Barbeira, A. N., Pividori, M., Zheng, J., Wheeler, H. E., Nicolae, D. L. and Im, H. K. (2019) Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet., 15, e1007889
CrossRef Pubmed Google scholar
[29]
Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., Yu, Z., Li, B., Gu, J., Muchnik, S., (2019) A statistical framework for cross-tissue transcriptome-wide association analysis. Nat. Genet., 51, 568–576
CrossRef Pubmed Google scholar
[30]
Mancuso, N., Gayther, S., Gusev, A., Zheng, W., Penney, K. L., Kote-Jarai, Z., Eeles, R., Freedman, M., Haiman, C.Pasaniuc, B., (2018) Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat. Commun., 9, 4079
CrossRef Pubmed Google scholar
[31]
Park, Y., Sarkar, A. K., Bhutani, K. and Kellis, M. (2017) Multi-tissue polygenic models for transcriptome-wide association studies. bioRxiv, 107623
[32]
Shi, X., Chai, X., Yang, Y., Cheng, Q., Jiao, Y., Huang, J., Yang, C. and Liu, J. (2019) A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies. bioRxiv, 789396
[33]
Mancuso, N., Freund, M. K., Johnson, R., Shi, H., Kichaev, G., Gusev, A. and Pasaniuc, B. (2019) Probabilistic fine-mapping of transcriptome-wide association studies. Nat. Genet., 51, 675–682
CrossRef Pubmed Google scholar
[34]
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., (2019) Opportunities and challenges for transcriptome-wide association studies. Nat. Genet., 51, 592–599
CrossRef Pubmed Google scholar
[35]
Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., Torstenson, E. S., Shah, K. P., Garcia, T., Edwards, T. L., (2018) Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun., 9, 1825
CrossRef Pubmed Google scholar
[36]
Ference, B. A., Robinson, J. G., Brook, R. D., Catapano, A. L., Chapman, M. J., Neff, D. R., Voros, S., Giugliano, R. P., Davey Smith, G., Fazio, S., (2016) Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 375, 2144–2153
CrossRef Pubmed Google scholar
[37]
Helgadottir, A., Gretarsdottir, S., Thorleifsson, G., Hjartarson, E., Sigurdsson, A., Magnusdottir, A., Jonasdottir, A., Kristjansson, H., Sulem, P., Oddsson, A., (2016) Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet., 48, 634–639
CrossRef Pubmed Google scholar
[38]
Pingault, J.-B., O’Reilly, P. F., Schoeler, T., Ploubidis, G. B., Rijsdijk, F. and Dudbridge, F. (2018) Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet., 19, 566–580
CrossRef Pubmed Google scholar
[39]
Zheng, J., Baird, D., Borges, M.-C., Bowden, J., Hemani, G., Haycock, P., Evans, D. M. and Smith, G. D. (2017) Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep., 4, 330–345
CrossRef Pubmed Google scholar
[40]
Haycock, P. C., Burgess, S., Wade, K. H., Bowden, J., Relton, C. and Davey Smith, G. (2016) Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr., 103, 965–978
CrossRef Pubmed Google scholar
[41]
Lawlor, D. A. (2016) Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int. J. Epidemiol., 45, 908–915
CrossRef Pubmed Google scholar
[42]
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol., 44, 512–525
CrossRef Pubmed Google scholar
[43]
Bowden, J., Davey Smith, G., Haycock, P. C. and Burgess, S. (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol., 40, 304–314
CrossRef Pubmed Google scholar
[44]
Smith, G. D. and Ebrahim, S. (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol., 32, 1–22
CrossRef Pubmed Google scholar
[45]
Burgess, S., Small, D. S. and Thompson, S. G. (2017) A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res., 26, 2333–2355
CrossRef Pubmed Google scholar
[46]
Burgess, S., Butterworth, A. and Thompson, S. G. (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol., 37, 658–665
CrossRef Pubmed Google scholar
[47]
Burgess, S., Dudbridge, F. and Thompson, S. G. (2016) Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat. Med., 35, 1880–1906
CrossRef Pubmed Google scholar
[48]
Burgess, S. and Thompson, S. G. (2011) Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat. Med., 30, 1312–1323
CrossRef Pubmed Google scholar
[49]
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267–288
CrossRef Google scholar
[50]
Hoerl, A. E. and Kennard, R. W. (2000) Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 42, 80–86
CrossRef Google scholar
[51]
Guan, Y. and Stephens, M. (2011) Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat., 5, 1780–1815
CrossRef Google scholar
[52]
Boyle, E. A., Li, Y. I. and Pritchard, J. K. (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell, 169, 1177–1186
CrossRef Pubmed Google scholar
[53]
Yang, C., Wan, X., Lin, X., Chen, M., Zhou, X. and Liu, J. (2019) CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics, 35, 1644–1652
CrossRef Pubmed Google scholar
[54]
Yang, Y., Shi, X., Jiao, Y., Huang, J., Chen, M., Zhou, X., Sun, L., Lin, X., Yang, C., Liu, J. (2020) CoMM-S2: a collaborative mixed model using summary statistics in transcriptome-wide association studies. Bioinformatics, 36, 2009–2016
[55]
Hemani, G., Bowden, J. and Davey Smith, G. (2018) Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet., 27, R195–R208
CrossRef Pubmed Google scholar
[56]
Verbanck, M., Chen, C.-Y., Neale, B. and Do, R. (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet., 50, 693–698
CrossRef Pubmed Google scholar
[57]
Park, Y., Sarkar, A. K., He, L., Davila-Velderrain, J., De Jager, P. L. and Kellis, M. (2017) A Bayesian approach to mediation analysis predicts 206 causal target genes in Alzheimer’s disease. bioRxiv, 219428
[58]
Burgess, S. and Thompson, S. G. (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol., 32, 377–389
CrossRef Pubmed Google scholar
[59]
Dai, J. Y., Peters, U., Wang, X., Kocarnik, J., Chang-Claude, J., Slattery, M. L., Chan, A., Lemire, M., Berndt, S. I., Casey, G., (2018) Diagnostics for pleiotropy in Mendelian randomization studies: global and individual tests for direct effects. Am. J. Epidemiol., 187, 2672–2680
CrossRef Pubmed Google scholar
[60]
Qi, G. and Chatterjee, N. (2019) Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects. Nat. Commun., 10, 1941
CrossRef Pubmed Google scholar
[61]
Berzuini C, Guo H, Burgess S, Bernardinelli L. (2020) A Bayesian approach to Mendelian randomization with multiple pleiotropic variants. 2018. Biostatistics, 21, 86–101
[62]
Li, S. (2017) Mendelian randomization when many instruments are invalid: hierarchical empirical Bayes estimation. ArXiv, 170601389
[63]
Barfield, R., Feng, H., Gusev, A., Wu, L., Zheng, W., Pasaniuc, B. and Kraft, P. (2018) Transcriptome-wide association studies accounting for colocalization using Egger regression. Genet. Epidemiol., 42, 418–433
CrossRef Pubmed Google scholar
[64]
Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89, 82–93
CrossRef Pubmed Google scholar
[65]
Li, B. and Leal, S. M. (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–321
CrossRef Pubmed Google scholar
[66]
Madsen, B. E. and Browning, S. R. (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet., 5, e1000384
CrossRef Pubmed Google scholar
[67]
Price, A. L., Kryukov, G. V., de Bakker, P. I., Purcell, S. M., Staples, J., Wei, L.-J. and Sunyaev, S. R. (2010) Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet., 86, 832–838
CrossRef Pubmed Google scholar
[68]
Zhou, X. (2017) A unified framework for variance component estimation with summary statistics in genome-wide association studies. Ann. Appl. Stat., 11, 2027–2051
CrossRef Pubmed Google scholar
[69]
Schork, N. J., Murray, S. S., Frazer, K. A. and Topol, E. J. (2009) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev., 19, 212–219
CrossRef Pubmed Google scholar
[70]
Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H. and Nadeau, J. H. (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet., 11, 446–450
CrossRef Pubmed Google scholar
[71]
Price, A. L., Helgason, A., Thorleifsson, G., McCarroll, S. A., Kong, A. and Stefansson, K. (2011) Single-tissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals. PLoS Genet., 7, e1001317
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This study was supported by the National Institutes of Health (NIH) Grants R01HG009124 and the National Science Foundation (NSF) Grant DMS1712933.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Huanhuan Zhu and Xiang Zhou declare that they have no conflict of interests. ƒAll procedures performed in studies were in accordance with the ethical standards of the institution.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(828 KB)

Accesses

Citations

Detail

Sections
Recommended

/